ComfyUI-EasyAI/nodes.py
2025-05-15 21:03:44 +08:00

55 lines
1.9 KiB
Python

import requests
import io
import librosa.core as core
import torch
class AudioLoadPath:
@classmethod
def INPUT_TYPES(s):
return {"required": { "path": ("STRING", {"default": "X://insert/path/here.mp4"}),
"sample_rate": ("INT", {"default": 22050, "min": 6000, "max": 192000, "step": 1}),
"offset": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1e6, "step": 0.001}),
"duration": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1e6, "step": 0.001})}}
RETURN_TYPES = ("AUDIO", )
CATEGORY = "EasyAI"
FUNCTION = "load"
def load(self, path: str, sample_rate: int, offset: float, duration: float|None):
if duration == 0.0:
duration = None
try:
if path.startswith(('http://', 'https://')):
response = requests.get(path)
response.raise_for_status()
audio_data = io.BytesIO(response.content)
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio, _ = core.load(audio_data, sr=sample_rate, offset=offset, duration=duration)
else:
audio, _ = core.load(path, sr=sample_rate, offset=offset, duration=duration)
# 将音频数据转换为正确的格式
audio_tensor = torch.from_numpy(audio).float()
# 创建符合 SaveAudio 节点期望的字典格式
audio_dict = {
"waveform": audio_tensor.unsqueeze(0), # 添加批次维度 [batch, samples]
"sample_rate": sample_rate
}
return (audio_dict,)
except Exception as e:
raise Exception(f"加载音频失败: {str(e)}")
NODE_CLASS_MAPPINGS = {
"AudioLoadPath": AudioLoadPath,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AudioLoadPath": "Load Audio (Path/URL)"
}