mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
Merge upstream
This commit is contained in:
commit
00728eb20f
@ -39,7 +39,7 @@ def initialize_event_tracking(loop: Optional[asyncio.AbstractEventLoop] = None):
|
||||
# patch nodes
|
||||
from ..nodes.base_nodes import SaveImage, CLIPTextEncode, LoraLoader, CheckpointLoaderSimple
|
||||
from ..cmd.execution import PromptQueue
|
||||
from comfy.component_model.queue_types import QueueItem
|
||||
from ..component_model.queue_types import QueueItem
|
||||
|
||||
prompt_queue_put = PromptQueue.put
|
||||
|
||||
|
||||
@ -176,6 +176,7 @@ def create_parser() -> argparse.ArgumentParser:
|
||||
help="This name will be used by the frontends and workers to exchange prompt requests and replies. Progress updates will be prefixed by the queue name, followed by a '.', then the user ID")
|
||||
parser.add_argument("--external-address", required=False,
|
||||
help="Specifies a base URL for external addresses reported by the API, such as for image paths.")
|
||||
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
||||
|
||||
# now give plugins a chance to add configuration
|
||||
for entry_point in entry_points().select(group='comfyui.custom_config'):
|
||||
@ -208,6 +209,12 @@ def parse_args(parser: Optional[argparse.ArgumentParser] = None) -> Configuratio
|
||||
if args.disable_auto_launch:
|
||||
args.auto_launch = False
|
||||
|
||||
logging_level = logging.WARNING
|
||||
if args.verbose:
|
||||
logging_level = logging.DEBUG
|
||||
|
||||
logging.basicConfig(format="%(message)s", level=logging_level)
|
||||
|
||||
return Configuration(**vars(args))
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import copy
|
||||
from typing import TypeAlias, Union
|
||||
|
||||
from comfy.api.components.schema.prompt import PromptDict, Prompt
|
||||
from ..api.components.schema.prompt import PromptDict, Prompt
|
||||
|
||||
JSON: TypeAlias = Union[dict[str, "JSON"], list["JSON"], str, int, float, bool, None]
|
||||
_BASE_PROMPT: JSON = {
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
from .ldm.modules.attention import optimized_attention_for_device
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
|
||||
@ -2,6 +2,7 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_repl
|
||||
import os
|
||||
import torch
|
||||
import json
|
||||
import logging
|
||||
|
||||
from . import ops
|
||||
from . import model_patcher
|
||||
@ -99,7 +100,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
clip = ClipVisionModel(json_config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
print("missing clip vision:", m)
|
||||
logging.warning("missing clip vision: {}".format(m))
|
||||
u = set(u)
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
|
||||
@ -53,8 +53,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, prompt=None, extr
|
||||
if h[x] == "PROMPT":
|
||||
input_data_all[x] = [prompt]
|
||||
if h[x] == "EXTRA_PNGINFO":
|
||||
if "extra_pnginfo" in extra_data:
|
||||
input_data_all[x] = [extra_data['extra_pnginfo']]
|
||||
input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
|
||||
if h[x] == "UNIQUE_ID":
|
||||
input_data_all[x] = [unique_id]
|
||||
return input_data_all
|
||||
|
||||
@ -3,7 +3,7 @@ from __future__ import annotations # for Python 3.7-3.9
|
||||
from typing_extensions import NotRequired, TypedDict
|
||||
from typing import Optional, Literal, Protocol, TypeAlias, Union
|
||||
|
||||
from comfy.component_model.queue_types import BinaryEventTypes
|
||||
from .queue_types import BinaryEventTypes
|
||||
|
||||
|
||||
class ExecInfo(TypedDict):
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
import os
|
||||
import logging
|
||||
|
||||
from . import utils
|
||||
from . import model_management
|
||||
@ -368,7 +369,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
|
||||
leftover_keys = controlnet_data.keys()
|
||||
if len(leftover_keys) > 0:
|
||||
print("leftover keys:", leftover_keys)
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
@ -383,7 +384,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
@ -418,7 +419,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
else:
|
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
@ -427,7 +428,12 @@ def load_controlnet(ckpt_path, model=None):
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if len(missing) > 0:
|
||||
logging.warning("missing controlnet keys: {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.info("unexpected controlnet keys: {}".format(unexpected))
|
||||
|
||||
global_average_pooling = False
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
@ -537,9 +543,9 @@ def load_t2i_adapter(t2i_data):
|
||||
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
if len(missing) > 0:
|
||||
print("t2i missing", missing)
|
||||
logging.warning("t2i missing {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
print("t2i unexpected", unexpected)
|
||||
logging.info("t2i unexpected {}".format(unexpected))
|
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import re
|
||||
import torch
|
||||
import logging
|
||||
|
||||
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
||||
|
||||
@ -177,7 +178,7 @@ def convert_vae_state_dict(vae_state_dict):
|
||||
for k, v in new_state_dict.items():
|
||||
for weight_name in weights_to_convert:
|
||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||
print(f"Reshaping {k} for SD format")
|
||||
logging.info(f"Reshaping {k} for SD format")
|
||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||||
return new_state_dict
|
||||
|
||||
|
||||
@ -6,7 +6,7 @@ from typing import Optional
|
||||
from aio_pika import connect_robust
|
||||
from aio_pika.patterns import RPC
|
||||
|
||||
from comfy.distributed.distributed_types import RpcRequest, RpcReply
|
||||
from .distributed_types import RpcRequest, RpcReply
|
||||
|
||||
|
||||
class DistributedPromptClient:
|
||||
|
||||
@ -5,7 +5,7 @@ from typing import Optional, OrderedDict, List, Dict
|
||||
import collections
|
||||
from itertools import islice
|
||||
|
||||
from comfy.component_model.queue_types import HistoryEntry, QueueItem, ExecutionStatus, MAXIMUM_HISTORY_SIZE
|
||||
from ..component_model.queue_types import HistoryEntry, QueueItem, ExecutionStatus, MAXIMUM_HISTORY_SIZE
|
||||
|
||||
|
||||
class History:
|
||||
|
||||
@ -4,7 +4,7 @@ import torch
|
||||
from torch import nn
|
||||
from .ldm.modules.attention import CrossAttention
|
||||
from inspect import isfunction
|
||||
from comfy.ops import manual_cast
|
||||
from .ops import manual_cast
|
||||
ops = manual_cast
|
||||
|
||||
def exists(val):
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from . import utils
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
@ -156,7 +157,7 @@ def load_lora(lora, to_load):
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
logging.warning("lora key not loaded: {}".format(x))
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import logging
|
||||
from .ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from .ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
@ -66,8 +67,8 @@ class BaseModel(torch.nn.Module):
|
||||
if self.adm_channels is None:
|
||||
self.adm_channels = 0
|
||||
self.inpaint_model = False
|
||||
print("model_type", model_type.name)
|
||||
print("adm", self.adm_channels)
|
||||
logging.warning("model_type {}".format(model_type.name))
|
||||
logging.info("adm {}".format(self.adm_channels))
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
@ -168,7 +169,7 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
c_concat = kwargs.get("noise_concat", None)
|
||||
if c_concat is not None:
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
||||
out['c_concat'] = conds.CONDNoiseShape(data)
|
||||
|
||||
return out
|
||||
|
||||
@ -182,10 +183,10 @@ class BaseModel(torch.nn.Module):
|
||||
to_load = self.model_config.process_unet_state_dict(to_load)
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
||||
if len(m) > 0:
|
||||
print("unet missing:", m)
|
||||
logging.warning("unet missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
print("unet unexpected:", u)
|
||||
logging.warning("unet unexpected: {}".format(u))
|
||||
del to_load
|
||||
return self
|
||||
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
from . import supported_models
|
||||
from . import supported_models_base
|
||||
import logging
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
@ -186,7 +187,7 @@ def model_config_from_unet_config(unet_config):
|
||||
if model_config.matches(unet_config):
|
||||
return model_config(unet_config)
|
||||
|
||||
print("no match", unet_config)
|
||||
logging.error("no match {}".format(unet_config))
|
||||
return None
|
||||
|
||||
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import psutil
|
||||
import logging
|
||||
from enum import Enum
|
||||
from .cli_args import args
|
||||
from . import utils
|
||||
@ -33,7 +34,7 @@ lowvram_available = True
|
||||
xpu_available = False
|
||||
|
||||
if args.deterministic:
|
||||
print("Using deterministic algorithms for pytorch")
|
||||
logging.warning("Using deterministic algorithms for pytorch")
|
||||
torch.use_deterministic_algorithms(True, warn_only=True)
|
||||
|
||||
directml_enabled = False
|
||||
@ -45,7 +46,7 @@ if args.directml is not None:
|
||||
directml_device = torch_directml.device()
|
||||
else:
|
||||
directml_device = torch_directml.device(device_index)
|
||||
print("Using directml with device:", torch_directml.device_name(device_index))
|
||||
logging.warning("Using directml with device: {}".format(torch_directml.device_name(device_index)))
|
||||
# torch_directml.disable_tiled_resources(True)
|
||||
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
||||
|
||||
@ -121,10 +122,10 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
|
||||
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
||||
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
logging.warning("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
if not args.normalvram and not args.cpu:
|
||||
if lowvram_available and total_vram <= 4096:
|
||||
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
||||
logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
|
||||
try:
|
||||
@ -147,12 +148,10 @@ else:
|
||||
pass
|
||||
try:
|
||||
XFORMERS_VERSION = xformers.version.__version__
|
||||
print("xformers version:", XFORMERS_VERSION)
|
||||
logging.warning("xformers version: {}".format(XFORMERS_VERSION))
|
||||
if XFORMERS_VERSION.startswith("0.0.18"):
|
||||
print()
|
||||
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
||||
print("Please downgrade or upgrade xformers to a different version.")
|
||||
print()
|
||||
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
||||
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
|
||||
XFORMERS_ENABLED_VAE = False
|
||||
except:
|
||||
pass
|
||||
@ -217,11 +216,11 @@ elif args.highvram or args.gpu_only:
|
||||
FORCE_FP32 = False
|
||||
FORCE_FP16 = False
|
||||
if args.force_fp32:
|
||||
print("Forcing FP32, if this improves things please report it.")
|
||||
logging.warning("Forcing FP32, if this improves things please report it.")
|
||||
FORCE_FP32 = True
|
||||
|
||||
if args.force_fp16 or cpu_state == CPUState.MPS:
|
||||
print("Forcing FP16.")
|
||||
logging.warning("Forcing FP16.")
|
||||
FORCE_FP16 = True
|
||||
|
||||
if lowvram_available:
|
||||
@ -235,12 +234,12 @@ if cpu_state != CPUState.GPU:
|
||||
if cpu_state == CPUState.MPS:
|
||||
vram_state = VRAMState.SHARED
|
||||
|
||||
print(f"Set vram state to: {vram_state.name}")
|
||||
logging.warning(f"Set vram state to: {vram_state.name}")
|
||||
|
||||
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
||||
|
||||
if DISABLE_SMART_MEMORY:
|
||||
print("Disabling smart memory management")
|
||||
logging.warning("Disabling smart memory management")
|
||||
|
||||
def get_torch_device_name(device):
|
||||
if hasattr(device, 'type'):
|
||||
@ -258,11 +257,11 @@ def get_torch_device_name(device):
|
||||
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
||||
|
||||
try:
|
||||
print("Device:", get_torch_device_name(get_torch_device()))
|
||||
logging.warning("Device: {}".format(get_torch_device_name(get_torch_device())))
|
||||
except:
|
||||
print("Could not pick default device.")
|
||||
logging.warning("Could not pick default device.")
|
||||
|
||||
print("VAE dtype:", VAE_DTYPE)
|
||||
logging.warning("VAE dtype: {}".format(VAE_DTYPE))
|
||||
|
||||
current_loaded_models = []
|
||||
|
||||
@ -305,7 +304,7 @@ class LoadedModel:
|
||||
raise e
|
||||
|
||||
if lowvram_model_memory > 0:
|
||||
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
|
||||
logging.warning("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
|
||||
mem_counter = 0
|
||||
for m in self.real_model.modules():
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
@ -318,7 +317,7 @@ class LoadedModel:
|
||||
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
|
||||
m.to(self.device)
|
||||
mem_counter += module_size(m)
|
||||
print("lowvram: loaded module regularly", m)
|
||||
logging.warning("lowvram: loaded module regularly {}".format(m))
|
||||
|
||||
self.model_accelerated = True
|
||||
|
||||
@ -353,7 +352,7 @@ def unload_model_clones(model):
|
||||
to_unload = [i] + to_unload
|
||||
|
||||
for i in to_unload:
|
||||
print("unload clone", i)
|
||||
logging.warning("unload clone {}".format(i))
|
||||
current_loaded_models.pop(i).model_unload()
|
||||
|
||||
def free_memory(memory_required, device, keep_loaded=[]):
|
||||
@ -397,7 +396,7 @@ def load_models_gpu(models, memory_required=0):
|
||||
models_already_loaded.append(loaded_model)
|
||||
else:
|
||||
if hasattr(x, "model"):
|
||||
print(f"Requested to load {x.model.__class__.__name__}")
|
||||
logging.warning(f"Requested to load {x.model.__class__.__name__}")
|
||||
models_to_load.append(loaded_model)
|
||||
|
||||
if len(models_to_load) == 0:
|
||||
@ -407,7 +406,7 @@ def load_models_gpu(models, memory_required=0):
|
||||
free_memory(extra_mem, d, models_already_loaded)
|
||||
return
|
||||
|
||||
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
||||
logging.warning(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
||||
|
||||
total_memory_required = {}
|
||||
for loaded_model in models_to_load:
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
|
||||
from . import utils
|
||||
from . import model_management
|
||||
@ -187,7 +188,7 @@ class ModelPatcher:
|
||||
model_sd = self.model_state_dict()
|
||||
for key in self.patches:
|
||||
if key not in model_sd:
|
||||
print("could not patch. key doesn't exist in model:", key)
|
||||
logging.warning("could not patch. key doesn't exist in model: {}".format(key))
|
||||
continue
|
||||
|
||||
weight = model_sd[key]
|
||||
@ -236,7 +237,7 @@ class ModelPatcher:
|
||||
w1 = v[0]
|
||||
if alpha != 0.0:
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
elif patch_type == "lora": #lora/locon
|
||||
@ -252,7 +253,7 @@ class ModelPatcher:
|
||||
try:
|
||||
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
|
||||
except Exception as e:
|
||||
print("ERROR", key, e)
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
@ -291,7 +292,7 @@ class ModelPatcher:
|
||||
try:
|
||||
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
|
||||
except Exception as e:
|
||||
print("ERROR", key, e)
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
@ -320,7 +321,7 @@ class ModelPatcher:
|
||||
try:
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
||||
except Exception as e:
|
||||
print("ERROR", key, e)
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
if v[4] is not None:
|
||||
alpha *= v[4] / v[0].shape[0]
|
||||
@ -330,9 +331,12 @@ class ModelPatcher:
|
||||
b1 = model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
|
||||
b2 = model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
|
||||
|
||||
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
|
||||
try:
|
||||
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
print("patch type not recognized", patch_type, key)
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
return weight
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
from .ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
import math
|
||||
|
||||
class EPS:
|
||||
|
||||
33
comfy/sd.py
33
comfy/sd.py
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from enum import Enum
|
||||
import logging
|
||||
|
||||
from . import model_management
|
||||
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
||||
@ -37,7 +38,7 @@ def load_model_weights(model, sd):
|
||||
w = sd.pop(x)
|
||||
del w
|
||||
if len(m) > 0:
|
||||
print("missing", m)
|
||||
logging.warning("missing {}".format(m))
|
||||
return model
|
||||
|
||||
def load_clip_weights(model, sd):
|
||||
@ -81,7 +82,7 @@ def load_lora_for_models(model, clip, _lora, strength_model, strength_clip):
|
||||
k1 = set(k1)
|
||||
for x in loaded:
|
||||
if (x not in k) and (x not in k1):
|
||||
print("NOT LOADED", x)
|
||||
logging.warning("NOT LOADED {}".format(x))
|
||||
|
||||
return (new_modelpatcher, new_clip)
|
||||
|
||||
@ -225,10 +226,10 @@ class VAE:
|
||||
|
||||
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0:
|
||||
print("Missing VAE keys", m)
|
||||
logging.warning("Missing VAE keys {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
print("Leftover VAE keys", u)
|
||||
logging.info("Leftover VAE keys {}".format(u))
|
||||
|
||||
if device is None:
|
||||
device = model_management.vae_device()
|
||||
@ -291,7 +292,7 @@ class VAE:
|
||||
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
||||
pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
pixel_samples = self.decode_tiled_(samples_in)
|
||||
|
||||
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
|
||||
@ -317,7 +318,7 @@ class VAE:
|
||||
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
||||
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
samples = self.encode_tiled_(pixel_samples)
|
||||
|
||||
return samples
|
||||
@ -393,10 +394,10 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
||||
for c in clip_data:
|
||||
m, u = clip.load_sd(c)
|
||||
if len(m) > 0:
|
||||
print("clip missing:", m)
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
print("clip unexpected:", u)
|
||||
logging.info("clip unexpected: {}".format(u))
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
@ -534,21 +535,21 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
m, u = clip.load_sd(clip_sd, full_model=True)
|
||||
if len(m) > 0:
|
||||
print("clip missing:", m)
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
print("clip unexpected:", u)
|
||||
logging.info("clip unexpected {}:".format(u))
|
||||
else:
|
||||
print("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
||||
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
||||
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
print("left over keys:", left_over)
|
||||
logging.info("left over keys: {}".format(left_over))
|
||||
|
||||
if output_model:
|
||||
_model_patcher = model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
print("loaded straight to GPU")
|
||||
logging.warning("loaded straight to GPU")
|
||||
model_management.load_model_gpu(_model_patcher)
|
||||
|
||||
return (_model_patcher, clip, vae, clipvision)
|
||||
@ -577,7 +578,7 @@ def load_unet_state_dict(sd): #load unet in diffusers format
|
||||
if k in sd:
|
||||
new_sd[diffusers_keys[k]] = sd.pop(k)
|
||||
else:
|
||||
print(diffusers_keys[k], k)
|
||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
||||
@ -588,14 +589,14 @@ def load_unet_state_dict(sd): #load unet in diffusers format
|
||||
model.load_model_weights(new_sd, "")
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
print("left over keys in unet:", left_over)
|
||||
logging.warning("left over keys in unet: {}".format(left_over))
|
||||
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
def load_unet(unet_path):
|
||||
sd = utils.load_torch_file(unet_path)
|
||||
model = load_unet_state_dict(sd)
|
||||
if model is None:
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return model
|
||||
|
||||
|
||||
@ -9,6 +9,7 @@ from . import model_management
|
||||
from pkg_resources import resource_filename
|
||||
from . import clip_model
|
||||
import json
|
||||
import logging
|
||||
|
||||
def gen_empty_tokens(special_tokens, length):
|
||||
start_token = special_tokens.get("start", None)
|
||||
@ -140,7 +141,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
tokens_temp += [next_new_token]
|
||||
next_new_token += 1
|
||||
else:
|
||||
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
|
||||
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
|
||||
while len(tokens_temp) < len(x):
|
||||
tokens_temp += [self.special_tokens["pad"]]
|
||||
out_tokens += [tokens_temp]
|
||||
@ -332,9 +333,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
else:
|
||||
embed = torch.load(embed_path, map_location="cpu")
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
print()
|
||||
print("error loading embedding, skipping loading:", embedding_name)
|
||||
logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
|
||||
return None
|
||||
|
||||
if embed_out is None:
|
||||
@ -429,7 +428,7 @@ class SDTokenizer:
|
||||
embedding_name = word[len(self.embedding_identifier):].strip('\n')
|
||||
embed, leftover = self._try_get_embedding(embedding_name)
|
||||
if embed is None:
|
||||
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
|
||||
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
|
||||
else:
|
||||
if len(embed.shape) == 1:
|
||||
tokens.append([(embed, weight)])
|
||||
|
||||
@ -9,7 +9,7 @@ import numpy as np
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
from contextlib import contextmanager
|
||||
|
||||
import logging
|
||||
|
||||
def load_torch_file(ckpt, safe_load=False, device=None):
|
||||
if device is None:
|
||||
@ -19,14 +19,14 @@ def load_torch_file(ckpt, safe_load=False, device=None):
|
||||
else:
|
||||
if safe_load:
|
||||
if not 'weights_only' in torch.load.__code__.co_varnames:
|
||||
print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
|
||||
logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
|
||||
safe_load = False
|
||||
if safe_load:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=checkpoint_pickle)
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
logging.info(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
|
||||
@ -230,6 +230,23 @@ class SamplerDPMPP_SDE:
|
||||
sampler = samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
|
||||
return (sampler, )
|
||||
|
||||
class SamplerEulerAncestral:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
||||
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "sampling/custom_sampling/samplers"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
def get_sampler(self, eta, s_noise):
|
||||
sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
|
||||
return (sampler, )
|
||||
|
||||
class SamplerCustom:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -290,6 +307,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"VPScheduler": VPScheduler,
|
||||
"SDTurboScheduler": SDTurboScheduler,
|
||||
"KSamplerSelect": KSamplerSelect,
|
||||
"SamplerEulerAncestral": SamplerEulerAncestral,
|
||||
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
|
||||
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
|
||||
"SplitSigmas": SplitSigmas,
|
||||
|
||||
@ -86,6 +86,50 @@ class CLIPMergeSimple:
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
|
||||
|
||||
class CLIPSubtract:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip1": ("CLIP",),
|
||||
"clip2": ("CLIP",),
|
||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "merge"
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, clip1, clip2, multiplier):
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
||||
return (m, )
|
||||
|
||||
|
||||
class CLIPAdd:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip1": ("CLIP",),
|
||||
"clip2": ("CLIP",),
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "merge"
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, clip1, clip2):
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
||||
return (m, )
|
||||
|
||||
|
||||
class ModelMergeBlocks:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -278,6 +322,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeAdd": ModelAdd,
|
||||
"CheckpointSave": CheckpointSave,
|
||||
"CLIPMergeSimple": CLIPMergeSimple,
|
||||
"CLIPMergeSubtract": CLIPSubtract,
|
||||
"CLIPMergeAdd": CLIPAdd,
|
||||
"CLIPSave": CLIPSave,
|
||||
"VAESave": VAESave,
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user