Merge upstream

This commit is contained in:
doctorpangloss 2024-03-11 09:32:57 -07:00
commit 00728eb20f
23 changed files with 161 additions and 77 deletions

View File

@ -39,7 +39,7 @@ def initialize_event_tracking(loop: Optional[asyncio.AbstractEventLoop] = None):
# patch nodes
from ..nodes.base_nodes import SaveImage, CLIPTextEncode, LoraLoader, CheckpointLoaderSimple
from ..cmd.execution import PromptQueue
from comfy.component_model.queue_types import QueueItem
from ..component_model.queue_types import QueueItem
prompt_queue_put = PromptQueue.put

View File

@ -176,6 +176,7 @@ def create_parser() -> argparse.ArgumentParser:
help="This name will be used by the frontends and workers to exchange prompt requests and replies. Progress updates will be prefixed by the queue name, followed by a '.', then the user ID")
parser.add_argument("--external-address", required=False,
help="Specifies a base URL for external addresses reported by the API, such as for image paths.")
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
# now give plugins a chance to add configuration
for entry_point in entry_points().select(group='comfyui.custom_config'):
@ -208,6 +209,12 @@ def parse_args(parser: Optional[argparse.ArgumentParser] = None) -> Configuratio
if args.disable_auto_launch:
args.auto_launch = False
logging_level = logging.WARNING
if args.verbose:
logging_level = logging.DEBUG
logging.basicConfig(format="%(message)s", level=logging_level)
return Configuration(**vars(args))

View File

@ -1,7 +1,7 @@
import copy
from typing import TypeAlias, Union
from comfy.api.components.schema.prompt import PromptDict, Prompt
from ..api.components.schema.prompt import PromptDict, Prompt
JSON: TypeAlias = Union[dict[str, "JSON"], list["JSON"], str, int, float, bool, None]
_BASE_PROMPT: JSON = {

View File

@ -1,5 +1,5 @@
import torch
from comfy.ldm.modules.attention import optimized_attention_for_device
from .ldm.modules.attention import optimized_attention_for_device
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations):

View File

@ -2,6 +2,7 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_repl
import os
import torch
import json
import logging
from . import ops
from . import model_patcher
@ -99,7 +100,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
clip = ClipVisionModel(json_config)
m, u = clip.load_sd(sd)
if len(m) > 0:
print("missing clip vision:", m)
logging.warning("missing clip vision: {}".format(m))
u = set(u)
keys = list(sd.keys())
for k in keys:

View File

@ -53,8 +53,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, prompt=None, extr
if h[x] == "PROMPT":
input_data_all[x] = [prompt]
if h[x] == "EXTRA_PNGINFO":
if "extra_pnginfo" in extra_data:
input_data_all[x] = [extra_data['extra_pnginfo']]
input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
if h[x] == "UNIQUE_ID":
input_data_all[x] = [unique_id]
return input_data_all

View File

@ -3,7 +3,7 @@ from __future__ import annotations # for Python 3.7-3.9
from typing_extensions import NotRequired, TypedDict
from typing import Optional, Literal, Protocol, TypeAlias, Union
from comfy.component_model.queue_types import BinaryEventTypes
from .queue_types import BinaryEventTypes
class ExecInfo(TypedDict):

View File

@ -1,6 +1,7 @@
import torch
import math
import os
import logging
from . import utils
from . import model_management
@ -368,7 +369,7 @@ def load_controlnet(ckpt_path, model=None):
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
logging.warning("leftover keys: {}".format(leftover_keys))
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
@ -383,7 +384,7 @@ def load_controlnet(ckpt_path, model=None):
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
return net
if controlnet_config is None:
@ -418,7 +419,7 @@ def load_controlnet(ckpt_path, model=None):
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
@ -427,7 +428,12 @@ def load_controlnet(ckpt_path, model=None):
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.info("unexpected controlnet keys: {}".format(unexpected))
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
@ -537,9 +543,9 @@ def load_t2i_adapter(t2i_data):
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
print("t2i missing", missing)
logging.warning("t2i missing {}".format(missing))
if len(unexpected) > 0:
print("t2i unexpected", unexpected)
logging.info("t2i unexpected {}".format(unexpected))
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)

View File

@ -1,5 +1,6 @@
import re
import torch
import logging
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
@ -177,7 +178,7 @@ def convert_vae_state_dict(vae_state_dict):
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
print(f"Reshaping {k} for SD format")
logging.info(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
return new_state_dict

View File

@ -6,7 +6,7 @@ from typing import Optional
from aio_pika import connect_robust
from aio_pika.patterns import RPC
from comfy.distributed.distributed_types import RpcRequest, RpcReply
from .distributed_types import RpcRequest, RpcReply
class DistributedPromptClient:

View File

@ -5,7 +5,7 @@ from typing import Optional, OrderedDict, List, Dict
import collections
from itertools import islice
from comfy.component_model.queue_types import HistoryEntry, QueueItem, ExecutionStatus, MAXIMUM_HISTORY_SIZE
from ..component_model.queue_types import HistoryEntry, QueueItem, ExecutionStatus, MAXIMUM_HISTORY_SIZE
class History:

View File

@ -4,7 +4,7 @@ import torch
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
from comfy.ops import manual_cast
from .ops import manual_cast
ops = manual_cast
def exists(val):

View File

@ -1,3 +1,4 @@
import logging
from . import utils
LORA_CLIP_MAP = {
@ -156,7 +157,7 @@ def load_lora(lora, to_load):
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
logging.warning("lora key not loaded: {}".format(x))
return patch_dict
def model_lora_keys_clip(model, key_map={}):

View File

@ -1,4 +1,5 @@
import torch
import logging
from .ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from .ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
@ -66,8 +67,8 @@ class BaseModel(torch.nn.Module):
if self.adm_channels is None:
self.adm_channels = 0
self.inpaint_model = False
print("model_type", model_type.name)
print("adm", self.adm_channels)
logging.warning("model_type {}".format(model_type.name))
logging.info("adm {}".format(self.adm_channels))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t
@ -168,7 +169,7 @@ class BaseModel(torch.nn.Module):
c_concat = kwargs.get("noise_concat", None)
if c_concat is not None:
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
out['c_concat'] = conds.CONDNoiseShape(data)
return out
@ -182,10 +183,10 @@ class BaseModel(torch.nn.Module):
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
print("unet missing:", m)
logging.warning("unet missing: {}".format(m))
if len(u) > 0:
print("unet unexpected:", u)
logging.warning("unet unexpected: {}".format(u))
del to_load
return self

View File

@ -1,5 +1,6 @@
from . import supported_models
from . import supported_models_base
import logging
def count_blocks(state_dict_keys, prefix_string):
count = 0
@ -186,7 +187,7 @@ def model_config_from_unet_config(unet_config):
if model_config.matches(unet_config):
return model_config(unet_config)
print("no match", unet_config)
logging.error("no match {}".format(unet_config))
return None
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):

View File

@ -1,4 +1,5 @@
import psutil
import logging
from enum import Enum
from .cli_args import args
from . import utils
@ -33,7 +34,7 @@ lowvram_available = True
xpu_available = False
if args.deterministic:
print("Using deterministic algorithms for pytorch")
logging.warning("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
@ -45,7 +46,7 @@ if args.directml is not None:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
logging.warning("Using directml with device: {}".format(torch_directml.device_name(device_index)))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
@ -121,10 +122,10 @@ def get_total_memory(dev=None, torch_total_too=False):
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
logging.warning("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
try:
@ -147,12 +148,10 @@ else:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
print("xformers version:", XFORMERS_VERSION)
logging.warning("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
print()
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
print("Please downgrade or upgrade xformers to a different version.")
print()
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
XFORMERS_ENABLED_VAE = False
except:
pass
@ -217,11 +216,11 @@ elif args.highvram or args.gpu_only:
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
print("Forcing FP32, if this improves things please report it.")
logging.warning("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16 or cpu_state == CPUState.MPS:
print("Forcing FP16.")
logging.warning("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
@ -235,12 +234,12 @@ if cpu_state != CPUState.GPU:
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
print(f"Set vram state to: {vram_state.name}")
logging.warning(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
print("Disabling smart memory management")
logging.warning("Disabling smart memory management")
def get_torch_device_name(device):
if hasattr(device, 'type'):
@ -258,11 +257,11 @@ def get_torch_device_name(device):
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Device:", get_torch_device_name(get_torch_device()))
logging.warning("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
print("Could not pick default device.")
logging.warning("Could not pick default device.")
print("VAE dtype:", VAE_DTYPE)
logging.warning("VAE dtype: {}".format(VAE_DTYPE))
current_loaded_models = []
@ -305,7 +304,7 @@ class LoadedModel:
raise e
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
logging.warning("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
mem_counter = 0
for m in self.real_model.modules():
if hasattr(m, "comfy_cast_weights"):
@ -318,7 +317,7 @@ class LoadedModel:
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
m.to(self.device)
mem_counter += module_size(m)
print("lowvram: loaded module regularly", m)
logging.warning("lowvram: loaded module regularly {}".format(m))
self.model_accelerated = True
@ -353,7 +352,7 @@ def unload_model_clones(model):
to_unload = [i] + to_unload
for i in to_unload:
print("unload clone", i)
logging.warning("unload clone {}".format(i))
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
@ -397,7 +396,7 @@ def load_models_gpu(models, memory_required=0):
models_already_loaded.append(loaded_model)
else:
if hasattr(x, "model"):
print(f"Requested to load {x.model.__class__.__name__}")
logging.warning(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
@ -407,7 +406,7 @@ def load_models_gpu(models, memory_required=0):
free_memory(extra_mem, d, models_already_loaded)
return
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
logging.warning(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
total_memory_required = {}
for loaded_model in models_to_load:

View File

@ -1,6 +1,7 @@
import torch
import copy
import inspect
import logging
from . import utils
from . import model_management
@ -187,7 +188,7 @@ class ModelPatcher:
model_sd = self.model_state_dict()
for key in self.patches:
if key not in model_sd:
print("could not patch. key doesn't exist in model:", key)
logging.warning("could not patch. key doesn't exist in model: {}".format(key))
continue
weight = model_sd[key]
@ -236,7 +237,7 @@ class ModelPatcher:
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora": #lora/locon
@ -252,7 +253,7 @@ class ModelPatcher:
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
@ -291,7 +292,7 @@ class ModelPatcher:
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
@ -320,7 +321,7 @@ class ModelPatcher:
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
if v[4] is not None:
alpha *= v[4] / v[0].shape[0]
@ -330,9 +331,12 @@ class ModelPatcher:
b1 = model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
b2 = model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
try:
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
else:
print("patch type not recognized", patch_type, key)
logging.warning("patch type not recognized {} {}".format(patch_type, key))
return weight

View File

@ -1,5 +1,5 @@
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from .ldm.modules.diffusionmodules.util import make_beta_schedule
import math
class EPS:

View File

@ -1,5 +1,6 @@
import torch
from enum import Enum
import logging
from . import model_management
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
@ -37,7 +38,7 @@ def load_model_weights(model, sd):
w = sd.pop(x)
del w
if len(m) > 0:
print("missing", m)
logging.warning("missing {}".format(m))
return model
def load_clip_weights(model, sd):
@ -81,7 +82,7 @@ def load_lora_for_models(model, clip, _lora, strength_model, strength_clip):
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print("NOT LOADED", x)
logging.warning("NOT LOADED {}".format(x))
return (new_modelpatcher, new_clip)
@ -225,10 +226,10 @@ class VAE:
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
print("Missing VAE keys", m)
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
print("Leftover VAE keys", u)
logging.info("Leftover VAE keys {}".format(u))
if device is None:
device = model_management.vae_device()
@ -291,7 +292,7 @@ class VAE:
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
except model_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
pixel_samples = self.decode_tiled_(samples_in)
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
@ -317,7 +318,7 @@ class VAE:
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
except model_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
samples = self.encode_tiled_(pixel_samples)
return samples
@ -393,10 +394,10 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
print("clip missing:", m)
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
print("clip unexpected:", u)
logging.info("clip unexpected: {}".format(u))
return clip
def load_gligen(ckpt_path):
@ -534,21 +535,21 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
clip = CLIP(clip_target, embedding_directory=embedding_directory)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
print("clip missing:", m)
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
print("clip unexpected:", u)
logging.info("clip unexpected {}:".format(u))
else:
print("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
logging.info("left over keys: {}".format(left_over))
if output_model:
_model_patcher = model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
logging.warning("loaded straight to GPU")
model_management.load_model_gpu(_model_patcher)
return (_model_patcher, clip, vae, clipvision)
@ -577,7 +578,7 @@ def load_unet_state_dict(sd): #load unet in diffusers format
if k in sd:
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
print(diffusers_keys[k], k)
logging.warning("{} {}".format(diffusers_keys[k], k))
offload_device = model_management.unet_offload_device()
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
@ -588,14 +589,14 @@ def load_unet_state_dict(sd): #load unet in diffusers format
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys in unet:", left_over)
logging.warning("left over keys in unet: {}".format(left_over))
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
def load_unet(unet_path):
sd = utils.load_torch_file(unet_path)
model = load_unet_state_dict(sd)
if model is None:
print("ERROR UNSUPPORTED UNET", unet_path)
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model

View File

@ -9,6 +9,7 @@ from . import model_management
from pkg_resources import resource_filename
from . import clip_model
import json
import logging
def gen_empty_tokens(special_tokens, length):
start_token = special_tokens.get("start", None)
@ -140,7 +141,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_temp += [next_new_token]
next_new_token += 1
else:
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
while len(tokens_temp) < len(x):
tokens_temp += [self.special_tokens["pad"]]
out_tokens += [tokens_temp]
@ -332,9 +333,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
else:
embed = torch.load(embed_path, map_location="cpu")
except Exception as e:
print(traceback.format_exc())
print()
print("error loading embedding, skipping loading:", embedding_name)
logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
return None
if embed_out is None:
@ -429,7 +428,7 @@ class SDTokenizer:
embedding_name = word[len(self.embedding_identifier):].strip('\n')
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])

View File

@ -9,7 +9,7 @@ import numpy as np
from PIL import Image
from tqdm import tqdm
from contextlib import contextmanager
import logging
def load_torch_file(ckpt, safe_load=False, device=None):
if device is None:
@ -19,14 +19,14 @@ def load_torch_file(ckpt, safe_load=False, device=None):
else:
if safe_load:
if not 'weights_only' in torch.load.__code__.co_varnames:
print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
safe_load = False
if safe_load:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location=device, pickle_module=checkpoint_pickle)
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
logging.info(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:

View File

@ -230,6 +230,23 @@ class SamplerDPMPP_SDE:
sampler = samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
return (sampler, )
class SamplerEulerAncestral:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, eta, s_noise):
sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
return (sampler, )
class SamplerCustom:
@classmethod
def INPUT_TYPES(s):
@ -290,6 +307,7 @@ NODE_CLASS_MAPPINGS = {
"VPScheduler": VPScheduler,
"SDTurboScheduler": SDTurboScheduler,
"KSamplerSelect": KSamplerSelect,
"SamplerEulerAncestral": SamplerEulerAncestral,
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
"SplitSigmas": SplitSigmas,

View File

@ -86,6 +86,50 @@ class CLIPMergeSimple:
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
return (m, )
class CLIPSubtract:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip1": ("CLIP",),
"clip2": ("CLIP",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "merge"
CATEGORY = "advanced/model_merging"
def merge(self, clip1, clip2, multiplier):
m = clip1.clone()
kp = clip2.get_key_patches()
for k in kp:
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
continue
m.add_patches({k: kp[k]}, - multiplier, multiplier)
return (m, )
class CLIPAdd:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip1": ("CLIP",),
"clip2": ("CLIP",),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "merge"
CATEGORY = "advanced/model_merging"
def merge(self, clip1, clip2):
m = clip1.clone()
kp = clip2.get_key_patches()
for k in kp:
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
continue
m.add_patches({k: kp[k]}, 1.0, 1.0)
return (m, )
class ModelMergeBlocks:
@classmethod
def INPUT_TYPES(s):
@ -278,6 +322,8 @@ NODE_CLASS_MAPPINGS = {
"ModelMergeAdd": ModelAdd,
"CheckpointSave": CheckpointSave,
"CLIPMergeSimple": CLIPMergeSimple,
"CLIPMergeSubtract": CLIPSubtract,
"CLIPMergeAdd": CLIPAdd,
"CLIPSave": CLIPSave,
"VAESave": VAESave,
}