Remove DeleteAll, Remove Custom KSampler, Remove Image List

This commit is contained in:
Silversith 2023-03-26 08:52:12 +02:00
parent 6ad3ae1731
commit 00a3897197
3 changed files with 0 additions and 208 deletions

View File

@ -37,206 +37,6 @@ class Note:
CATEGORY = "silver_custom"
class SaveImageList:
def __init__(self):
current_dir = os.path.abspath(os.getcwd())
self.output_dir = os.path.join(current_dir, "output")
self.type = "output"
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images_list"
OUTPUT_NODE = True
CATEGORY = "silver_custom"
def save_images_list(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
def map_filename(filename):
prefix_len = len(os.path.basename(filename_prefix))
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
filename = os.path.basename(os.path.normpath(filename_prefix))
full_output_folder = os.path.join(self.output_dir, subfolder)
if os.path.commonpath((self.output_dir, os.path.realpath(full_output_folder))) != self.output_dir:
print("Saving image outside the output folder is not allowed.")
return {}
try:
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_",
map(map_filename, os.listdir(full_output_folder))))[0] + 1
except ValueError:
counter = 1
except FileNotFoundError:
os.makedirs(full_output_folder, exist_ok=True)
counter = 1
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
results = list()
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
file = f"{filename}-{now}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, optimize=True)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return self.get_all_files()
def get_all_files(self):
results = []
for root, dirs, files in os.walk(self.output_dir):
for file in files:
subfolder = os.path.relpath(root, self.output_dir)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
sorted_results = sorted(results, key=lambda x: x["filename"])
return {"ui": {"images": sorted_results}}
def custom_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, in_seed=None):
latent_image = latent["samples"]
noise_mask = None
device = model_management.get_torch_device()
if in_seed is not None:
seed = in_seed
print(seed)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
generator=torch.manual_seed(seed), device="cpu")
if "noise_mask" in latent:
noise_mask = latent['noise_mask']
noise_mask = torch.nn.functional.interpolate(noise_mask[None, None,], size=(noise.shape[2], noise.shape[3]),
mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = noise_mask.to(device)
real_model = None
model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = []
negative_copy = []
control_nets = []
for p in positive:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
if 'control' in p[1]:
control_nets += [p[1]['control']]
positive_copy += [[t] + p[1:]]
for n in negative:
t = n[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
if 'control' in n[1]:
control_nets += [n[1]['control']]
negative_copy += [[t] + n[1:]]
control_net_models = []
for x in control_nets:
control_net_models += x.get_control_models()
model_management.load_controlnet_gpu(control_net_models)
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name,
scheduler=scheduler, denoise=denoise)
else:
# other samplers
pass
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
denoise_mask=noise_mask)
samples = samples.cpu()
for c in control_nets:
c.cleanup()
out = latent.copy()
out["samples"] = samples
return (out, seed,)
class CustomKSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required":
{
"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"latent_image": ("LATENT",),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"in_seed": ()
}
}
RETURN_TYPES = ("LATENT", "seed",)
FUNCTION = "sample"
CATEGORY = "silver_custom"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0,
in_seed=None):
return custom_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, in_seed=in_seed)
NODE_CLASS_MAPPINGS = {
"Note": Note,
"SaveImageList": SaveImageList,
"CustomKSampler": CustomKSampler,
}

View File

@ -106,13 +106,6 @@ class ComfyApi extends EventTarget {
return await resp.json();
}
async deleteAllImages() {
const confirmDelete = confirm("Are you sure you want to delete all images?");
if (confirmDelete) {
await this.#postItem("delete", { delete: "all" })
}
}
/**
* Gets a list of embedding names
* @returns An array of script urls to import

View File

@ -329,7 +329,6 @@ export class ComfyUI {
$el("button", { textContent: "Load", onclick: () => fileInput.click() }),
$el("button", { textContent: "Clear", onclick: () => app.graph.clear() }),
$el("button", { textContent: "Load Default", onclick: () => app.loadGraphData() }),
$el("button", { textContent: "Delete Images", onclick: () => api.deleteAllImages() }),
]);
this.setStatus({ exec_info: { queue_remaining: "X" } });