Merge branch 'comfyanonymous:master' into feature/blockweights

This commit is contained in:
ltdrdata 2023-04-18 10:18:52 +09:00 committed by GitHub
commit 012873cdbf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 158 additions and 9 deletions

View File

@ -83,7 +83,7 @@ Put your VAE in: models/vae
At the time of writing this pytorch has issues with python versions higher than 3.10 so make sure your python/pip versions are 3.10.
### AMD (Linux only)
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.4.2```

View File

@ -211,7 +211,10 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
max_total_area = model_management.maximum_batch_area()
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
return uncond + (cond - uncond) * cond_scale
if "sampler_cfg_function" in model_options:
return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
else:
return uncond + (cond - uncond) * cond_scale
class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):

View File

@ -289,6 +289,9 @@ class ModelPatcher:
def set_model_tomesd(self, ratio):
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
def set_model_sampler_cfg_function(self, sampler_cfg_function):
self.model_options["sampler_cfg_function"] = sampler_cfg_function
def model_dtype(self):
return self.model.diffusion_model.dtype

View File

@ -586,6 +586,24 @@ class EmptyLatentImage:
return ({"samples":latent}, )
class LatentFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
CATEGORY = "latent"
def rotate(self, samples, batch_index):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
s["samples"] = s_in[batch_index:batch_index + 1].clone()
s["batch_index"] = batch_index
return (s,)
class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
@ -761,7 +779,14 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
batch_index = 0
if "batch_index" in latent:
batch_index = latent["batch_index"]
generator = torch.manual_seed(seed)
for i in range(batch_index):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
if "noise_mask" in latent:
noise_mask = latent['noise_mask']
@ -1149,6 +1174,7 @@ NODE_CLASS_MAPPINGS = {
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"LatentFromBatch": LatentFromBatch,
"SaveImage": SaveImage,
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,

View File

@ -0,0 +1,117 @@
import { app } from "/scripts/app.js";
// Allows you to edit the attention weight by holding ctrl (or cmd) and using the up/down arrow keys
const id = "Comfy.EditAttention";
app.registerExtension({
name:id,
init() {
function incrementWeight(weight, delta) {
const floatWeight = parseFloat(weight);
if (isNaN(floatWeight)) return weight;
const newWeight = floatWeight + delta;
if (newWeight < 0) return "0";
return String(Number(newWeight.toFixed(10)));
}
function findNearestEnclosure(text, cursorPos) {
let start = cursorPos, end = cursorPos;
let openCount = 0, closeCount = 0;
// Find opening parenthesis before cursor
while (start >= 0) {
start--;
if (text[start] === "(" && openCount === closeCount) break;
if (text[start] === "(") openCount++;
if (text[start] === ")") closeCount++;
}
if (start < 0) return false;
openCount = 0;
closeCount = 0;
// Find closing parenthesis after cursor
while (end < text.length) {
if (text[end] === ")" && openCount === closeCount) break;
if (text[end] === "(") openCount++;
if (text[end] === ")") closeCount++;
end++;
}
if (end === text.length) return false;
return { start: start + 1, end: end };
}
function addWeightToParentheses(text) {
const parenRegex = /^\((.*)\)$/;
const parenMatch = text.match(parenRegex);
const floatRegex = /:([+-]?(\d*\.)?\d+([eE][+-]?\d+)?)/;
const floatMatch = text.match(floatRegex);
if (parenMatch && !floatMatch) {
return `(${parenMatch[1]}:1.0)`;
} else {
return text;
}
};
function editAttention(event) {
const inputField = event.composedPath()[0];
const delta = 0.025;
if (inputField.tagName !== "TEXTAREA") return;
if (!(event.key === "ArrowUp" || event.key === "ArrowDown")) return;
if (!event.ctrlKey && !event.metaKey) return;
event.preventDefault();
let start = inputField.selectionStart;
let end = inputField.selectionEnd;
let selectedText = inputField.value.substring(start, end);
// If there is no selection, attempt to find the nearest enclosure
if (!selectedText) {
const nearestEnclosure = findNearestEnclosure(inputField.value, start);
if (nearestEnclosure) {
start = nearestEnclosure.start;
end = nearestEnclosure.end;
selectedText = inputField.value.substring(start, end);
} else {
return;
}
}
// If the selection ends with a space, remove it
if (selectedText[selectedText.length - 1] === " ") {
selectedText = selectedText.substring(0, selectedText.length - 1);
end -= 1;
}
// If there are parentheses left and right of the selection, select them
if (inputField.value[start - 1] === "(" && inputField.value[end] === ")") {
start -= 1;
end += 1;
selectedText = inputField.value.substring(start, end);
}
// If the selection is not enclosed in parentheses, add them
if (selectedText[0] !== "(" || selectedText[selectedText.length - 1] !== ")") {
console.log("adding parentheses", inputField.value[start], inputField.value[end], selectedText);
selectedText = `(${selectedText})`;
}
// If the selection does not have a weight, add a weight of 1.0
selectedText = addWeightToParentheses(selectedText);
// Increment the weight
const weightDelta = event.key === "ArrowUp" ? delta : -delta;
const updatedText = selectedText.replace(/(.*:)(\d+(\.\d+)?)(.*)/, (match, prefix, weight, _, suffix) => {
return prefix + incrementWeight(weight, weightDelta) + suffix;
});
inputField.setRangeText(updatedText, start, end, "select");
}
window.addEventListener("keydown", editAttention);
},
});

View File

@ -5,12 +5,6 @@ app.registerExtension({
name: id,
init() {
const keybindListener = function(event) {
const target = event.composedPath()[0];
if (target.tagName === "INPUT" || target.tagName === "TEXTAREA") {
return;
}
const modifierPressed = event.ctrlKey || event.metaKey;
// Queue prompt using ctrl or command + enter
@ -19,6 +13,12 @@ app.registerExtension({
return;
}
const target = event.composedPath()[0];
if (target.tagName === "INPUT" || target.tagName === "TEXTAREA") {
return;
}
const modifierKeyIdMap = {
"s": "#comfy-save-button",
83: "#comfy-save-button",