mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 14:20:49 +08:00
merge upstream
This commit is contained in:
commit
01312a55a4
26
.github/workflows/test-ui.yaml
vendored
Normal file
26
.github/workflows/test-ui.yaml
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
name: Tests CI
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
- name: Run Tests
|
||||
run: |
|
||||
npm ci
|
||||
npm run test:generate
|
||||
npm test
|
||||
working-directory: ./tests-ui
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -173,3 +173,5 @@ dmypy.json
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
.openapi-generator/
|
||||
|
||||
/tests-ui/data/object_info.json
|
||||
9
.vscode/settings.json
vendored
Normal file
9
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
{
|
||||
"path-intellisense.mappings": {
|
||||
"../": "${workspaceFolder}/web/extensions/core"
|
||||
},
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "ms-python.autopep8"
|
||||
},
|
||||
"python.formatting.provider": "none"
|
||||
}
|
||||
@ -11,7 +11,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Fully supports SD1.x, SD2.x and SDXL
|
||||
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/) and [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Command line option: ```--lowvram``` to make it work on GPUs with less than 3GB vram (enabled automatically on GPUs with low vram)
|
||||
@ -30,6 +30,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
|
||||
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
|
||||
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
|
||||
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
|
||||
- [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
|
||||
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
|
||||
- Starts up very fast.
|
||||
- Works fully offline: will never download anything.
|
||||
@ -43,6 +45,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|---------------------------|--------------------------------------------------------------------------------------------------------------------|
|
||||
| Ctrl + Enter | Queue up current graph for generation |
|
||||
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
|
||||
| Ctrl + Z/Ctrl + Y | Undo/Redo |
|
||||
| Ctrl + S | Save workflow |
|
||||
| Ctrl + O | Load workflow |
|
||||
| Ctrl + A | Select all nodes |
|
||||
@ -266,7 +269,7 @@ To use a textual inversion concepts/embeddings in a text prompt put them in the
|
||||
|
||||
Make sure you use the regular loaders/Load Checkpoint node to load checkpoints. It will auto pick the right settings depending on your GPU.
|
||||
|
||||
You can set this command line setting to disable the upcasting to fp32 in some cross attention operations which will increase your speed. Note that this will very likely give you black images on SD2.x models. If you use xformers this option does not do anything.
|
||||
You can set this command line setting to disable the upcasting to fp32 in some cross attention operations which will increase your speed. Note that this will very likely give you black images on SD2.x models. If you use xformers or pytorch attention this option does not do anything.
|
||||
|
||||
```--dont-upcast-attention```
|
||||
|
||||
|
||||
@ -27,7 +27,6 @@ class ControlNet(nn.Module):
|
||||
model_channels,
|
||||
hint_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
@ -52,8 +51,10 @@ class ControlNet(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
device=None,
|
||||
operations=ops,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
||||
@ -79,10 +80,7 @@ class ControlNet(nn.Module):
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
@ -90,18 +88,16 @@ class ControlNet(nn.Module):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
transformer_depth = transformer_depth[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
@ -180,11 +176,14 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
operations=operations
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -201,9 +200,9 @@ class ControlNet(nn.Module):
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -223,11 +222,13 @@ class ControlNet(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
@ -245,7 +246,7 @@ class ControlNet(nn.Module):
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
mid_block = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
@ -253,12 +254,15 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -267,9 +271,11 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations)
|
||||
self._feature_size += ch
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
import enum
|
||||
import comfy.options
|
||||
from . import options
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
@ -36,6 +36,8 @@ parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
||||
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
||||
|
||||
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
||||
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
||||
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
||||
@ -60,6 +62,13 @@ fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in
|
||||
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
||||
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
||||
|
||||
fpte_group = parser.add_mutually_exclusive_group()
|
||||
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
||||
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
||||
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
||||
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
||||
|
||||
|
||||
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
||||
|
||||
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
||||
@ -97,7 +106,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
|
||||
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
if options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
else:
|
||||
args = parser.parse_args([])
|
||||
|
||||
@ -1,21 +1,30 @@
|
||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
|
||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, modeling_utils
|
||||
from .utils import load_torch_file, transformers_convert
|
||||
import os
|
||||
import torch
|
||||
import contextlib
|
||||
from . import ops
|
||||
from . import model_patcher
|
||||
from . import model_management
|
||||
|
||||
import comfy.ops
|
||||
import comfy.model_patcher
|
||||
import comfy.model_management
|
||||
def clip_preprocess(image, size=224):
|
||||
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
||||
scale = (size / min(image.shape[1], image.shape[2]))
|
||||
image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size)//2
|
||||
w = (image.shape[3] - size)//2
|
||||
image = image[:,:,h:h+size,w:w+size]
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
config = CLIPVisionConfig.from_json_file(json_config)
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
self.dtype = torch.float32
|
||||
if comfy.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
|
||||
if model_management.should_use_fp16(self.load_device, prioritize_performance=False):
|
||||
self.dtype = torch.float16
|
||||
|
||||
with ops.use_comfy_ops(offload_device, self.dtype):
|
||||
@ -23,33 +32,20 @@ class ClipVisionModel():
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
self.model.to(self.dtype)
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.processor = CLIPImageProcessor(crop_size=224,
|
||||
do_center_crop=True,
|
||||
do_convert_rgb=True,
|
||||
do_normalize=True,
|
||||
do_resize=True,
|
||||
image_mean=[ 0.48145466,0.4578275,0.40821073],
|
||||
image_std=[0.26862954,0.26130258,0.27577711],
|
||||
resample=3, #bicubic
|
||||
size=224)
|
||||
|
||||
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def encode_image(self, image):
|
||||
img = torch.clip((255. * image), 0, 255).round().int()
|
||||
img = list(map(lambda a: a, img))
|
||||
inputs = self.processor(images=img, return_tensors="pt")
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = inputs['pixel_values'].to(self.load_device)
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device))
|
||||
|
||||
if self.dtype != torch.float32:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
||||
|
||||
with precision_scope(comfy.model_management.get_autocast_device(self.load_device), torch.float32):
|
||||
with precision_scope(model_management.get_autocast_device(self.load_device), torch.float32):
|
||||
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
|
||||
|
||||
for k in outputs:
|
||||
@ -93,8 +89,11 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
else:
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
clip = ClipVisionModel(json_config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
|
||||
@ -744,6 +744,7 @@ def validate_prompt(prompt: dict) -> typing.Tuple[bool, dict | typing.List[dict]
|
||||
|
||||
return (True, None, list(good_outputs), node_errors)
|
||||
|
||||
MAXIMUM_HISTORY_SIZE = 10000
|
||||
|
||||
class PromptQueue:
|
||||
queue: typing.List[QueueItem]
|
||||
@ -770,10 +771,12 @@ class PromptQueue:
|
||||
self.server.queue_updated()
|
||||
self.not_empty.notify()
|
||||
|
||||
def get(self) -> typing.Tuple[QueueTuple, int]:
|
||||
def get(self, timeout=None) -> typing.Tuple[QueueTuple, int]:
|
||||
with self.not_empty:
|
||||
while len(self.queue) == 0:
|
||||
self.not_empty.wait()
|
||||
self.not_empty.wait(timeout=timeout)
|
||||
if timeout is not None and len(self.queue) == 0:
|
||||
return None
|
||||
item_with_future: QueueItem = heapq.heappop(self.queue)
|
||||
task_id = self.next_task_id
|
||||
self.currently_running[task_id] = item_with_future
|
||||
@ -785,6 +788,8 @@ class PromptQueue:
|
||||
with self.mutex:
|
||||
queue_item = self.currently_running.pop(item_id)
|
||||
prompt = queue_item.queue_tuple
|
||||
if len(self.history) > MAXIMUM_HISTORY_SIZE:
|
||||
self.history.pop(next(iter(self.history)))
|
||||
self.history[prompt[1]] = {"prompt": prompt, "outputs": {}, "timestamp": time.time()}
|
||||
for o in outputs:
|
||||
self.history[prompt[1]]["outputs"][o] = outputs[o]
|
||||
@ -830,10 +835,20 @@ class PromptQueue:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_history(self, prompt_id=None):
|
||||
def get_history(self, prompt_id=None, max_items=None, offset=-1):
|
||||
with self.mutex:
|
||||
if prompt_id is None:
|
||||
return copy.deepcopy(self.history)
|
||||
out = {}
|
||||
i = 0
|
||||
if offset < 0 and max_items is not None:
|
||||
offset = len(self.history) - max_items
|
||||
for k in self.history:
|
||||
if i >= offset:
|
||||
out[k] = self.history[k]
|
||||
if max_items is not None and len(out) >= max_items:
|
||||
break
|
||||
i += 1
|
||||
return out
|
||||
elif prompt_id in self.history:
|
||||
return {prompt_id: copy.deepcopy(self.history[prompt_id])}
|
||||
else:
|
||||
|
||||
@ -42,7 +42,10 @@ input_directory = os.path.join(base_path, "input")
|
||||
filename_list_cache = {}
|
||||
|
||||
if not os.path.exists(input_directory):
|
||||
os.makedirs(input_directory)
|
||||
try:
|
||||
os.makedirs(input_directory)
|
||||
except:
|
||||
print("Failed to create input directory")
|
||||
|
||||
def set_output_directory(output_dir):
|
||||
global output_directory
|
||||
@ -232,8 +235,12 @@ def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height
|
||||
full_output_folder = os.path.join(output_dir, subfolder)
|
||||
|
||||
if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir:
|
||||
print("Saving image outside the output folder is not allowed.")
|
||||
return {}
|
||||
err = "**** ERROR: Saving image outside the output folder is not allowed." + \
|
||||
"\n full_output_folder: " + os.path.abspath(full_output_folder) + \
|
||||
"\n output_dir: " + output_dir + \
|
||||
"\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder)))
|
||||
print(err)
|
||||
raise Exception(err)
|
||||
|
||||
try:
|
||||
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
||||
|
||||
@ -21,10 +21,7 @@ class TAESDPreviewerImpl(LatentPreviewer):
|
||||
self.taesd = taesd
|
||||
|
||||
def decode_latent_to_preview(self, x0):
|
||||
x_sample = self.taesd.decoder(x0)[0].detach()
|
||||
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
|
||||
x_sample = x_sample.sub(0.5).mul(2)
|
||||
|
||||
x_sample = self.taesd.decode(x0[:1])[0].detach()
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
|
||||
@ -80,18 +80,37 @@ from .. import model_management
|
||||
|
||||
def prompt_worker(q: execution.PromptQueue, _server: server_module.PromptServer):
|
||||
e = execution.PromptExecutor(_server)
|
||||
while True:
|
||||
item, item_id = q.get()
|
||||
execution_start_time = time.perf_counter()
|
||||
prompt_id = item[1]
|
||||
e.execute(item[2], prompt_id, item[3], item[4])
|
||||
q.task_done(item_id, e.outputs_ui)
|
||||
if _server.client_id is not None:
|
||||
_server.send_sync("executing", {"node": None, "prompt_id": prompt_id}, _server.client_id)
|
||||
last_gc_collect = 0
|
||||
need_gc = False
|
||||
gc_collect_interval = 10.0
|
||||
|
||||
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
||||
gc.collect()
|
||||
model_management.soft_empty_cache()
|
||||
while True:
|
||||
timeout = None
|
||||
if need_gc:
|
||||
timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0)
|
||||
|
||||
queue_item = q.get(timeout=timeout)
|
||||
if queue_item is not None:
|
||||
item, item_id = queue_item
|
||||
execution_start_time = time.perf_counter()
|
||||
prompt_id = item[1]
|
||||
e.execute(item[2], prompt_id, item[3], item[4])
|
||||
need_gc = True
|
||||
q.task_done(item_id, e.outputs_ui)
|
||||
if _server.client_id is not None:
|
||||
_server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, _server.client_id)
|
||||
|
||||
current_time = time.perf_counter()
|
||||
execution_time = current_time - execution_start_time
|
||||
print("Prompt executed in {:.2f} seconds".format(execution_time))
|
||||
|
||||
if need_gc:
|
||||
current_time = time.perf_counter()
|
||||
if (current_time - last_gc_collect) > gc_collect_interval:
|
||||
gc.collect()
|
||||
model_management.soft_empty_cache()
|
||||
last_gc_collect = current_time
|
||||
need_gc = False
|
||||
|
||||
|
||||
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
||||
|
||||
@ -101,7 +101,8 @@ class PromptServer():
|
||||
if args.enable_cors_header:
|
||||
middlewares.append(create_cors_middleware(args.enable_cors_header))
|
||||
|
||||
self.app = web.Application(client_max_size=104857600, handler_args={'max_field_size': 16380},
|
||||
max_upload_size = round(args.max_upload_size * 1024 * 1024)
|
||||
self.app = web.Application(client_max_size=max_upload_size, handler_args={'max_field_size': 16380},
|
||||
middlewares=middlewares)
|
||||
self.sockets = dict()
|
||||
web_root_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../web")
|
||||
@ -453,7 +454,10 @@ class PromptServer():
|
||||
|
||||
@routes.get("/history")
|
||||
async def get_history(request):
|
||||
return web.json_response(self.prompt_queue.get_history())
|
||||
max_items = request.rel_url.query.get("max_items", None)
|
||||
if max_items is not None:
|
||||
max_items = int(max_items)
|
||||
return web.json_response(self.prompt_queue.get_history(max_items=max_items))
|
||||
|
||||
@routes.get("/history/{prompt_id}")
|
||||
async def get_history(request):
|
||||
@ -722,7 +726,7 @@ class PromptServer():
|
||||
bytesIO = BytesIO()
|
||||
header = struct.pack(">I", type_num)
|
||||
bytesIO.write(header)
|
||||
image.save(bytesIO, format=image_type, quality=95, compress_level=4)
|
||||
image.save(bytesIO, format=image_type, quality=95, compress_level=1)
|
||||
preview_bytes = bytesIO.getvalue()
|
||||
await self.send_bytes(BinaryEventTypes.PREVIEW_IMAGE, preview_bytes, sid=sid)
|
||||
|
||||
|
||||
79
comfy/conds.py
Normal file
79
comfy/conds.py
Normal file
@ -0,0 +1,79 @@
|
||||
import enum
|
||||
import torch
|
||||
import math
|
||||
from . import utils
|
||||
|
||||
|
||||
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
||||
return abs(a*b) // math.gcd(a, b)
|
||||
|
||||
class CONDRegular:
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def _copy_with(self, cond):
|
||||
return self.__class__(cond)
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond.shape != other.cond.shape:
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
conds = [self.cond]
|
||||
for x in others:
|
||||
conds.append(x.cond)
|
||||
return torch.cat(conds)
|
||||
|
||||
class CONDNoiseShape(CONDRegular):
|
||||
def process_cond(self, batch_size, device, area, **kwargs):
|
||||
data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
return self._copy_with(utils.repeat_to_batch_size(data, batch_size).to(device))
|
||||
|
||||
|
||||
class CONDCrossAttn(CONDRegular):
|
||||
def can_concat(self, other):
|
||||
s1 = self.cond.shape
|
||||
s2 = other.cond.shape
|
||||
if s1 != s2:
|
||||
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
||||
return False
|
||||
|
||||
mult_min = lcm(s1[1], s2[1])
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
conds = [self.cond]
|
||||
crossattn_max_len = self.cond.shape[1]
|
||||
for x in others:
|
||||
c = x.cond
|
||||
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
||||
conds.append(c)
|
||||
|
||||
out = []
|
||||
for c in conds:
|
||||
if c.shape[1] < crossattn_max_len:
|
||||
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
||||
out.append(c)
|
||||
return torch.cat(out)
|
||||
|
||||
class CONDConstant(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(self.cond)
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond != other.cond:
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
return self.cond
|
||||
@ -1,13 +1,13 @@
|
||||
import torch
|
||||
import math
|
||||
import os
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
import comfy.model_patcher
|
||||
from . import utils
|
||||
from . import model_management
|
||||
from . import model_detection
|
||||
from . import model_patcher
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@ -33,16 +33,16 @@ class ControlBase:
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_percent_range = (0.0, 1.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
device = model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.global_average_pooling = False
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
@ -130,8 +130,9 @@ class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
self.control_model_wrapped = model_patcher.ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
self.global_average_pooling = global_average_pooling
|
||||
self.model_sampling_current = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
@ -150,16 +151,19 @@ class ControlNet(ControlBase):
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = cond['c_crossattn']
|
||||
y = cond.get('c_adm', None)
|
||||
y = cond.get('y', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y)
|
||||
return self.control_merge(None, control, control_prev, output_dtype)
|
||||
|
||||
def copy(self):
|
||||
@ -172,6 +176,14 @@ class ControlNet(ControlBase):
|
||||
out.append(self.control_model_wrapped)
|
||||
return out
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
self.model_sampling_current = model.model_sampling
|
||||
|
||||
def cleanup(self):
|
||||
self.model_sampling_current = None
|
||||
super().cleanup()
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
@ -249,24 +261,24 @@ class ControlLora(ControlNet):
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
controlnet_config["operations"] = ControlLoraOps()
|
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
self.control_model = cldm.ControlNet(**controlnet_config)
|
||||
dtype = model.get_dtype()
|
||||
self.control_model.to(dtype)
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
self.control_model.to(model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = comfy.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
|
||||
weight = model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
|
||||
try:
|
||||
comfy.utils.set_attr(self.control_model, k, weight)
|
||||
utils.set_attr(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
@ -283,18 +295,18 @@ class ControlLora(ControlNet):
|
||||
return out
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
return utils.calculate_parameters(self.control_weights) * model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
unet_dtype = comfy.model_management.unet_dtype()
|
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
||||
unet_dtype = model_management.unet_dtype()
|
||||
controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
|
||||
diffusers_keys = utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
@ -353,16 +365,16 @@ def load_controlnet(ckpt_path, model=None):
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
unet_dtype = comfy.model_management.unet_dtype()
|
||||
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
|
||||
unet_dtype = model_management.unet_dtype()
|
||||
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
control_model = cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
@ -416,7 +428,7 @@ class T2IAdapter(ControlBase):
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
return None
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
@ -424,7 +436,7 @@ class T2IAdapter(ControlBase):
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
@ -457,12 +469,12 @@ def load_t2i_adapter(t2i_data):
|
||||
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
||||
prefix_replace["adapter.body.{}.".format(i)] = "body.{}.".format(i * 2)
|
||||
prefix_replace["adapter."] = ""
|
||||
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
t2i_data = utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
keys = t2i_data.keys()
|
||||
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
@ -474,7 +486,7 @@ def load_t2i_adapter(t2i_data):
|
||||
xl = False
|
||||
if cin == 256 or cin == 768:
|
||||
xl = True
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
else:
|
||||
return None
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
|
||||
@ -713,8 +713,8 @@ class UniPC:
|
||||
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
||||
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
||||
):
|
||||
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||
t_T = self.noise_schedule.T if t_start is None else t_start
|
||||
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||
# t_T = self.noise_schedule.T if t_start is None else t_start
|
||||
device = x.device
|
||||
steps = len(timesteps) - 1
|
||||
if method == 'multistep':
|
||||
@ -769,8 +769,8 @@ class UniPC:
|
||||
callback(step_index, model_prev_list[-1], x, steps)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
if denoise_to_zero:
|
||||
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
||||
# if denoise_to_zero:
|
||||
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
||||
return x
|
||||
|
||||
|
||||
@ -833,21 +833,39 @@ def expand_dims(v, dims):
|
||||
return v[(...,) + (None,)*(dims - 1)]
|
||||
|
||||
|
||||
class SigmaConvert:
|
||||
schedule = ""
|
||||
def marginal_log_mean_coeff(self, sigma):
|
||||
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
||||
|
||||
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
|
||||
to_zero = False
|
||||
def marginal_alpha(self, t):
|
||||
return torch.exp(self.marginal_log_mean_coeff(t))
|
||||
|
||||
def marginal_std(self, t):
|
||||
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
||||
|
||||
def marginal_lambda(self, t):
|
||||
"""
|
||||
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
||||
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
||||
return log_mean_coeff - log_std
|
||||
|
||||
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
||||
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
||||
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
||||
return (input - model(input, sigma_in, **kwargs)) / sigma
|
||||
|
||||
|
||||
def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
|
||||
timesteps = sigmas.clone()
|
||||
if sigmas[-1] == 0:
|
||||
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
|
||||
to_zero = True
|
||||
timesteps = sigmas[:]
|
||||
timesteps[-1] = 0.001
|
||||
else:
|
||||
timesteps = sigmas.clone()
|
||||
|
||||
alphas_cumprod = model.inner_model.alphas_cumprod
|
||||
|
||||
for s in range(timesteps.shape[0]):
|
||||
timesteps[s] = (model.sigma_to_discrete_timestep(timesteps[s]) / 1000) + (1 / len(alphas_cumprod))
|
||||
|
||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
||||
ns = SigmaConvert()
|
||||
|
||||
if image is not None:
|
||||
img = image * ns.marginal_alpha(timesteps[0])
|
||||
@ -859,25 +877,18 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, ex
|
||||
else:
|
||||
img = noise
|
||||
|
||||
if to_zero:
|
||||
timesteps[-1] = (1 / len(alphas_cumprod))
|
||||
|
||||
device = noise.device
|
||||
|
||||
|
||||
model_type = "noise"
|
||||
|
||||
model_fn = model_wrapper(
|
||||
model.predict_eps_discrete_timestep,
|
||||
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
||||
ns,
|
||||
model_type=model_type,
|
||||
guidance_type="uncond",
|
||||
model_kwargs=extra_args,
|
||||
)
|
||||
|
||||
order = min(3, len(timesteps) - 1)
|
||||
order = min(3, len(timesteps) - 2)
|
||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
||||
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
||||
if not to_zero:
|
||||
x /= ns.marginal_alpha(timesteps[-1])
|
||||
x /= ns.marginal_alpha(timesteps[-1])
|
||||
return x
|
||||
|
||||
@ -1,190 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from . import sampling, utils
|
||||
|
||||
|
||||
class VDenoiser(nn.Module):
|
||||
"""A v-diffusion-pytorch model wrapper for k-diffusion."""
|
||||
|
||||
def __init__(self, inner_model):
|
||||
super().__init__()
|
||||
self.inner_model = inner_model
|
||||
self.sigma_data = 1.
|
||||
|
||||
def get_scalings(self, sigma):
|
||||
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
|
||||
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
return c_skip, c_out, c_in
|
||||
|
||||
def sigma_to_t(self, sigma):
|
||||
return sigma.atan() / math.pi * 2
|
||||
|
||||
def t_to_sigma(self, t):
|
||||
return (t * math.pi / 2).tan()
|
||||
|
||||
def loss(self, input, noise, sigma, **kwargs):
|
||||
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
||||
model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
target = (input - c_skip * noised_input) / c_out
|
||||
return (model_output - target).pow(2).flatten(1).mean(1)
|
||||
|
||||
def forward(self, input, sigma, **kwargs):
|
||||
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
|
||||
|
||||
|
||||
class DiscreteSchedule(nn.Module):
|
||||
"""A mapping between continuous noise levels (sigmas) and a list of discrete noise
|
||||
levels."""
|
||||
|
||||
def __init__(self, sigmas, quantize):
|
||||
super().__init__()
|
||||
self.register_buffer('sigmas', sigmas)
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
self.quantize = quantize
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def get_sigmas(self, n=None):
|
||||
if n is None:
|
||||
return sampling.append_zero(self.sigmas.flip(0))
|
||||
t_max = len(self.sigmas) - 1
|
||||
t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
|
||||
return sampling.append_zero(self.t_to_sigma(t))
|
||||
|
||||
def sigma_to_discrete_timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape)
|
||||
|
||||
def sigma_to_t(self, sigma, quantize=None):
|
||||
quantize = self.quantize if quantize is None else quantize
|
||||
if quantize:
|
||||
return self.sigma_to_discrete_timestep(sigma)
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
|
||||
high_idx = low_idx + 1
|
||||
low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx]
|
||||
w = (low - log_sigma) / (low - high)
|
||||
w = w.clamp(0, 1)
|
||||
t = (1 - w) * low_idx + w * high_idx
|
||||
return t.view(sigma.shape)
|
||||
|
||||
def t_to_sigma(self, t):
|
||||
t = t.float()
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t-low_idx if t.device.type == 'mps' else t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp()
|
||||
|
||||
def predict_eps_discrete_timestep(self, input, t, **kwargs):
|
||||
if t.dtype != torch.int64 and t.dtype != torch.int32:
|
||||
t = t.round()
|
||||
sigma = self.t_to_sigma(t)
|
||||
input = input * ((utils.append_dims(sigma, input.ndim) ** 2 + 1.0) ** 0.5)
|
||||
return (input - self(input, sigma, **kwargs)) / utils.append_dims(sigma, input.ndim)
|
||||
|
||||
class DiscreteEpsDDPMDenoiser(DiscreteSchedule):
|
||||
"""A wrapper for discrete schedule DDPM models that output eps (the predicted
|
||||
noise)."""
|
||||
|
||||
def __init__(self, model, alphas_cumprod, quantize):
|
||||
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
|
||||
self.inner_model = model
|
||||
self.sigma_data = 1.
|
||||
|
||||
def get_scalings(self, sigma):
|
||||
c_out = -sigma
|
||||
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
return c_out, c_in
|
||||
|
||||
def get_eps(self, *args, **kwargs):
|
||||
return self.inner_model(*args, **kwargs)
|
||||
|
||||
def loss(self, input, noise, sigma, **kwargs):
|
||||
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
||||
eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
return (eps - noise).pow(2).flatten(1).mean(1)
|
||||
|
||||
def forward(self, input, sigma, **kwargs):
|
||||
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
return input + eps * c_out
|
||||
|
||||
|
||||
class OpenAIDenoiser(DiscreteEpsDDPMDenoiser):
|
||||
"""A wrapper for OpenAI diffusion models."""
|
||||
|
||||
def __init__(self, model, diffusion, quantize=False, has_learned_sigmas=True, device='cpu'):
|
||||
alphas_cumprod = torch.tensor(diffusion.alphas_cumprod, device=device, dtype=torch.float32)
|
||||
super().__init__(model, alphas_cumprod, quantize=quantize)
|
||||
self.has_learned_sigmas = has_learned_sigmas
|
||||
|
||||
def get_eps(self, *args, **kwargs):
|
||||
model_output = self.inner_model(*args, **kwargs)
|
||||
if self.has_learned_sigmas:
|
||||
return model_output.chunk(2, dim=1)[0]
|
||||
return model_output
|
||||
|
||||
|
||||
class CompVisDenoiser(DiscreteEpsDDPMDenoiser):
|
||||
"""A wrapper for CompVis diffusion models."""
|
||||
|
||||
def __init__(self, model, quantize=False, device='cpu'):
|
||||
super().__init__(model, model.alphas_cumprod, quantize=quantize)
|
||||
|
||||
def get_eps(self, *args, **kwargs):
|
||||
return self.inner_model.apply_model(*args, **kwargs)
|
||||
|
||||
|
||||
class DiscreteVDDPMDenoiser(DiscreteSchedule):
|
||||
"""A wrapper for discrete schedule DDPM models that output v."""
|
||||
|
||||
def __init__(self, model, alphas_cumprod, quantize):
|
||||
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
|
||||
self.inner_model = model
|
||||
self.sigma_data = 1.
|
||||
|
||||
def get_scalings(self, sigma):
|
||||
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
|
||||
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
return c_skip, c_out, c_in
|
||||
|
||||
def get_v(self, *args, **kwargs):
|
||||
return self.inner_model(*args, **kwargs)
|
||||
|
||||
def loss(self, input, noise, sigma, **kwargs):
|
||||
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
||||
model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
target = (input - c_skip * noised_input) / c_out
|
||||
return (model_output - target).pow(2).flatten(1).mean(1)
|
||||
|
||||
def forward(self, input, sigma, **kwargs):
|
||||
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
|
||||
|
||||
|
||||
class CompVisVDenoiser(DiscreteVDDPMDenoiser):
|
||||
"""A wrapper for CompVis diffusion models that output v."""
|
||||
|
||||
def __init__(self, model, quantize=False, device='cpu'):
|
||||
super().__init__(model, model.alphas_cumprod, quantize=quantize)
|
||||
|
||||
def get_v(self, x, t, cond, **kwargs):
|
||||
return self.inner_model.apply_model(x, t, cond)
|
||||
@ -717,7 +717,6 @@ def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
||||
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
||||
return mu
|
||||
|
||||
|
||||
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@ -737,3 +736,75 @@ def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disab
|
||||
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
||||
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
x = denoised
|
||||
if sigmas[i + 1] > 0:
|
||||
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
|
||||
return x
|
||||
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
s_end = sigmas[-1]
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||
eps = torch.randn_like(x) * s_noise
|
||||
sigma_hat = sigmas[i] * (gamma + 1)
|
||||
if gamma > 0:
|
||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
if sigmas[i + 1] == s_end:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
elif sigmas[i + 2] == s_end:
|
||||
|
||||
# Heun's method
|
||||
x_2 = x + d * dt
|
||||
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
||||
|
||||
w = 2 * sigmas[0]
|
||||
w2 = sigmas[i+1]/w
|
||||
w1 = 1 - w2
|
||||
|
||||
d_prime = d * w1 + d_2 * w2
|
||||
|
||||
|
||||
x = x + d_prime * dt
|
||||
|
||||
else:
|
||||
# Heun++
|
||||
x_2 = x + d * dt
|
||||
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
||||
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
||||
|
||||
x_3 = x_2 + d_2 * dt_2
|
||||
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
||||
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
||||
|
||||
w = 3 * sigmas[0]
|
||||
w2 = sigmas[i + 1] / w
|
||||
w3 = sigmas[i + 2] / w
|
||||
w1 = 1 - w2 - w3
|
||||
|
||||
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
||||
x = x + d_prime * dt
|
||||
return x
|
||||
|
||||
@ -1,418 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from ...modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
self.parameterization = kwargs.get("parameterization", "eps")
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != self.device:
|
||||
attr = attr.float().to(self.device)
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
self.make_schedule_timesteps(ddim_timesteps, ddim_eta=ddim_eta, verbose=verbose)
|
||||
|
||||
def make_schedule_timesteps(self, ddim_timesteps, ddim_eta=0., verbose=True):
|
||||
self.ddim_timesteps = torch.tensor(ddim_timesteps)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
||||
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_custom(self,
|
||||
ddim_timesteps,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
denoise_function=None,
|
||||
extra_args=None,
|
||||
to_zero=True,
|
||||
end_step=None,
|
||||
disable_pbar=False,
|
||||
**kwargs
|
||||
):
|
||||
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
|
||||
samples, intermediates = self.ddim_sampling(conditioning, x_T.shape,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule,
|
||||
denoise_function=denoise_function,
|
||||
extra_args=extra_args,
|
||||
to_zero=to_zero,
|
||||
end_step=end_step,
|
||||
disable_pbar=disable_pbar
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list): ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule,
|
||||
denoise_function=None,
|
||||
extra_args=None
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
def q_sample(self, x_start, t, noise=None):
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x_start)
|
||||
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
||||
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False):
|
||||
device = self.model.alphas_cumprod.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else timesteps.flip(0)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
if ucg_schedule is not None:
|
||||
assert len(ucg_schedule) == len(time_range)
|
||||
unconditional_guidance_scale = ucg_schedule[i]
|
||||
|
||||
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, extra_args=extra_args)
|
||||
img, pred_x0 = outs
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
if to_zero:
|
||||
img = pred_x0
|
||||
else:
|
||||
if ddim_use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
img /= sqrt_alphas_cumprod[index - 1]
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None, denoise_function=None, extra_args=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if denoise_function is not None:
|
||||
model_output = denoise_function(x, t, **extra_args)
|
||||
elif unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
model_output = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
if isinstance(c, dict):
|
||||
assert isinstance(unconditional_conditioning, dict)
|
||||
c_in = dict()
|
||||
for k in c:
|
||||
if isinstance(c[k], list):
|
||||
c_in[k] = [torch.cat([
|
||||
unconditional_conditioning[k][i],
|
||||
c[k][i]]) for i in range(len(c[k]))]
|
||||
else:
|
||||
c_in[k] = torch.cat([
|
||||
unconditional_conditioning[k],
|
||||
c[k]])
|
||||
elif isinstance(c, list):
|
||||
c_in = list()
|
||||
assert isinstance(unconditional_conditioning, list)
|
||||
for i in range(len(c)):
|
||||
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
||||
else:
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
||||
|
||||
if self.parameterization == "v":
|
||||
e_t = extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * model_output + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
||||
else:
|
||||
e_t = model_output
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.parameterization == "eps", 'not implemented'
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
if self.parameterization != "v":
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
else:
|
||||
pred_x0 = extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * x - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * model_output
|
||||
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
|
||||
if dynamic_threshold is not None:
|
||||
raise NotImplementedError()
|
||||
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
||||
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
||||
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
||||
|
||||
assert t_enc <= num_reference_steps
|
||||
num_steps = t_enc
|
||||
|
||||
if use_original_steps:
|
||||
alphas_next = self.alphas_cumprod[:num_steps]
|
||||
alphas = self.alphas_cumprod_prev[:num_steps]
|
||||
else:
|
||||
alphas_next = self.ddim_alphas[:num_steps]
|
||||
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
||||
|
||||
x_next = x0
|
||||
intermediates = []
|
||||
inter_steps = []
|
||||
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
||||
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
||||
if unconditional_guidance_scale == 1.:
|
||||
noise_pred = self.model.apply_model(x_next, t, c)
|
||||
else:
|
||||
assert unconditional_conditioning is not None
|
||||
e_t_uncond, noise_pred = torch.chunk(
|
||||
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
||||
torch.cat((unconditional_conditioning, c))), 2)
|
||||
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
||||
|
||||
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
||||
weighted_noise_pred = alphas_next[i].sqrt() * (
|
||||
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
||||
x_next = xt_weighted + weighted_noise_pred
|
||||
if return_intermediates and i % (
|
||||
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
elif return_intermediates and i >= num_steps - 2:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
if callback: callback(i)
|
||||
|
||||
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
||||
if return_intermediates:
|
||||
out.update({'intermediates': intermediates})
|
||||
return x_next, out
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None, max_denoise=False):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
if max_denoise:
|
||||
noise_multiplier = 1.0
|
||||
else:
|
||||
noise_multiplier = extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||
|
||||
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + noise_multiplier * noise)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||
use_original_steps=False, callback=None):
|
||||
|
||||
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
||||
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
if callback: callback(i)
|
||||
return x_dec
|
||||
@ -1 +0,0 @@
|
||||
from .sampler import DPMSolverSampler
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,96 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
import torch
|
||||
|
||||
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
||||
|
||||
MODEL_TYPES = {
|
||||
"eps": "noise",
|
||||
"v": "v"
|
||||
}
|
||||
|
||||
|
||||
class DPMSolverSampler(object):
|
||||
def __init__(self, model, device=torch.device("cuda"), **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.device = device
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
||||
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != self.device:
|
||||
attr = attr.to(self.device)
|
||||
setattr(self, name, attr)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list): ctmp = ctmp[0]
|
||||
if isinstance(ctmp, torch.Tensor):
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if isinstance(conditioning, torch.Tensor):
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
||||
|
||||
device = self.model.betas.device
|
||||
if x_T is None:
|
||||
img = torch.randn(size, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
||||
|
||||
model_fn = model_wrapper(
|
||||
lambda x, t, c: self.model.apply_model(x, t, c),
|
||||
ns,
|
||||
model_type=MODEL_TYPES[self.model.parameterization],
|
||||
guidance_type="classifier-free",
|
||||
condition=conditioning,
|
||||
unconditional_condition=unconditional_conditioning,
|
||||
guidance_scale=unconditional_guidance_scale,
|
||||
)
|
||||
|
||||
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
||||
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2,
|
||||
lower_order_final=True)
|
||||
|
||||
return x.to(device), None
|
||||
@ -1,245 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
|
||||
from ...modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
||||
from .sampling_util import norm_thresholding
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != self.device:
|
||||
attr = attr.to(self.device)
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps, t_next=ts_next,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
||||
dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
if dynamic_threshold is not None:
|
||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
||||
@ -1,22 +0,0 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||||
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
def norm_thresholding(x0, value):
|
||||
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||||
return x0 * (value / s)
|
||||
|
||||
|
||||
def spatial_norm_thresholding(x0, value):
|
||||
# b c h w
|
||||
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||||
return x0 * (value / s)
|
||||
@ -5,8 +5,10 @@ import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from typing import Optional, Any
|
||||
from functools import partial
|
||||
|
||||
from .diffusionmodules.util import checkpoint
|
||||
|
||||
from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
from ... import model_management
|
||||
|
||||
@ -94,9 +96,19 @@ def Normalize(in_channels, dtype=None, device=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
|
||||
def attention_basic(q, k, v, heads, mask=None):
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
h = heads
|
||||
scale = (q.shape[-1] // heads) ** -0.5
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, -1, heads, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, -1, dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
@ -118,16 +130,24 @@ def attention_basic(q, k, v, heads, mask=None):
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
def attention_sub_quad(query, key, value, heads, mask=None):
|
||||
scale = (query.shape[-1] // heads) ** -0.5
|
||||
query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
|
||||
del key
|
||||
value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
b, _, dim_head = query.shape
|
||||
dim_head //= heads
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
||||
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
||||
|
||||
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
|
||||
|
||||
dtype = query.dtype
|
||||
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
||||
@ -136,41 +156,28 @@ def attention_sub_quad(query, key, value, heads, mask=None):
|
||||
else:
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key_t.shape
|
||||
_, _, k_tokens = key.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
|
||||
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
||||
|
||||
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
|
||||
|
||||
kv_chunk_size_min = None
|
||||
kv_chunk_size = None
|
||||
query_chunk_size = None
|
||||
|
||||
#not sure at all about the math here
|
||||
#TODO: tweak this
|
||||
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 4
|
||||
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 2
|
||||
else:
|
||||
query_chunk_size_x = 1024
|
||||
kv_chunk_size_min_x = None
|
||||
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
|
||||
if kv_chunk_size_x < 1024:
|
||||
kv_chunk_size_x = None
|
||||
for x in [4096, 2048, 1024, 512, 256]:
|
||||
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
|
||||
if count >= k_tokens:
|
||||
kv_chunk_size = k_tokens
|
||||
query_chunk_size = x
|
||||
break
|
||||
|
||||
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
|
||||
# the big matmul fits into our memory limit; do everything in 1 chunk,
|
||||
# i.e. send it down the unchunked fast-path
|
||||
query_chunk_size = q_tokens
|
||||
kv_chunk_size = k_tokens
|
||||
else:
|
||||
query_chunk_size = query_chunk_size_x
|
||||
kv_chunk_size = kv_chunk_size_x
|
||||
kv_chunk_size_min = kv_chunk_size_min_x
|
||||
if query_chunk_size is None:
|
||||
query_chunk_size = 512
|
||||
|
||||
hidden_states = efficient_dot_product_attention(
|
||||
query,
|
||||
key_t,
|
||||
key,
|
||||
value,
|
||||
query_chunk_size=query_chunk_size,
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
@ -185,17 +192,32 @@ def attention_sub_quad(query, key, value, heads, mask=None):
|
||||
return hidden_states
|
||||
|
||||
def attention_split(q, k, v, heads, mask=None):
|
||||
scale = (q.shape[-1] // heads) ** -0.5
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
h = heads
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, -1, heads, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, -1, dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
element_size = 4
|
||||
else:
|
||||
element_size = q.element_size()
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
|
||||
modifier = 3
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
@ -223,10 +245,10 @@ def attention_split(q, k, v, heads, mask=None):
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
|
||||
else:
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
|
||||
first_op_done = True
|
||||
|
||||
s2 = s1.softmax(dim=-1).to(v.dtype)
|
||||
del s1
|
||||
first_op_done = True
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
@ -247,17 +269,34 @@ def attention_split(q, k, v, heads, mask=None):
|
||||
|
||||
del q, k, v
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
return r2
|
||||
r1 = (
|
||||
r1.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return r1
|
||||
|
||||
BROKEN_XFORMERS = False
|
||||
try:
|
||||
x_vers = xformers.__version__
|
||||
#I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
|
||||
BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
|
||||
except:
|
||||
pass
|
||||
|
||||
def attention_xformers(q, k, v, heads, mask=None):
|
||||
b, _, _ = q.shape
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
if BROKEN_XFORMERS:
|
||||
if b * heads > 65535:
|
||||
return attention_pytorch(q, k, v, heads, mask)
|
||||
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, t.shape[1], heads, -1)
|
||||
.reshape(b, -1, heads, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, t.shape[1], -1)
|
||||
.reshape(b * heads, -1, dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
@ -269,9 +308,9 @@ def attention_xformers(q, k, v, heads, mask=None):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, out.shape[1], -1)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, out.shape[1], -1)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
@ -343,53 +382,72 @@ class CrossAttention(nn.Module):
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False, dtype=None, device=None, operations=ops):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
|
||||
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
|
||||
self.ff_in = ff_in or inner_dim is not None
|
||||
if inner_dim is None:
|
||||
inner_dim = dim
|
||||
|
||||
self.is_res = inner_dim == dim
|
||||
|
||||
if self.ff_in:
|
||||
self.norm_in = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
if disable_temporal_crossattention:
|
||||
if switch_temporal_ca_to_sa:
|
||||
raise ValueError
|
||||
else:
|
||||
self.attn2 = None
|
||||
else:
|
||||
context_dim_attn2 = None
|
||||
if not switch_temporal_ca_to_sa:
|
||||
context_dim_attn2 = context_dim
|
||||
|
||||
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
||||
self.norm2 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.norm1 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.norm3 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.checkpoint = checkpoint
|
||||
self.n_heads = n_heads
|
||||
self.d_head = d_head
|
||||
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
|
||||
|
||||
def _forward(self, x, context=None, transformer_options={}):
|
||||
extra_options = {}
|
||||
block = None
|
||||
block_index = 0
|
||||
if "current_index" in transformer_options:
|
||||
extra_options["transformer_index"] = transformer_options["current_index"]
|
||||
if "block_index" in transformer_options:
|
||||
block_index = transformer_options["block_index"]
|
||||
extra_options["block_index"] = block_index
|
||||
if "original_shape" in transformer_options:
|
||||
extra_options["original_shape"] = transformer_options["original_shape"]
|
||||
if "block" in transformer_options:
|
||||
block = transformer_options["block"]
|
||||
extra_options["block"] = block
|
||||
if "cond_or_uncond" in transformer_options:
|
||||
extra_options["cond_or_uncond"] = transformer_options["cond_or_uncond"]
|
||||
if "patches" in transformer_options:
|
||||
transformer_patches = transformer_options["patches"]
|
||||
else:
|
||||
transformer_patches = {}
|
||||
block = transformer_options.get("block", None)
|
||||
block_index = transformer_options.get("block_index", 0)
|
||||
transformer_patches = {}
|
||||
transformer_patches_replace = {}
|
||||
|
||||
for k in transformer_options:
|
||||
if k == "patches":
|
||||
transformer_patches = transformer_options[k]
|
||||
elif k == "patches_replace":
|
||||
transformer_patches_replace = transformer_options[k]
|
||||
else:
|
||||
extra_options[k] = transformer_options[k]
|
||||
|
||||
extra_options["n_heads"] = self.n_heads
|
||||
extra_options["dim_head"] = self.d_head
|
||||
|
||||
if "patches_replace" in transformer_options:
|
||||
transformer_patches_replace = transformer_options["patches_replace"]
|
||||
else:
|
||||
transformer_patches_replace = {}
|
||||
if self.ff_in:
|
||||
x_skip = x
|
||||
x = self.ff_in(self.norm_in(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
n = self.norm1(x)
|
||||
if self.disable_self_attn:
|
||||
@ -438,31 +496,34 @@ class BasicTransformerBlock(nn.Module):
|
||||
for p in patch:
|
||||
x = p(x, extra_options)
|
||||
|
||||
n = self.norm2(x)
|
||||
|
||||
context_attn2 = context
|
||||
value_attn2 = None
|
||||
if "attn2_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_patch"]
|
||||
value_attn2 = context_attn2
|
||||
for p in patch:
|
||||
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
||||
|
||||
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
||||
block_attn2 = transformer_block
|
||||
if block_attn2 not in attn2_replace_patch:
|
||||
block_attn2 = block
|
||||
|
||||
if block_attn2 in attn2_replace_patch:
|
||||
if value_attn2 is None:
|
||||
if self.attn2 is not None:
|
||||
n = self.norm2(x)
|
||||
if self.switch_temporal_ca_to_sa:
|
||||
context_attn2 = n
|
||||
else:
|
||||
context_attn2 = context
|
||||
value_attn2 = None
|
||||
if "attn2_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_patch"]
|
||||
value_attn2 = context_attn2
|
||||
n = self.attn2.to_q(n)
|
||||
context_attn2 = self.attn2.to_k(context_attn2)
|
||||
value_attn2 = self.attn2.to_v(value_attn2)
|
||||
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
||||
n = self.attn2.to_out(n)
|
||||
else:
|
||||
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
||||
for p in patch:
|
||||
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
||||
|
||||
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
||||
block_attn2 = transformer_block
|
||||
if block_attn2 not in attn2_replace_patch:
|
||||
block_attn2 = block
|
||||
|
||||
if block_attn2 in attn2_replace_patch:
|
||||
if value_attn2 is None:
|
||||
value_attn2 = context_attn2
|
||||
n = self.attn2.to_q(n)
|
||||
context_attn2 = self.attn2.to_k(context_attn2)
|
||||
value_attn2 = self.attn2.to_v(value_attn2)
|
||||
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
||||
n = self.attn2.to_out(n)
|
||||
else:
|
||||
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
||||
|
||||
if "attn2_output_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_output_patch"]
|
||||
@ -470,7 +531,12 @@ class BasicTransformerBlock(nn.Module):
|
||||
n = p(n, extra_options)
|
||||
|
||||
x += n
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
if self.is_res:
|
||||
x_skip = x
|
||||
x = self.ff(self.norm3(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@ -538,3 +604,164 @@ class SpatialTransformer(nn.Module):
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
|
||||
|
||||
class SpatialVideoTransformer(SpatialTransformer):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
use_linear=False,
|
||||
context_dim=None,
|
||||
use_spatial_context=False,
|
||||
timesteps=None,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
time_context_dim=None,
|
||||
ff_in=False,
|
||||
checkpoint=False,
|
||||
time_depth=1,
|
||||
disable_self_attn=False,
|
||||
disable_temporal_crossattention=False,
|
||||
max_time_embed_period: int = 10000,
|
||||
dtype=None, device=None, operations=ops
|
||||
):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=depth,
|
||||
dropout=dropout,
|
||||
use_checkpoint=checkpoint,
|
||||
context_dim=context_dim,
|
||||
use_linear=use_linear,
|
||||
disable_self_attn=disable_self_attn,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.time_depth = time_depth
|
||||
self.depth = depth
|
||||
self.max_time_embed_period = max_time_embed_period
|
||||
|
||||
time_mix_d_head = d_head
|
||||
n_time_mix_heads = n_heads
|
||||
|
||||
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
||||
|
||||
inner_dim = n_heads * d_head
|
||||
if use_spatial_context:
|
||||
time_context_dim = context_dim
|
||||
|
||||
self.time_stack = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
n_time_mix_heads,
|
||||
time_mix_d_head,
|
||||
dropout=dropout,
|
||||
context_dim=time_context_dim,
|
||||
# timesteps=timesteps,
|
||||
checkpoint=checkpoint,
|
||||
ff_in=ff_in,
|
||||
inner_dim=time_mix_inner_dim,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
assert len(self.time_stack) == len(self.transformer_blocks)
|
||||
|
||||
self.use_spatial_context = use_spatial_context
|
||||
self.in_channels = in_channels
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.time_pos_embed = nn.Sequential(
|
||||
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
time_context: Optional[torch.Tensor] = None,
|
||||
timesteps: Optional[int] = None,
|
||||
image_only_indicator: Optional[torch.Tensor] = None,
|
||||
transformer_options={}
|
||||
) -> torch.Tensor:
|
||||
_, _, h, w = x.shape
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
spatial_context = context
|
||||
|
||||
if self.use_spatial_context:
|
||||
assert (
|
||||
context.ndim == 3
|
||||
), f"n dims of spatial context should be 3 but are {context.ndim}"
|
||||
|
||||
if time_context is None:
|
||||
time_context = context
|
||||
time_context_first_timestep = time_context[::timesteps]
|
||||
time_context = repeat(
|
||||
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
||||
)
|
||||
elif time_context is not None and not self.use_spatial_context:
|
||||
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
|
||||
if time_context.ndim == 2:
|
||||
time_context = rearrange(time_context, "b c -> b 1 c")
|
||||
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
|
||||
num_frames = torch.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
|
||||
emb = self.time_pos_embed(t_emb)
|
||||
emb = emb[:, None, :]
|
||||
|
||||
for it_, (block, mix_block) in enumerate(
|
||||
zip(self.transformer_blocks, self.time_stack)
|
||||
):
|
||||
transformer_options["block_index"] = it_
|
||||
x = block(
|
||||
x,
|
||||
context=spatial_context,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
x_mix = x
|
||||
x_mix = x_mix + emb
|
||||
|
||||
B, S, C = x_mix.shape
|
||||
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
|
||||
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
|
||||
x_mix = rearrange(
|
||||
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
||||
)
|
||||
|
||||
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
|
||||
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
out = x + x_in
|
||||
return out
|
||||
|
||||
|
||||
|
||||
@ -5,6 +5,8 @@ import numpy as np
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from functools import partial
|
||||
|
||||
from .util import (
|
||||
checkpoint,
|
||||
@ -12,8 +14,9 @@ from .util import (
|
||||
zero_module,
|
||||
normalization,
|
||||
timestep_embedding,
|
||||
AlphaBlender,
|
||||
)
|
||||
from ..attention import SpatialTransformer
|
||||
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
||||
from ...util import exists
|
||||
from .... import ops
|
||||
|
||||
@ -28,6 +31,26 @@ class TimestepBlock(nn.Module):
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
||||
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
||||
for layer in ts:
|
||||
if isinstance(layer, VideoResBlock):
|
||||
x = layer(x, emb, num_video_frames, image_only_indicator)
|
||||
elif isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialVideoTransformer):
|
||||
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
|
||||
if "transformer_index" in transformer_options:
|
||||
transformer_options["transformer_index"] += 1
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context, transformer_options)
|
||||
if "transformer_index" in transformer_options:
|
||||
transformer_options["transformer_index"] += 1
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
@ -35,31 +58,8 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context, transformer_options)
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
#This is needed because accelerate makes a copy of transformer_options which breaks "current_index"
|
||||
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None):
|
||||
for layer in ts:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context, transformer_options)
|
||||
transformer_options["current_index"] += 1
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
def forward(self, *args, **kwargs):
|
||||
return forward_timestep_embed(self, *args, **kwargs)
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
@ -154,6 +154,9 @@ class ResBlock(TimestepBlock):
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
exchange_temb_dims=False,
|
||||
skip_t_emb=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
@ -166,11 +169,17 @@ class ResBlock(TimestepBlock):
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
self.exchange_temb_dims = exchange_temb_dims
|
||||
|
||||
if isinstance(kernel_size, list):
|
||||
padding = [k // 2 for k in kernel_size]
|
||||
else:
|
||||
padding = kernel_size // 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
nn.GroupNorm(32, channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
|
||||
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
@ -184,19 +193,24 @@ class ResBlock(TimestepBlock):
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
self.skip_t_emb = skip_t_emb
|
||||
if self.skip_t_emb:
|
||||
self.emb_layers = None
|
||||
self.exchange_temb_dims = False
|
||||
else:
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
|
||||
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
|
||||
),
|
||||
)
|
||||
|
||||
@ -204,7 +218,7 @@ class ResBlock(TimestepBlock):
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = operations.conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
|
||||
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
||||
@ -230,19 +244,110 @@ class ResBlock(TimestepBlock):
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
|
||||
emb_out = None
|
||||
if not self.skip_t_emb:
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_norm(h)
|
||||
if emb_out is not None:
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h *= (1 + scale)
|
||||
h += shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
if emb_out is not None:
|
||||
if self.exchange_temb_dims:
|
||||
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class VideoResBlock(ResBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
video_kernel_size=3,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
out_channels=None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
super().__init__(
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=out_channels,
|
||||
use_conv=use_conv,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
up=up,
|
||||
down=down,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
self.time_stack = ResBlock(
|
||||
default(out_channels, channels),
|
||||
emb_channels,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
out_channels=default(out_channels, channels),
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=video_kernel_size,
|
||||
use_checkpoint=use_checkpoint,
|
||||
exchange_temb_dims=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
rearrange_pattern="b t -> b 1 t 1 1",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator = None,
|
||||
) -> th.Tensor:
|
||||
x = super().forward(x, emb)
|
||||
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
|
||||
x = self.time_stack(
|
||||
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
||||
)
|
||||
x = self.time_mixer(
|
||||
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
||||
)
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class Timestep(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
@ -251,6 +356,15 @@ class Timestep(nn.Module):
|
||||
def forward(self, t):
|
||||
return timestep_embedding(t, self.dim)
|
||||
|
||||
def apply_control(h, control, name):
|
||||
if control is not None and name in control and len(control[name]) > 0:
|
||||
ctrl = control[name].pop()
|
||||
if ctrl is not None:
|
||||
try:
|
||||
h += ctrl
|
||||
except:
|
||||
print("warning control could not be applied", h.shape, ctrl.shape)
|
||||
return h
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
@ -259,10 +373,6 @@ class UNetModel(nn.Module):
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
@ -289,7 +399,6 @@ class UNetModel(nn.Module):
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
@ -314,6 +423,17 @@ class UNetModel(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
use_temporal_resblock=False,
|
||||
use_temporal_attention=False,
|
||||
time_context_dim=None,
|
||||
extra_ff_mix_layer=False,
|
||||
use_spatial_context=False,
|
||||
merge_strategy=None,
|
||||
merge_factor=0.0,
|
||||
video_kernel_size=None,
|
||||
disable_temporal_crossattention=False,
|
||||
max_ddpm_temb_period=10000,
|
||||
device=None,
|
||||
operations=ops,
|
||||
):
|
||||
@ -341,10 +461,7 @@ class UNetModel(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
@ -352,18 +469,16 @@ class UNetModel(nn.Module):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
transformer_depth = transformer_depth[:]
|
||||
transformer_depth_output = transformer_depth_output[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
@ -373,8 +488,12 @@ class UNetModel(nn.Module):
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.use_temporal_resblocks = use_temporal_resblock
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
self.default_num_video_frames = None
|
||||
self.default_image_only_indicator = None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
@ -411,13 +530,104 @@ class UNetModel(nn.Module):
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
def get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disable_self_attn=False,
|
||||
):
|
||||
if use_temporal_attention:
|
||||
return SpatialVideoTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=depth,
|
||||
context_dim=context_dim,
|
||||
time_context_dim=time_context_dim,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
merge_strategy=merge_strategy,
|
||||
merge_factor=merge_factor,
|
||||
checkpoint=use_checkpoint,
|
||||
use_linear=use_linear_in_transformer,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
max_time_embed_period=max_ddpm_temb_period,
|
||||
dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
return SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def get_resblock(
|
||||
merge_factor,
|
||||
merge_strategy,
|
||||
video_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
if self.use_temporal_resblocks:
|
||||
return VideoResBlock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
else:
|
||||
return ResBlock(
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_channels,
|
||||
use_checkpoint=use_checkpoint,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
@ -428,7 +638,8 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -443,11 +654,9 @@ class UNetModel(nn.Module):
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
layers.append(get_attention_layer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
@ -456,10 +665,13 @@ class UNetModel(nn.Module):
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
@ -488,35 +700,43 @@ class UNetModel(nn.Module):
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
mid_block = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [get_attention_layer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
@ -524,10 +744,13 @@ class UNetModel(nn.Module):
|
||||
for i in range(self.num_res_blocks[level] + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch + ich,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
@ -538,7 +761,8 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -554,19 +778,21 @@ class UNetModel(nn.Module):
|
||||
|
||||
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
get_attention_layer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
@ -605,9 +831,13 @@ class UNetModel(nn.Module):
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
transformer_options["original_shape"] = list(x.shape)
|
||||
transformer_options["current_index"] = 0
|
||||
transformer_options["transformer_index"] = 0
|
||||
transformer_patches = transformer_options.get("patches", {})
|
||||
|
||||
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
|
||||
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
|
||||
time_context = kwargs.get("time_context", None)
|
||||
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
@ -622,26 +852,28 @@ class UNetModel(nn.Module):
|
||||
h = x.type(self.dtype)
|
||||
for id, module in enumerate(self.input_blocks):
|
||||
transformer_options["block"] = ("input", id)
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options)
|
||||
if control is not None and 'input' in control and len(control['input']) > 0:
|
||||
ctrl = control['input'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = apply_control(h, control, 'input')
|
||||
if "input_block_patch" in transformer_patches:
|
||||
patch = transformer_patches["input_block_patch"]
|
||||
for p in patch:
|
||||
h = p(h, transformer_options)
|
||||
|
||||
hs.append(h)
|
||||
if "input_block_patch_after_skip" in transformer_patches:
|
||||
patch = transformer_patches["input_block_patch_after_skip"]
|
||||
for p in patch:
|
||||
h = p(h, transformer_options)
|
||||
|
||||
transformer_options["block"] = ("middle", 0)
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
|
||||
if control is not None and 'middle' in control and len(control['middle']) > 0:
|
||||
ctrl = control['middle'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = apply_control(h, control, 'middle')
|
||||
|
||||
|
||||
for id, module in enumerate(self.output_blocks):
|
||||
transformer_options["block"] = ("output", id)
|
||||
hsp = hs.pop()
|
||||
if control is not None and 'output' in control and len(control['output']) > 0:
|
||||
ctrl = control['output'].pop()
|
||||
if ctrl is not None:
|
||||
hsp += ctrl
|
||||
hsp = apply_control(hsp, control, 'output')
|
||||
|
||||
if "output_block_patch" in transformer_patches:
|
||||
patch = transformer_patches["output_block_patch"]
|
||||
@ -654,7 +886,7 @@ class UNetModel(nn.Module):
|
||||
output_shape = hs[-1].shape
|
||||
else:
|
||||
output_shape = None
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = h.type(x.dtype)
|
||||
if self.predict_codebook_ids:
|
||||
return self.id_predictor(h)
|
||||
|
||||
@ -13,11 +13,78 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
from einops import repeat, rearrange
|
||||
|
||||
from ...util import instantiate_from_config
|
||||
from .... import ops
|
||||
|
||||
class AlphaBlender(nn.Module):
|
||||
strategies = ["learned", "fixed", "learned_with_images"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
alpha: float,
|
||||
merge_strategy: str = "learned_with_images",
|
||||
rearrange_pattern: str = "b t -> (b t) 1 1",
|
||||
):
|
||||
super().__init__()
|
||||
self.merge_strategy = merge_strategy
|
||||
self.rearrange_pattern = rearrange_pattern
|
||||
|
||||
assert (
|
||||
merge_strategy in self.strategies
|
||||
), f"merge_strategy needs to be in {self.strategies}"
|
||||
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif (
|
||||
self.merge_strategy == "learned"
|
||||
or self.merge_strategy == "learned_with_images"
|
||||
):
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor:
|
||||
# skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
|
||||
if self.merge_strategy == "fixed":
|
||||
# make shape compatible
|
||||
# alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
|
||||
alpha = self.mix_factor
|
||||
elif self.merge_strategy == "learned":
|
||||
alpha = torch.sigmoid(self.mix_factor)
|
||||
# make shape compatible
|
||||
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
||||
elif self.merge_strategy == "learned_with_images":
|
||||
assert image_only_indicator is not None, "need image_only_indicator ..."
|
||||
alpha = torch.where(
|
||||
image_only_indicator.bool(),
|
||||
torch.ones(1, 1, device=image_only_indicator.device),
|
||||
rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"),
|
||||
)
|
||||
alpha = rearrange(alpha, self.rearrange_pattern)
|
||||
# make shape compatible
|
||||
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
return alpha
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_spatial,
|
||||
x_temporal,
|
||||
image_only_indicator=None,
|
||||
) -> torch.Tensor:
|
||||
alpha = self.get_alpha(image_only_indicator)
|
||||
x = (
|
||||
alpha.to(x_spatial.dtype) * x_spatial
|
||||
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal
|
||||
)
|
||||
return x
|
||||
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
@ -170,8 +237,8 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
).to(device=timesteps.device)
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
||||
)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
|
||||
@ -83,7 +83,8 @@ def _summarize_chunk(
|
||||
)
|
||||
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
||||
max_score = max_score.detach()
|
||||
torch.exp(attn_weights - max_score, out=attn_weights)
|
||||
attn_weights -= max_score
|
||||
torch.exp(attn_weights, out=attn_weights)
|
||||
exp_weights = attn_weights.to(value.dtype)
|
||||
exp_values = torch.bmm(exp_weights, value)
|
||||
max_score = max_score.squeeze(-1)
|
||||
|
||||
244
comfy/ldm/modules/temporal_ae.py
Normal file
244
comfy/ldm/modules/temporal_ae.py
Normal file
@ -0,0 +1,244 @@
|
||||
import functools
|
||||
from typing import Callable, Iterable, Union
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from ... import ops
|
||||
|
||||
from .diffusionmodules.model import (
|
||||
AttnBlock,
|
||||
Decoder,
|
||||
ResnetBlock,
|
||||
)
|
||||
from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
|
||||
from .attention import BasicTransformerBlock
|
||||
|
||||
def partialclass(cls, *args, **kwargs):
|
||||
class NewCls(cls):
|
||||
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
||||
|
||||
return NewCls
|
||||
|
||||
|
||||
class VideoResBlock(ResnetBlock):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
*args,
|
||||
dropout=0.0,
|
||||
video_kernel_size=3,
|
||||
alpha=0.0,
|
||||
merge_strategy="learned",
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
|
||||
if video_kernel_size is None:
|
||||
video_kernel_size = [3, 1, 1]
|
||||
self.time_stack = ResBlock(
|
||||
channels=out_channels,
|
||||
emb_channels=0,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=video_kernel_size,
|
||||
use_checkpoint=False,
|
||||
skip_t_emb=True,
|
||||
)
|
||||
|
||||
self.merge_strategy = merge_strategy
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif self.merge_strategy == "learned":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def get_alpha(self, bs):
|
||||
if self.merge_strategy == "fixed":
|
||||
return self.mix_factor
|
||||
elif self.merge_strategy == "learned":
|
||||
return torch.sigmoid(self.mix_factor)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def forward(self, x, temb, skip_video=False, timesteps=None):
|
||||
b, c, h, w = x.shape
|
||||
if timesteps is None:
|
||||
timesteps = b
|
||||
|
||||
x = super().forward(x, temb)
|
||||
|
||||
if not skip_video:
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
|
||||
x = self.time_stack(x, temb)
|
||||
|
||||
alpha = self.get_alpha(bs=b // timesteps)
|
||||
x = alpha * x + (1.0 - alpha) * x_mix
|
||||
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class AE3DConv(torch.nn.Conv2d):
|
||||
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
|
||||
super().__init__(in_channels, out_channels, *args, **kwargs)
|
||||
if isinstance(video_kernel_size, Iterable):
|
||||
padding = [int(k // 2) for k in video_kernel_size]
|
||||
else:
|
||||
padding = int(video_kernel_size // 2)
|
||||
|
||||
self.time_mix_conv = torch.nn.Conv3d(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=video_kernel_size,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
def forward(self, input, timesteps=None, skip_video=False):
|
||||
if timesteps is None:
|
||||
timesteps = input.shape[0]
|
||||
x = super().forward(input)
|
||||
if skip_video:
|
||||
return x
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
x = self.time_mix_conv(x)
|
||||
return rearrange(x, "b c t h w -> (b t) c h w")
|
||||
|
||||
|
||||
class AttnVideoBlock(AttnBlock):
|
||||
def __init__(
|
||||
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
||||
):
|
||||
super().__init__(in_channels)
|
||||
# no context, single headed, as in base class
|
||||
self.time_mix_block = BasicTransformerBlock(
|
||||
dim=in_channels,
|
||||
n_heads=1,
|
||||
d_head=in_channels,
|
||||
checkpoint=False,
|
||||
ff_in=True,
|
||||
)
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.video_time_embed = torch.nn.Sequential(
|
||||
ops.Linear(self.in_channels, time_embed_dim),
|
||||
torch.nn.SiLU(),
|
||||
ops.Linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
|
||||
self.merge_strategy = merge_strategy
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif self.merge_strategy == "learned":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def forward(self, x, timesteps=None, skip_time_block=False):
|
||||
if skip_time_block:
|
||||
return super().forward(x)
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = x.shape[0]
|
||||
|
||||
x_in = x
|
||||
x = self.attention(x)
|
||||
h, w = x.shape[2:]
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
|
||||
x_mix = x
|
||||
num_frames = torch.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
||||
emb = self.video_time_embed(t_emb) # b, n_channels
|
||||
emb = emb[:, None, :]
|
||||
x_mix = x_mix + emb
|
||||
|
||||
alpha = self.get_alpha()
|
||||
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
||||
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
|
||||
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
x = self.proj_out(x)
|
||||
|
||||
return x_in + x
|
||||
|
||||
def get_alpha(
|
||||
self,
|
||||
):
|
||||
if self.merge_strategy == "fixed":
|
||||
return self.mix_factor
|
||||
elif self.merge_strategy == "learned":
|
||||
return torch.sigmoid(self.mix_factor)
|
||||
else:
|
||||
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
|
||||
|
||||
def make_time_attn(
|
||||
in_channels,
|
||||
attn_type="vanilla",
|
||||
attn_kwargs=None,
|
||||
alpha: float = 0,
|
||||
merge_strategy: str = "learned",
|
||||
):
|
||||
return partialclass(
|
||||
AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
|
||||
class Conv2DWrapper(torch.nn.Conv2d):
|
||||
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
return super().forward(input)
|
||||
|
||||
|
||||
class VideoDecoder(Decoder):
|
||||
available_time_modes = ["all", "conv-only", "attn-only"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
video_kernel_size: Union[int, list] = 3,
|
||||
alpha: float = 0.0,
|
||||
merge_strategy: str = "learned",
|
||||
time_mode: str = "conv-only",
|
||||
**kwargs,
|
||||
):
|
||||
self.video_kernel_size = video_kernel_size
|
||||
self.alpha = alpha
|
||||
self.merge_strategy = merge_strategy
|
||||
self.time_mode = time_mode
|
||||
assert (
|
||||
self.time_mode in self.available_time_modes
|
||||
), f"time_mode parameter has to be in {self.available_time_modes}"
|
||||
|
||||
if self.time_mode != "attn-only":
|
||||
kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
|
||||
if self.time_mode not in ["conv-only", "only-last-conv"]:
|
||||
kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
||||
if self.time_mode not in ["attn-only", "only-last-conv"]:
|
||||
kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def get_last_layer(self, skip_time_mix=False, **kwargs):
|
||||
if self.time_mode == "attn-only":
|
||||
raise NotImplementedError("TODO")
|
||||
else:
|
||||
return (
|
||||
self.conv_out.time_mix_conv.weight
|
||||
if not skip_time_mix
|
||||
else self.conv_out.weight
|
||||
)
|
||||
@ -1,4 +1,4 @@
|
||||
import comfy.utils
|
||||
from . import utils
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
@ -131,6 +131,18 @@ def load_lora(lora, to_load):
|
||||
loaded_keys.add(b_norm_name)
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = (b_norm,)
|
||||
|
||||
diff_name = "{}.diff".format(x)
|
||||
diff_weight = lora.get(diff_name, None)
|
||||
if diff_weight is not None:
|
||||
patch_dict[to_load[x]] = (diff_weight,)
|
||||
loaded_keys.add(diff_name)
|
||||
|
||||
diff_bias_name = "{}.diff_b".format(x)
|
||||
diff_bias = lora.get(diff_bias_name, None)
|
||||
if diff_bias is not None:
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = (diff_bias,)
|
||||
loaded_keys.add(diff_bias_name)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
@ -141,9 +153,9 @@ def model_lora_keys_clip(model, key_map={}):
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for b in range(32): #TODO: clean up
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
@ -154,6 +166,8 @@ def model_lora_keys_clip(model, key_map={}):
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
@ -183,7 +197,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
|
||||
@ -1,16 +1,37 @@
|
||||
import torch
|
||||
from .ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from .ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
from .ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||
import comfy.model_management
|
||||
import numpy as np
|
||||
from . import model_management
|
||||
from . import conds
|
||||
from enum import Enum
|
||||
from . import utils
|
||||
|
||||
class ModelType(Enum):
|
||||
EPS = 1
|
||||
V_PREDICTION = 2
|
||||
V_PREDICTION_EDM = 3
|
||||
|
||||
|
||||
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM
|
||||
|
||||
|
||||
def model_sampling(model_config, model_type):
|
||||
s = ModelSamplingDiscrete
|
||||
|
||||
if model_type == ModelType.EPS:
|
||||
c = EPS
|
||||
elif model_type == ModelType.V_PREDICTION:
|
||||
c = V_PREDICTION
|
||||
elif model_type == ModelType.V_PREDICTION_EDM:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousEDM
|
||||
|
||||
class ModelSampling(s, c):
|
||||
pass
|
||||
|
||||
return ModelSampling(model_config)
|
||||
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
@ -19,48 +40,38 @@ class BaseModel(torch.nn.Module):
|
||||
unet_config = model_config.unet_config
|
||||
self.latent_format = model_config.latent_format
|
||||
self.model_config = model_config
|
||||
self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
self.diffusion_model = UNetModel(**unet_config, device=device)
|
||||
self.model_type = model_type
|
||||
self.model_sampling = model_sampling(model_config, model_type)
|
||||
|
||||
self.adm_channels = unet_config.get("adm_in_channels", None)
|
||||
if self.adm_channels is None:
|
||||
self.adm_channels = 0
|
||||
self.inpaint_model = False
|
||||
print("model_type", model_type.name)
|
||||
print("adm", self.adm_channels)
|
||||
|
||||
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if given_betas is not None:
|
||||
betas = given_betas
|
||||
else:
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
|
||||
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([x] + [c_concat], dim=1)
|
||||
else:
|
||||
xc = x
|
||||
xc = torch.cat([xc] + [c_concat], dim=1)
|
||||
|
||||
context = c_crossattn
|
||||
dtype = self.get_dtype()
|
||||
xc = xc.to(dtype)
|
||||
t = t.to(dtype)
|
||||
t = self.model_sampling.timestep(t).float()
|
||||
context = context.to(dtype)
|
||||
if c_adm is not None:
|
||||
c_adm = c_adm.to(dtype)
|
||||
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
|
||||
extra_conds = {}
|
||||
for o in kwargs:
|
||||
extra = kwargs[o]
|
||||
if hasattr(extra, "to"):
|
||||
extra = extra.to(dtype)
|
||||
extra_conds[o] = extra
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
|
||||
def get_dtype(self):
|
||||
return self.diffusion_model.dtype
|
||||
@ -71,6 +82,43 @@ class BaseModel(torch.nn.Module):
|
||||
def encode_adm(self, **kwargs):
|
||||
return None
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
if self.inpaint_model:
|
||||
concat_keys = ("mask", "masked_image")
|
||||
cond_concat = []
|
||||
denoise_mask = kwargs.get("denoise_mask", None)
|
||||
latent_image = kwargs.get("latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
blank_image[:,0] *= 0.8223
|
||||
blank_image[:,1] *= -0.6876
|
||||
blank_image[:,2] *= 0.6364
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
|
||||
for ck in concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1].to(device))
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
data = torch.cat(cond_concat, dim=1)
|
||||
out['c_concat'] = conds.CONDNoiseShape(data)
|
||||
adm = self.encode_adm(**kwargs)
|
||||
if adm is not None:
|
||||
out['y'] = conds.CONDRegular(adm)
|
||||
return out
|
||||
|
||||
def load_model_weights(self, sd, unet_prefix=""):
|
||||
to_load = {}
|
||||
keys = list(sd.keys())
|
||||
@ -78,6 +126,7 @@ class BaseModel(torch.nn.Module):
|
||||
if k.startswith(unet_prefix):
|
||||
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
||||
|
||||
to_load = self.model_config.process_unet_state_dict(to_load)
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
||||
if len(m) > 0:
|
||||
print("unet missing:", m)
|
||||
@ -98,7 +147,7 @@ class BaseModel(torch.nn.Module):
|
||||
unet_sd = self.diffusion_model.state_dict()
|
||||
unet_state_dict = {}
|
||||
for k in unet_sd:
|
||||
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
||||
unet_state_dict[k] = model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
|
||||
@ -112,7 +161,18 @@ class BaseModel(torch.nn.Module):
|
||||
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
||||
|
||||
def set_inpaint(self):
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
self.inpaint_model = True
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
if model_management.xformers_enabled() or model_management.pytorch_attention_flash_attention():
|
||||
#TODO: this needs to be tweaked
|
||||
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||
return (area * model_management.dtype_size(self.get_dtype()) / 50) * (1024 * 1024)
|
||||
else:
|
||||
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
||||
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
||||
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
||||
adm_inputs = []
|
||||
@ -208,3 +268,48 @@ class SDXL(BaseModel):
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
class SVD_img2vid(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
fps_id = kwargs.get("fps", 6) - 1
|
||||
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
|
||||
augmentation = kwargs.get("augmentation_level", 0)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([fps_id])))
|
||||
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
|
||||
out.append(self.embedder(torch.Tensor([augmentation])))
|
||||
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
|
||||
return flat
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
adm = self.encode_adm(**kwargs)
|
||||
if adm is not None:
|
||||
out['y'] = conds.CONDRegular(adm)
|
||||
|
||||
latent_image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if latent_image is None:
|
||||
latent_image = torch.zeros_like(noise)
|
||||
|
||||
if latent_image.shape[1:] != noise.shape[1:]:
|
||||
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
||||
|
||||
out['c_concat'] = conds.CONDNoiseShape(latent_image)
|
||||
|
||||
if "time_conditioning" in kwargs:
|
||||
out["time_context"] = conds.CONDCrossAttn(kwargs["time_conditioning"])
|
||||
|
||||
out['image_only_indicator'] = conds.CONDConstant(torch.zeros((1,), device=device))
|
||||
out['num_video_frames'] = conds.CONDConstant(noise.shape[0])
|
||||
return out
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import comfy.supported_models
|
||||
import comfy.supported_models_base
|
||||
from . import supported_models
|
||||
from . import supported_models_base
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
@ -14,6 +14,20 @@ def count_blocks(state_dict_keys, prefix_string):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
|
||||
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
|
||||
return None
|
||||
|
||||
def detect_unet_config(state_dict, key_prefix, dtype):
|
||||
state_dict_keys = list(state_dict.keys())
|
||||
|
||||
@ -40,76 +54,99 @@ def detect_unet_config(state_dict, key_prefix, dtype):
|
||||
channel_mult = []
|
||||
attention_resolutions = []
|
||||
transformer_depth = []
|
||||
transformer_depth_output = []
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
video_model = False
|
||||
|
||||
current_res = 1
|
||||
count = 0
|
||||
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
|
||||
while True:
|
||||
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
|
||||
for count in range(input_block_count):
|
||||
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
||||
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
|
||||
|
||||
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
||||
if len(block_keys) == 0:
|
||||
break
|
||||
|
||||
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
|
||||
|
||||
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
|
||||
current_res *= 2
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
else:
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
||||
if res_block_prefix in block_keys:
|
||||
last_res_blocks += 1
|
||||
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
if context_dim is None:
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth.append(out[0])
|
||||
if context_dim is None:
|
||||
context_dim = out[1]
|
||||
use_linear_in_transformer = out[2]
|
||||
video_model = out[3]
|
||||
else:
|
||||
transformer_depth.append(0)
|
||||
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
|
||||
if res_block_prefix in block_keys_output:
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
|
||||
count += 1
|
||||
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
||||
|
||||
if len(set(num_res_blocks)) == 1:
|
||||
num_res_blocks = num_res_blocks[0]
|
||||
|
||||
if len(set(transformer_depth)) == 1:
|
||||
transformer_depth = transformer_depth[0]
|
||||
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
|
||||
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
||||
else:
|
||||
transformer_depth_middle = -1
|
||||
|
||||
unet_config["in_channels"] = in_channels
|
||||
unet_config["model_channels"] = model_channels
|
||||
unet_config["num_res_blocks"] = num_res_blocks
|
||||
unet_config["attention_resolutions"] = attention_resolutions
|
||||
unet_config["transformer_depth"] = transformer_depth
|
||||
unet_config["transformer_depth_output"] = transformer_depth_output
|
||||
unet_config["channel_mult"] = channel_mult
|
||||
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
||||
unet_config["context_dim"] = context_dim
|
||||
|
||||
if video_model:
|
||||
unet_config["extra_ff_mix_layer"] = True
|
||||
unet_config["use_spatial_context"] = True
|
||||
unet_config["merge_strategy"] = "learned_with_images"
|
||||
unet_config["merge_factor"] = 0.0
|
||||
unet_config["video_kernel_size"] = [3, 1, 1]
|
||||
unet_config["use_temporal_resblock"] = True
|
||||
unet_config["use_temporal_attention"] = True
|
||||
else:
|
||||
unet_config["use_temporal_resblock"] = False
|
||||
unet_config["use_temporal_attention"] = False
|
||||
|
||||
return unet_config
|
||||
|
||||
def model_config_from_unet_config(unet_config):
|
||||
for model_config in comfy.supported_models.models:
|
||||
for model_config in supported_models.models:
|
||||
if model_config.matches(unet_config):
|
||||
return model_config(unet_config)
|
||||
|
||||
@ -120,23 +157,69 @@ def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_ma
|
||||
unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype)
|
||||
model_config = model_config_from_unet_config(unet_config)
|
||||
if model_config is None and use_base_if_no_match:
|
||||
return comfy.supported_models_base.BASE(unet_config)
|
||||
return supported_models_base.BASE(unet_config)
|
||||
else:
|
||||
return model_config
|
||||
|
||||
def convert_config(unet_config):
|
||||
new_config = unet_config.copy()
|
||||
num_res_blocks = new_config.get("num_res_blocks", None)
|
||||
channel_mult = new_config.get("channel_mult", None)
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
|
||||
if "attention_resolutions" in new_config:
|
||||
attention_resolutions = new_config.pop("attention_resolutions")
|
||||
transformer_depth = new_config.get("transformer_depth", None)
|
||||
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
|
||||
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
t_in = []
|
||||
t_out = []
|
||||
s = 1
|
||||
for i in range(len(num_res_blocks)):
|
||||
res = num_res_blocks[i]
|
||||
d = 0
|
||||
if s in attention_resolutions:
|
||||
d = transformer_depth[i]
|
||||
|
||||
t_in += [d] * res
|
||||
t_out += [d] * (res + 1)
|
||||
s *= 2
|
||||
transformer_depth = t_in
|
||||
transformer_depth_output = t_out
|
||||
new_config["transformer_depth"] = t_in
|
||||
new_config["transformer_depth_output"] = t_out
|
||||
new_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
|
||||
new_config["num_res_blocks"] = num_res_blocks
|
||||
return new_config
|
||||
|
||||
|
||||
def unet_config_from_diffusers_unet(state_dict, dtype):
|
||||
match = {}
|
||||
attention_resolutions = []
|
||||
transformer_depth = []
|
||||
|
||||
attn_res = 1
|
||||
for i in range(5):
|
||||
k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
|
||||
if k in state_dict:
|
||||
match["context_dim"] = state_dict[k].shape[1]
|
||||
attention_resolutions.append(attn_res)
|
||||
attn_res *= 2
|
||||
down_blocks = count_blocks(state_dict, "down_blocks.{}")
|
||||
for i in range(down_blocks):
|
||||
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
|
||||
for ab in range(attn_blocks):
|
||||
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
|
||||
transformer_depth.append(transformer_count)
|
||||
if transformer_count > 0:
|
||||
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
|
||||
|
||||
match["attention_resolutions"] = attention_resolutions
|
||||
attn_res *= 2
|
||||
if attn_blocks == 0:
|
||||
transformer_depth.append(0)
|
||||
transformer_depth.append(0)
|
||||
|
||||
match["transformer_depth"] = transformer_depth
|
||||
|
||||
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
|
||||
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
|
||||
@ -148,50 +231,65 @@ def unet_config_from_diffusers_unet(state_dict, dtype):
|
||||
|
||||
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
|
||||
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
|
||||
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
|
||||
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
|
||||
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
|
||||
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
||||
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
|
||||
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint]
|
||||
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
|
||||
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B]
|
||||
|
||||
for unet_config in supported_models:
|
||||
matches = True
|
||||
@ -200,7 +298,7 @@ def unet_config_from_diffusers_unet(state_dict, dtype):
|
||||
matches = False
|
||||
break
|
||||
if matches:
|
||||
return unet_config
|
||||
return convert_config(unet_config)
|
||||
return None
|
||||
|
||||
def model_config_from_diffusers_unet(state_dict, dtype):
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import psutil
|
||||
from enum import Enum
|
||||
from .cli_args import args
|
||||
import comfy.utils
|
||||
from . import utils
|
||||
import torch
|
||||
import sys
|
||||
|
||||
@ -133,6 +133,10 @@ else:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILABLE = True
|
||||
try:
|
||||
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
XFORMERS_VERSION = xformers.version.__version__
|
||||
print("xformers version:", XFORMERS_VERSION)
|
||||
@ -339,7 +343,11 @@ def free_memory(memory_required, device, keep_loaded=[]):
|
||||
|
||||
if unloaded_model:
|
||||
soft_empty_cache()
|
||||
|
||||
else:
|
||||
if vram_state != VRAMState.HIGH_VRAM:
|
||||
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
||||
if mem_free_torch > mem_free_total * 0.25:
|
||||
soft_empty_cache()
|
||||
|
||||
def load_models_gpu(models, memory_required=0):
|
||||
global vram_state
|
||||
@ -474,6 +482,21 @@ def text_encoder_device():
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def text_encoder_dtype(device=None):
|
||||
if args.fp8_e4m3fn_text_enc:
|
||||
return torch.float8_e4m3fn
|
||||
elif args.fp8_e5m2_text_enc:
|
||||
return torch.float8_e5m2
|
||||
elif args.fp16_text_enc:
|
||||
return torch.float16
|
||||
elif args.fp32_text_enc:
|
||||
return torch.float32
|
||||
|
||||
if should_use_fp16(device, prioritize_performance=False):
|
||||
return torch.float16
|
||||
else:
|
||||
return torch.float32
|
||||
|
||||
def vae_device():
|
||||
return get_torch_device()
|
||||
|
||||
@ -575,27 +598,6 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
else:
|
||||
return mem_free_total
|
||||
|
||||
def batch_area_memory(area):
|
||||
if xformers_enabled() or pytorch_attention_flash_attention():
|
||||
#TODO: these formulas are copied from maximum_batch_area below
|
||||
return (area / 20) * (1024 * 1024)
|
||||
else:
|
||||
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
||||
|
||||
def maximum_batch_area():
|
||||
global vram_state
|
||||
if vram_state == VRAMState.NO_VRAM:
|
||||
return 0
|
||||
|
||||
memory_free = get_free_memory() / (1024 * 1024)
|
||||
if xformers_enabled() or pytorch_attention_flash_attention():
|
||||
#TODO: this needs to be tweaked
|
||||
area = 20 * memory_free
|
||||
else:
|
||||
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
|
||||
area = ((memory_free - 1024) * 0.9) / (0.6)
|
||||
return int(max(area, 0))
|
||||
|
||||
def cpu_mode():
|
||||
global cpu_state
|
||||
return cpu_state == CPUState.CPU
|
||||
@ -688,7 +690,7 @@ def soft_empty_cache(force=False):
|
||||
def resolve_lowvram_weight(weight, model, key):
|
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
|
||||
key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
|
||||
op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
|
||||
op = utils.get_attr(model, '.'.join(key_split[:-1]))
|
||||
weight = op._hf_hook.weights_map[key_split[-1]]
|
||||
return weight
|
||||
|
||||
|
||||
@ -2,15 +2,17 @@ import torch
|
||||
import copy
|
||||
import inspect
|
||||
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
from . import utils
|
||||
from . import model_management
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
|
||||
self.size = size
|
||||
self.model = model
|
||||
self.patches = {}
|
||||
self.backup = {}
|
||||
self.object_patches = {}
|
||||
self.object_patches_backup = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
@ -20,6 +22,8 @@ class ModelPatcher:
|
||||
else:
|
||||
self.current_device = current_device
|
||||
|
||||
self.weight_inplace_update = weight_inplace_update
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
return self.size
|
||||
@ -33,11 +37,12 @@ class ModelPatcher:
|
||||
return size
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
|
||||
n.object_patches = self.object_patches.copy()
|
||||
n.model_options = copy.deepcopy(self.model_options)
|
||||
n.model_keys = self.model_keys
|
||||
return n
|
||||
@ -47,6 +52,9 @@ class ModelPatcher:
|
||||
return True
|
||||
return False
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
return self.model.memory_required(input_shape=input_shape)
|
||||
|
||||
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
||||
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
||||
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
||||
@ -88,9 +96,18 @@ class ModelPatcher:
|
||||
def set_model_attn2_output_patch(self, patch):
|
||||
self.set_model_patch(patch, "attn2_output_patch")
|
||||
|
||||
def set_model_input_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "input_block_patch")
|
||||
|
||||
def set_model_input_block_patch_after_skip(self, patch):
|
||||
self.set_model_patch(patch, "input_block_patch_after_skip")
|
||||
|
||||
def set_model_output_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "output_block_patch")
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
def model_patches_to(self, device):
|
||||
to = self.model_options["transformer_options"]
|
||||
if "patches" in to:
|
||||
@ -107,10 +124,10 @@ class ModelPatcher:
|
||||
for k in patch_list:
|
||||
if hasattr(patch_list[k], "to"):
|
||||
patch_list[k] = patch_list[k].to(device)
|
||||
if "unet_wrapper_function" in self.model_options:
|
||||
wrap_func = self.model_options["unet_wrapper_function"]
|
||||
if "model_function_wrapper" in self.model_options:
|
||||
wrap_func = self.model_options["model_function_wrapper"]
|
||||
if hasattr(wrap_func, "to"):
|
||||
self.model_options["unet_wrapper_function"] = wrap_func.to(device)
|
||||
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
||||
|
||||
def model_dtype(self):
|
||||
if hasattr(self.model, "get_dtype"):
|
||||
@ -128,6 +145,7 @@ class ModelPatcher:
|
||||
return list(p)
|
||||
|
||||
def get_key_patches(self, filter_prefix=None):
|
||||
model_management.unload_model_clones(self)
|
||||
model_sd = self.model_state_dict()
|
||||
p = {}
|
||||
for k in model_sd:
|
||||
@ -150,6 +168,12 @@ class ModelPatcher:
|
||||
return sd
|
||||
|
||||
def patch_model(self, device_to=None):
|
||||
for k in self.object_patches:
|
||||
old = getattr(self.model, k)
|
||||
if k not in self.object_patches_backup:
|
||||
self.object_patches_backup[k] = old
|
||||
setattr(self.model, k, self.object_patches[k])
|
||||
|
||||
model_sd = self.model_state_dict()
|
||||
for key in self.patches:
|
||||
if key not in model_sd:
|
||||
@ -158,15 +182,20 @@ class ModelPatcher:
|
||||
|
||||
weight = model_sd[key]
|
||||
|
||||
inplace_update = self.weight_inplace_update
|
||||
|
||||
if key not in self.backup:
|
||||
self.backup[key] = weight.to(self.offload_device)
|
||||
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
|
||||
|
||||
if device_to is not None:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
temp_weight = model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
comfy.utils.set_attr(self.model, key, out_weight)
|
||||
if inplace_update:
|
||||
utils.copy_to_param(self.model, key, out_weight)
|
||||
else:
|
||||
utils.set_attr(self.model, key, out_weight)
|
||||
del temp_weight
|
||||
|
||||
if device_to is not None:
|
||||
@ -193,15 +222,15 @@ class ModelPatcher:
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
weight += alpha * model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
elif len(v) == 4: #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
mat1 = model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
mat3 = model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
@ -220,23 +249,23 @@ class ModelPatcher:
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
w1 = torch.mm(model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
w1 = model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
w2 = torch.mm(model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
w2 = model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
@ -258,19 +287,19 @@ class ModelPatcher:
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
m1 = torch.mm(model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
|
||||
try:
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
||||
@ -282,11 +311,21 @@ class ModelPatcher:
|
||||
def unpatch_model(self, device_to=None):
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
for k in keys:
|
||||
comfy.utils.set_attr(self.model, k, self.backup[k])
|
||||
if self.weight_inplace_update:
|
||||
for k in keys:
|
||||
utils.copy_to_param(self.model, k, self.backup[k])
|
||||
else:
|
||||
for k in keys:
|
||||
utils.set_attr(self.model, k, self.backup[k])
|
||||
|
||||
self.backup = {}
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.current_device = device_to
|
||||
|
||||
keys = list(self.object_patches_backup.keys())
|
||||
for k in keys:
|
||||
setattr(self.model, k, self.object_patches_backup[k])
|
||||
|
||||
self.object_patches_backup = {}
|
||||
|
||||
129
comfy/model_sampling.py
Normal file
129
comfy/model_sampling.py
Normal file
@ -0,0 +1,129 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
import math
|
||||
|
||||
class EPS:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input - model_output * sigma
|
||||
|
||||
|
||||
class V_PREDICTION(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
|
||||
class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
beta_schedule = "linear"
|
||||
if model_config is not None:
|
||||
beta_schedule = model_config.sampling_settings.get("beta_schedule", beta_schedule)
|
||||
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||||
self.sigma_data = 1.0
|
||||
|
||||
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if given_betas is not None:
|
||||
betas = given_betas
|
||||
else:
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
||||
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
def set_sigmas(self, sigmas):
|
||||
self.register_buffer('sigmas', sigmas)
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
||||
|
||||
def sigma(self, timestep):
|
||||
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent * 999.0)).item()
|
||||
|
||||
|
||||
class ModelSamplingContinuousEDM(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
self.sigma_data = 1.0
|
||||
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
sigma_min = sampling_settings.get("sigma_min", 0.002)
|
||||
sigma_max = sampling_settings.get("sigma_max", 120.0)
|
||||
self.set_sigma_range(sigma_min, sigma_max)
|
||||
|
||||
def set_sigma_range(self, sigma_min, sigma_max):
|
||||
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
|
||||
|
||||
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
return 0.25 * sigma.log()
|
||||
|
||||
def sigma(self, timestep):
|
||||
return (timestep / 0.25).exp()
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
percent = 1.0 - percent
|
||||
|
||||
log_sigma_min = math.log(self.sigma_min)
|
||||
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
|
||||
@ -230,8 +230,8 @@ class ConditioningSetTimestepRange:
|
||||
c = []
|
||||
for t in conditioning:
|
||||
d = t[1].copy()
|
||||
d['start_percent'] = 1.0 - start
|
||||
d['end_percent'] = 1.0 - end
|
||||
d['start_percent'] = start
|
||||
d['end_percent'] = end
|
||||
n = [t[0], d]
|
||||
c.append(n)
|
||||
return (c, )
|
||||
@ -554,10 +554,69 @@ class LoraLoader:
|
||||
model_lora, clip_lora = sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
|
||||
return (model_lora, clip_lora)
|
||||
|
||||
class VAELoader:
|
||||
class LoraLoaderModelOnly(LoraLoader):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "vae_name": (folder_paths.get_filename_list("vae"),)}}
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"lora_name": (folder_paths.get_filename_list("loras"), ),
|
||||
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "load_lora_model_only"
|
||||
|
||||
def load_lora_model_only(self, model, lora_name, strength_model):
|
||||
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
|
||||
|
||||
class VAELoader:
|
||||
@staticmethod
|
||||
def vae_list():
|
||||
vaes = folder_paths.get_filename_list("vae")
|
||||
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
||||
sdxl_taesd_enc = False
|
||||
sdxl_taesd_dec = False
|
||||
sd1_taesd_enc = False
|
||||
sd1_taesd_dec = False
|
||||
|
||||
for v in approx_vaes:
|
||||
if v.startswith("taesd_decoder."):
|
||||
sd1_taesd_dec = True
|
||||
elif v.startswith("taesd_encoder."):
|
||||
sd1_taesd_enc = True
|
||||
elif v.startswith("taesdxl_decoder."):
|
||||
sdxl_taesd_dec = True
|
||||
elif v.startswith("taesdxl_encoder."):
|
||||
sdxl_taesd_enc = True
|
||||
if sd1_taesd_dec and sd1_taesd_enc:
|
||||
vaes.append("taesd")
|
||||
if sdxl_taesd_dec and sdxl_taesd_enc:
|
||||
vaes.append("taesdxl")
|
||||
return vaes
|
||||
|
||||
@staticmethod
|
||||
def load_taesd(name):
|
||||
sd = {}
|
||||
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
||||
|
||||
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
|
||||
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
|
||||
|
||||
enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
|
||||
for k in enc:
|
||||
sd["taesd_encoder.{}".format(k)] = enc[k]
|
||||
|
||||
dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
|
||||
for k in dec:
|
||||
sd["taesd_decoder.{}".format(k)] = dec[k]
|
||||
|
||||
if name == "taesd":
|
||||
sd["vae_scale"] = torch.tensor(0.18215)
|
||||
elif name == "taesdxl":
|
||||
sd["vae_scale"] = torch.tensor(0.13025)
|
||||
return sd
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "vae_name": (s.vae_list(),)}}
|
||||
RETURN_TYPES = ("VAE",)
|
||||
FUNCTION = "load_vae"
|
||||
|
||||
@ -565,8 +624,11 @@ class VAELoader:
|
||||
|
||||
#TODO: scale factor?
|
||||
def load_vae(self, vae_name):
|
||||
vae_path = folder_paths.get_full_path("vae", vae_name)
|
||||
sd = utils.load_torch_file(vae_path)
|
||||
if vae_name in ["taesd", "taesdxl"]:
|
||||
sd = self.load_taesd(vae_name)
|
||||
else:
|
||||
vae_path = folder_paths.get_full_path("vae", vae_name)
|
||||
sd = utils.load_torch_file(vae_path)
|
||||
vae = sd.VAE(sd=sd)
|
||||
return (vae,)
|
||||
|
||||
@ -667,7 +729,7 @@ class ControlNetApplyAdvanced:
|
||||
if prev_cnet in cnets:
|
||||
c_net = cnets[prev_cnet]
|
||||
else:
|
||||
c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent))
|
||||
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
|
||||
c_net.set_previous_controlnet(prev_cnet)
|
||||
cnets[prev_cnet] = c_net
|
||||
|
||||
@ -1201,7 +1263,7 @@ class KSampler:
|
||||
{"model": ("MODEL",),
|
||||
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
||||
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
||||
"sampler_name": (samplers.KSampler.SAMPLERS, ),
|
||||
"scheduler": (samplers.KSampler.SCHEDULERS, ),
|
||||
"positive": ("CONDITIONING", ),
|
||||
@ -1227,7 +1289,7 @@ class KSamplerAdvanced:
|
||||
"add_noise": (["enable", "disable"], ),
|
||||
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
||||
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
||||
"sampler_name": (samplers.KSampler.SAMPLERS, ),
|
||||
"scheduler": (samplers.KSampler.SCHEDULERS, ),
|
||||
"positive": ("CONDITIONING", ),
|
||||
@ -1258,6 +1320,7 @@ class SaveImage:
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type = "output"
|
||||
self.prefix_append = ""
|
||||
self.compress_level = 4
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -1292,7 +1355,7 @@ class SaveImage:
|
||||
|
||||
file = f"{filename}_{counter:05}_.png"
|
||||
abs_path = os.path.join(full_output_folder, file)
|
||||
img.save(abs_path, pnginfo=metadata, compress_level=4)
|
||||
img.save(abs_path, pnginfo=metadata, compress_level=self.compress_level)
|
||||
results.append({
|
||||
"abs_path": os.path.abspath(abs_path),
|
||||
"filename": file,
|
||||
@ -1308,6 +1371,7 @@ class PreviewImage(SaveImage):
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 1
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -1639,6 +1703,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
|
||||
"ConditioningZeroOut": ConditioningZeroOut,
|
||||
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
|
||||
"LoraLoaderModelOnly": LoraLoaderModelOnly,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
||||
24
comfy/ops.py
24
comfy/ops.py
@ -1,29 +1,23 @@
|
||||
import torch
|
||||
from contextlib import contextmanager
|
||||
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
|
||||
if bias:
|
||||
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, input):
|
||||
return torch.nn.functional.linear(input, self.weight, self.bias)
|
||||
class Linear(torch.nn.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv3d(torch.nn.Conv3d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return Conv3d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@ import torch
|
||||
from . import model_management
|
||||
from . import samplers
|
||||
from . import utils
|
||||
from . import conds
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
@ -33,22 +34,24 @@ def prepare_mask(noise_mask, shape, device):
|
||||
noise_mask = noise_mask.to(device)
|
||||
return noise_mask
|
||||
|
||||
def broadcast_cond(cond, batch, device):
|
||||
"""broadcasts conditioning to the batch size"""
|
||||
copy = []
|
||||
for p in cond:
|
||||
t = utils.repeat_to_batch_size(p[0], batch)
|
||||
t = t.to(device)
|
||||
copy += [[t] + p[1:]]
|
||||
return copy
|
||||
|
||||
def get_models_from_cond(cond, model_type):
|
||||
models = []
|
||||
for c in cond:
|
||||
if model_type in c[1]:
|
||||
models += [c[1][model_type]]
|
||||
if model_type in c:
|
||||
models += [c[model_type]]
|
||||
return models
|
||||
|
||||
def convert_cond(cond):
|
||||
out = []
|
||||
for c in cond:
|
||||
temp = c[1].copy()
|
||||
model_conds = temp.get("model_conds", {})
|
||||
if c[0] is not None:
|
||||
model_conds["c_crossattn"] = conds.CONDCrossAttn(c[0])
|
||||
temp["model_conds"] = model_conds
|
||||
out.append(temp)
|
||||
return out
|
||||
|
||||
def get_additional_models(positive, negative, dtype):
|
||||
"""loads additional models in positive and negative conditioning"""
|
||||
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
|
||||
@ -72,18 +75,18 @@ def cleanup_additional_models(models):
|
||||
|
||||
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
|
||||
device = model.load_device
|
||||
positive = convert_cond(positive)
|
||||
negative = convert_cond(negative)
|
||||
|
||||
if noise_mask is not None:
|
||||
noise_mask = prepare_mask(noise_mask, noise_shape, device)
|
||||
|
||||
real_model = None
|
||||
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
|
||||
model_management.load_models_gpu([model] + models, model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory)
|
||||
model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
|
||||
real_model = model.model
|
||||
|
||||
positive_copy = broadcast_cond(positive, noise_shape[0], device)
|
||||
negative_copy = broadcast_cond(negative, noise_shape[0], device)
|
||||
return real_model, positive_copy, negative_copy, noise_mask, models
|
||||
return real_model, positive, negative, noise_mask, models
|
||||
|
||||
|
||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
@ -98,6 +101,7 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
||||
samples = samples.cpu()
|
||||
|
||||
cleanup_additional_models(models)
|
||||
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
|
||||
return samples
|
||||
|
||||
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
@ -109,5 +113,6 @@ def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent
|
||||
samples = samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.cpu()
|
||||
cleanup_additional_models(models)
|
||||
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
|
||||
return samples
|
||||
|
||||
|
||||
@ -1,48 +1,38 @@
|
||||
from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .k_diffusion import external as k_diffusion_external
|
||||
from .extra_samplers import uni_pc
|
||||
import torch
|
||||
from . import model_management
|
||||
from .ldm.models.diffusion.ddim import DDIMSampler
|
||||
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
|
||||
import math
|
||||
from . import model_base
|
||||
from . import utils
|
||||
|
||||
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
||||
return abs(a*b) // math.gcd(a, b)
|
||||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns predicted noise
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
||||
#Returns denoised
|
||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||
def get_area_and_mult(conds, x_in, timestep_in):
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
if 'timestep_start' in cond[1]:
|
||||
timestep_start = cond[1]['timestep_start']
|
||||
|
||||
if 'timestep_start' in conds:
|
||||
timestep_start = conds['timestep_start']
|
||||
if timestep_in[0] > timestep_start:
|
||||
return None
|
||||
if 'timestep_end' in cond[1]:
|
||||
timestep_end = cond[1]['timestep_end']
|
||||
if 'timestep_end' in conds:
|
||||
timestep_end = conds['timestep_end']
|
||||
if timestep_in[0] < timestep_end:
|
||||
return None
|
||||
if 'area' in cond[1]:
|
||||
area = cond[1]['area']
|
||||
if 'strength' in cond[1]:
|
||||
strength = cond[1]['strength']
|
||||
|
||||
adm_cond = None
|
||||
if 'adm_encoded' in cond[1]:
|
||||
adm_cond = cond[1]['adm_encoded']
|
||||
if 'area' in conds:
|
||||
area = conds['area']
|
||||
if 'strength' in conds:
|
||||
strength = conds['strength']
|
||||
|
||||
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
if 'mask' in cond[1]:
|
||||
if 'mask' in conds:
|
||||
# Scale the mask to the size of the input
|
||||
# The mask should have been resized as we began the sampling process
|
||||
mask_strength = 1.0
|
||||
if "mask_strength" in cond[1]:
|
||||
mask_strength = cond[1]["mask_strength"]
|
||||
mask = cond[1]['mask']
|
||||
if "mask_strength" in conds:
|
||||
mask_strength = conds["mask_strength"]
|
||||
mask = conds['mask']
|
||||
assert(mask.shape[1] == x_in.shape[2])
|
||||
assert(mask.shape[2] == x_in.shape[3])
|
||||
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
|
||||
@ -51,7 +41,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
mask = torch.ones_like(input_x)
|
||||
mult = mask * strength
|
||||
|
||||
if 'mask' not in cond[1]:
|
||||
if 'mask' not in conds:
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
@ -67,24 +57,17 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
|
||||
|
||||
conditionning = {}
|
||||
conditionning['c_crossattn'] = cond[0]
|
||||
if cond_concat_in is not None and len(cond_concat_in) > 0:
|
||||
cropped = []
|
||||
for x in cond_concat_in:
|
||||
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
cropped.append(cr)
|
||||
conditionning['c_concat'] = torch.cat(cropped, dim=1)
|
||||
|
||||
if adm_cond is not None:
|
||||
conditionning['c_adm'] = adm_cond
|
||||
model_conds = conds["model_conds"]
|
||||
for c in model_conds:
|
||||
conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
|
||||
|
||||
control = None
|
||||
if 'control' in cond[1]:
|
||||
control = cond[1]['control']
|
||||
if 'control' in conds:
|
||||
control = conds['control']
|
||||
|
||||
patches = None
|
||||
if 'gligen' in cond[1]:
|
||||
gligen = cond[1]['gligen']
|
||||
if 'gligen' in conds:
|
||||
gligen = conds['gligen']
|
||||
patches = {}
|
||||
gligen_type = gligen[0]
|
||||
gligen_model = gligen[1]
|
||||
@ -102,22 +85,8 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
return True
|
||||
if c1.keys() != c2.keys():
|
||||
return False
|
||||
if 'c_crossattn' in c1:
|
||||
s1 = c1['c_crossattn'].shape
|
||||
s2 = c2['c_crossattn'].shape
|
||||
if s1 != s2:
|
||||
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
||||
return False
|
||||
|
||||
mult_min = lcm(s1[1], s2[1])
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
if 'c_concat' in c1:
|
||||
if c1['c_concat'].shape != c2['c_concat'].shape:
|
||||
return False
|
||||
if 'c_adm' in c1:
|
||||
if c1['c_adm'].shape != c2['c_adm'].shape:
|
||||
for k in c1:
|
||||
if not c1[k].can_concat(c2[k]):
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -146,53 +115,41 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
c_concat = []
|
||||
c_adm = []
|
||||
crossattn_max_len = 0
|
||||
for x in c_list:
|
||||
if 'c_crossattn' in x:
|
||||
c = x['c_crossattn']
|
||||
if crossattn_max_len == 0:
|
||||
crossattn_max_len = c.shape[1]
|
||||
else:
|
||||
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
||||
c_crossattn.append(c)
|
||||
if 'c_concat' in x:
|
||||
c_concat.append(x['c_concat'])
|
||||
if 'c_adm' in x:
|
||||
c_adm.append(x['c_adm'])
|
||||
out = {}
|
||||
c_crossattn_out = []
|
||||
for c in c_crossattn:
|
||||
if c.shape[1] < crossattn_max_len:
|
||||
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
||||
c_crossattn_out.append(c)
|
||||
|
||||
if len(c_crossattn_out) > 0:
|
||||
out['c_crossattn'] = torch.cat(c_crossattn_out)
|
||||
if len(c_concat) > 0:
|
||||
out['c_concat'] = torch.cat(c_concat)
|
||||
if len(c_adm) > 0:
|
||||
out['c_adm'] = torch.cat(c_adm)
|
||||
temp = {}
|
||||
for x in c_list:
|
||||
for k in x:
|
||||
cur = temp.get(k, [])
|
||||
cur.append(x[k])
|
||||
temp[k] = cur
|
||||
|
||||
out = {}
|
||||
for k in temp:
|
||||
conds = temp[k]
|
||||
out[k] = conds[0].concat(conds[1:])
|
||||
|
||||
return out
|
||||
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
|
||||
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in)/100000.0
|
||||
out_count = torch.ones_like(x_in) * 1e-37
|
||||
|
||||
out_uncond = torch.zeros_like(x_in)
|
||||
out_uncond_count = torch.ones_like(x_in)/100000.0
|
||||
out_uncond_count = torch.ones_like(x_in) * 1e-37
|
||||
|
||||
COND = 0
|
||||
UNCOND = 1
|
||||
|
||||
to_run = []
|
||||
for x in cond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
to_run += [(p, COND)]
|
||||
if uncond is not None:
|
||||
for x in uncond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
@ -209,9 +166,11 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
|
||||
free_memory = model_management.get_free_memory(x_in.device)
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
@ -257,12 +216,14 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["sigmas"] = timestep
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
else:
|
||||
output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
del input_x
|
||||
|
||||
for o in range(batch_chunks):
|
||||
@ -278,49 +239,38 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
del out_count
|
||||
out_uncond /= out_uncond_count
|
||||
del out_uncond_count
|
||||
|
||||
return out_cond, out_uncond
|
||||
|
||||
|
||||
max_total_area = model_management.maximum_batch_area()
|
||||
if math.isclose(cond_scale, 1.0):
|
||||
uncond = None
|
||||
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
||||
cond, uncond = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
|
||||
return model_options["sampler_cfg_function"](args)
|
||||
args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
|
||||
return x - model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
|
||||
def __init__(self, model, quantize=False, device='cpu'):
|
||||
super().__init__(model, model.alphas_cumprod, quantize=quantize)
|
||||
|
||||
def get_v(self, x, t, cond, **kwargs):
|
||||
return self.inner_model.apply_model(x, t, cond, **kwargs)
|
||||
|
||||
|
||||
class CFGNoisePredictor(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.alphas_cumprod = model.alphas_cumprod
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
|
||||
out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
|
||||
return out
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.apply_model(*args, **kwargs)
|
||||
|
||||
class KSamplerX0Inpaint(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
|
||||
if denoise_mask is not None:
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
|
||||
if denoise_mask is not None:
|
||||
out *= denoise_mask
|
||||
|
||||
@ -329,44 +279,43 @@ class KSamplerX0Inpaint(torch.nn.Module):
|
||||
return out
|
||||
|
||||
def simple_scheduler(model, steps):
|
||||
s = model.model_sampling
|
||||
sigs = []
|
||||
ss = len(model.sigmas) / steps
|
||||
ss = len(s.sigmas) / steps
|
||||
for x in range(steps):
|
||||
sigs += [float(model.sigmas[-(1 + int(x * ss))])]
|
||||
sigs += [float(s.sigmas[-(1 + int(x * ss))])]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def ddim_scheduler(model, steps):
|
||||
s = model.model_sampling
|
||||
sigs = []
|
||||
ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
|
||||
for x in range(len(ddim_timesteps) - 1, -1, -1):
|
||||
ts = ddim_timesteps[x]
|
||||
if ts > 999:
|
||||
ts = 999
|
||||
sigs.append(model.t_to_sigma(torch.tensor(ts)))
|
||||
ss = len(s.sigmas) // steps
|
||||
x = 1
|
||||
while x < len(s.sigmas):
|
||||
sigs += [float(s.sigmas[x])]
|
||||
x += ss
|
||||
sigs = sigs[::-1]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def sgm_scheduler(model, steps):
|
||||
def normal_scheduler(model, steps, sgm=False, floor=False):
|
||||
s = model.model_sampling
|
||||
start = s.timestep(s.sigma_max)
|
||||
end = s.timestep(s.sigma_min)
|
||||
|
||||
if sgm:
|
||||
timesteps = torch.linspace(start, end, steps + 1)[:-1]
|
||||
else:
|
||||
timesteps = torch.linspace(start, end, steps)
|
||||
|
||||
sigs = []
|
||||
timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
if ts > 999:
|
||||
ts = 999
|
||||
sigs.append(model.t_to_sigma(torch.tensor(ts)))
|
||||
sigs.append(s.sigma(ts))
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
blank_image[:,0] *= 0.8223
|
||||
blank_image[:,1] *= -0.6876
|
||||
blank_image[:,2] *= 0.6364
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
|
||||
def get_mask_aabb(masks):
|
||||
if masks.numel() == 0:
|
||||
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
||||
@ -395,19 +344,19 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
|
||||
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
|
||||
for i in range(len(conditions)):
|
||||
c = conditions[i]
|
||||
if 'area' in c[1]:
|
||||
area = c[1]['area']
|
||||
if 'area' in c:
|
||||
area = c['area']
|
||||
if area[0] == "percentage":
|
||||
modified = c[1].copy()
|
||||
modified = c.copy()
|
||||
area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
|
||||
modified['area'] = area
|
||||
c = [c[0], modified]
|
||||
c = modified
|
||||
conditions[i] = c
|
||||
|
||||
if 'mask' in c[1]:
|
||||
mask = c[1]['mask']
|
||||
if 'mask' in c:
|
||||
mask = c['mask']
|
||||
mask = mask.to(device=device)
|
||||
modified = c[1].copy()
|
||||
modified = c.copy()
|
||||
if len(mask.shape) == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
if mask.shape[1] != h or mask.shape[2] != w:
|
||||
@ -428,66 +377,70 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
|
||||
modified['area'] = area
|
||||
|
||||
modified['mask'] = mask
|
||||
conditions[i] = [c[0], modified]
|
||||
conditions[i] = modified
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c):
|
||||
if 'area' not in c[1]:
|
||||
if 'area' not in c:
|
||||
return
|
||||
|
||||
c_area = c[1]['area']
|
||||
c_area = c['area']
|
||||
smallest = None
|
||||
for x in conds:
|
||||
if 'area' in x[1]:
|
||||
a = x[1]['area']
|
||||
if 'area' in x:
|
||||
a = x['area']
|
||||
if c_area[2] >= a[2] and c_area[3] >= a[3]:
|
||||
if a[0] + a[2] >= c_area[0] + c_area[2]:
|
||||
if a[1] + a[3] >= c_area[1] + c_area[3]:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
elif 'area' not in smallest[1]:
|
||||
elif 'area' not in smallest:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
|
||||
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
if smallest is None:
|
||||
return
|
||||
if 'area' in smallest[1]:
|
||||
if smallest[1]['area'] == c_area:
|
||||
if 'area' in smallest:
|
||||
if smallest['area'] == c_area:
|
||||
return
|
||||
n = c[1].copy()
|
||||
conds += [[smallest[0], n]]
|
||||
|
||||
out = c.copy()
|
||||
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
|
||||
conds += [out]
|
||||
|
||||
def calculate_start_end_timesteps(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
if 'start_percent' in x[1]:
|
||||
timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
|
||||
if 'end_percent' in x[1]:
|
||||
timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))
|
||||
if 'start_percent' in x:
|
||||
timestep_start = s.percent_to_sigma(x['start_percent'])
|
||||
if 'end_percent' in x:
|
||||
timestep_end = s.percent_to_sigma(x['end_percent'])
|
||||
|
||||
if (timestep_start is not None) or (timestep_end is not None):
|
||||
n = x[1].copy()
|
||||
n = x.copy()
|
||||
if (timestep_start is not None):
|
||||
n['timestep_start'] = timestep_start
|
||||
if (timestep_end is not None):
|
||||
n['timestep_end'] = timestep_end
|
||||
conds[t] = [x[0], n]
|
||||
conds[t] = n
|
||||
|
||||
def pre_run_control(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
|
||||
if 'control' in x[1]:
|
||||
x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
|
||||
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
|
||||
if 'control' in x:
|
||||
x['control'].pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
@ -496,16 +449,16 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
uncond_other = []
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
if 'area' not in x[1]:
|
||||
if name in x[1] and x[1][name] is not None:
|
||||
cond_cnets.append(x[1][name])
|
||||
if 'area' not in x:
|
||||
if name in x and x[name] is not None:
|
||||
cond_cnets.append(x[name])
|
||||
else:
|
||||
cond_other.append((x, t))
|
||||
for t in range(len(uncond)):
|
||||
x = uncond[t]
|
||||
if 'area' not in x[1]:
|
||||
if name in x[1] and x[1][name] is not None:
|
||||
uncond_cnets.append(x[1][name])
|
||||
if 'area' not in x:
|
||||
if name in x and x[name] is not None:
|
||||
uncond_cnets.append(x[name])
|
||||
else:
|
||||
uncond_other.append((x, t))
|
||||
|
||||
@ -515,129 +468,115 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
for x in range(len(cond_cnets)):
|
||||
temp = uncond_other[x % len(uncond_other)]
|
||||
o = temp[0]
|
||||
if name in o[1] and o[1][name] is not None:
|
||||
n = o[1].copy()
|
||||
if name in o and o[name] is not None:
|
||||
n = o.copy()
|
||||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond += [[o[0], n]]
|
||||
uncond += [n]
|
||||
else:
|
||||
n = o[1].copy()
|
||||
n = o.copy()
|
||||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond[temp[1]] = [o[0], n]
|
||||
uncond[temp[1]] = n
|
||||
|
||||
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
||||
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
adm_out = None
|
||||
if 'adm' in x[1]:
|
||||
adm_out = x[1]["adm"]
|
||||
else:
|
||||
params = x[1].copy()
|
||||
params["width"] = params.get("width", width * 8)
|
||||
params["height"] = params.get("height", height * 8)
|
||||
params["prompt_type"] = params.get("prompt_type", prompt_type)
|
||||
adm_out = model.encode_adm(device=device, **params)
|
||||
|
||||
if adm_out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = utils.repeat_to_batch_size(adm_out, batch_size).to(device)
|
||||
params = x.copy()
|
||||
params["device"] = device
|
||||
params["noise"] = noise
|
||||
params["width"] = params.get("width", noise.shape[3] * 8)
|
||||
params["height"] = params.get("height", noise.shape[2] * 8)
|
||||
params["prompt_type"] = params.get("prompt_type", prompt_type)
|
||||
for k in kwargs:
|
||||
if k not in params:
|
||||
params[k] = kwargs[k]
|
||||
|
||||
out = model_function(**params)
|
||||
x = x.copy()
|
||||
model_conds = x['model_conds'].copy()
|
||||
for k in out:
|
||||
model_conds[k] = out[k]
|
||||
x['model_conds'] = model_conds
|
||||
conds[t] = x
|
||||
return conds
|
||||
|
||||
|
||||
class Sampler:
|
||||
def sample(self):
|
||||
pass
|
||||
|
||||
def max_denoise(self, model_wrap, sigmas):
|
||||
return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]), rel_tol=1e-05)
|
||||
|
||||
class DDIM(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
timesteps = []
|
||||
for s in range(sigmas.shape[0]):
|
||||
timesteps.insert(0, model_wrap.sigma_to_discrete_timestep(sigmas[s]))
|
||||
noise_mask = None
|
||||
if denoise_mask is not None:
|
||||
noise_mask = 1.0 - denoise_mask
|
||||
|
||||
ddim_callback = None
|
||||
if callback is not None:
|
||||
total_steps = len(timesteps) - 1
|
||||
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
|
||||
|
||||
max_denoise = self.max_denoise(model_wrap, sigmas)
|
||||
|
||||
ddim_sampler = DDIMSampler(model_wrap.inner_model.inner_model, device=noise.device)
|
||||
ddim_sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
||||
z_enc = ddim_sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(noise.device), noise=noise, max_denoise=max_denoise)
|
||||
samples, _ = ddim_sampler.sample_custom(ddim_timesteps=timesteps,
|
||||
batch_size=noise.shape[0],
|
||||
shape=noise.shape[1:],
|
||||
verbose=False,
|
||||
eta=0.0,
|
||||
x_T=z_enc,
|
||||
x0=latent_image,
|
||||
img_callback=ddim_callback,
|
||||
denoise_function=model_wrap.predict_eps_discrete_timestep,
|
||||
extra_args=extra_args,
|
||||
mask=noise_mask,
|
||||
to_zero=sigmas[-1]==0,
|
||||
end_step=sigmas.shape[0] - 1,
|
||||
disable_pbar=disable_pbar)
|
||||
return samples
|
||||
max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
class UNIPC(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
|
||||
|
||||
class UNIPCBH2(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
|
||||
|
||||
def ksampler(sampler_name, extra_options={}):
|
||||
class KSAMPLER(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
extra_args["denoise_mask"] = denoise_mask
|
||||
model_k = KSamplerX0Inpaint(model_wrap)
|
||||
model_k.latent_image = latent_image
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
self.sampler_function = sampler_function
|
||||
self.extra_options = extra_options
|
||||
self.inpaint_options = inpaint_options
|
||||
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
extra_args["denoise_mask"] = denoise_mask
|
||||
model_k = KSamplerX0Inpaint(model_wrap)
|
||||
model_k.latent_image = latent_image
|
||||
if self.inpaint_options.get("random", False): #TODO: Should this be the default?
|
||||
generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
|
||||
model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
|
||||
else:
|
||||
model_k.noise = noise
|
||||
|
||||
if self.max_denoise(model_wrap, sigmas):
|
||||
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
||||
else:
|
||||
noise = noise * sigmas[0]
|
||||
if self.max_denoise(model_wrap, sigmas):
|
||||
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
||||
else:
|
||||
noise = noise * sigmas[0]
|
||||
|
||||
k_callback = None
|
||||
total_steps = len(sigmas) - 1
|
||||
if callback is not None:
|
||||
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
||||
k_callback = None
|
||||
total_steps = len(sigmas) - 1
|
||||
if callback is not None:
|
||||
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
||||
|
||||
if latent_image is not None:
|
||||
noise += latent_image
|
||||
|
||||
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
|
||||
return samples
|
||||
|
||||
|
||||
def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
if sampler_name == "dpm_fast":
|
||||
def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
|
||||
sigma_min = sigmas[-1]
|
||||
if sigma_min == 0:
|
||||
sigma_min = sigmas[-2]
|
||||
total_steps = len(sigmas) - 1
|
||||
return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
|
||||
sampler_function = dpm_fast_function
|
||||
elif sampler_name == "dpm_adaptive":
|
||||
def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
|
||||
sigma_min = sigmas[-1]
|
||||
if sigma_min == 0:
|
||||
sigma_min = sigmas[-2]
|
||||
return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
|
||||
sampler_function = dpm_adaptive_function
|
||||
else:
|
||||
sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
|
||||
|
||||
if latent_image is not None:
|
||||
noise += latent_image
|
||||
if sampler_name == "dpm_fast":
|
||||
samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||
elif sampler_name == "dpm_adaptive":
|
||||
samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||
else:
|
||||
samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
|
||||
return samples
|
||||
return KSAMPLER
|
||||
return KSAMPLER(sampler_function, extra_options, inpaint_options)
|
||||
|
||||
def wrap_model(model):
|
||||
model_denoise = CFGNoisePredictor(model)
|
||||
if model.model_type == model_base.ModelType.V_PREDICTION:
|
||||
model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
|
||||
else:
|
||||
model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
|
||||
return model_wrap
|
||||
return model_denoise
|
||||
|
||||
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
positive = positive[:]
|
||||
@ -648,8 +587,8 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
|
||||
model_wrap = wrap_model(model)
|
||||
|
||||
calculate_start_end_timesteps(model_wrap, negative)
|
||||
calculate_start_end_timesteps(model_wrap, positive)
|
||||
calculate_start_end_timesteps(model, negative)
|
||||
calculate_start_end_timesteps(model, positive)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for c in positive:
|
||||
@ -657,35 +596,19 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
for c in negative:
|
||||
create_cond_with_same_area_if_none(positive, c)
|
||||
|
||||
pre_run_control(model_wrap, negative + positive)
|
||||
pre_run_control(model, negative + positive)
|
||||
|
||||
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
if model.is_adm():
|
||||
positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
|
||||
negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = model.process_latent_in(latent_image)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
|
||||
if hasattr(model, 'extra_conds'):
|
||||
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(model, 'concat_keys'): #inpaint
|
||||
cond_concat = []
|
||||
for ck in model.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
extra_args["cond_concat"] = cond_concat
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
|
||||
|
||||
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return model.process_latent_out(samples.to(torch.float32))
|
||||
@ -694,30 +617,29 @@ SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def calculate_sigmas_scheduler(model, scheduler_name, steps):
|
||||
model_wrap = wrap_model(model)
|
||||
if scheduler_name == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
|
||||
elif scheduler_name == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
|
||||
elif scheduler_name == "normal":
|
||||
sigmas = model_wrap.get_sigmas(steps)
|
||||
sigmas = normal_scheduler(model, steps)
|
||||
elif scheduler_name == "simple":
|
||||
sigmas = simple_scheduler(model_wrap, steps)
|
||||
sigmas = simple_scheduler(model, steps)
|
||||
elif scheduler_name == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(model_wrap, steps)
|
||||
sigmas = ddim_scheduler(model, steps)
|
||||
elif scheduler_name == "sgm_uniform":
|
||||
sigmas = sgm_scheduler(model_wrap, steps)
|
||||
sigmas = normal_scheduler(model, steps, sgm=True)
|
||||
else:
|
||||
print("error invalid scheduler", self.scheduler)
|
||||
return sigmas
|
||||
|
||||
def sampler_class(name):
|
||||
def sampler_object(name):
|
||||
if name == "uni_pc":
|
||||
sampler = UNIPC
|
||||
sampler = UNIPC()
|
||||
elif name == "uni_pc_bh2":
|
||||
sampler = UNIPCBH2
|
||||
sampler = UNIPCBH2()
|
||||
elif name == "ddim":
|
||||
sampler = DDIM
|
||||
sampler = ksampler("euler", inpaint_options={"random": True})
|
||||
else:
|
||||
sampler = ksampler(name)
|
||||
return sampler
|
||||
@ -743,7 +665,7 @@ class KSampler:
|
||||
sigmas = None
|
||||
|
||||
discard_penultimate_sigma = False
|
||||
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
|
||||
if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
|
||||
steps += 1
|
||||
discard_penultimate_sigma = True
|
||||
|
||||
@ -780,6 +702,6 @@ class KSampler:
|
||||
else:
|
||||
return torch.zeros_like(noise)
|
||||
|
||||
sampler = sampler_class(self.sampler)
|
||||
sampler = sampler_object(self.sampler)
|
||||
|
||||
return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
|
||||
197
comfy/sd.py
197
comfy/sd.py
@ -1,13 +1,10 @@
|
||||
import torch
|
||||
import contextlib
|
||||
import math
|
||||
|
||||
from . import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
||||
import yaml
|
||||
|
||||
import comfy.utils
|
||||
from . import utils
|
||||
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
@ -19,10 +16,11 @@ from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.supported_models_base
|
||||
from . import model_patcher
|
||||
from . import lora
|
||||
from .t2i_adapter import adapter
|
||||
from . import supported_models_base
|
||||
from .taesd import taesd
|
||||
|
||||
def load_model_weights(model, sd):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
@ -50,18 +48,31 @@ def load_clip_weights(model, sd):
|
||||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model)
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = comfy.lora.load_lora(lora, key_map)
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
new_clip = clip.clone()
|
||||
k1 = new_clip.add_patches(loaded, strength_clip)
|
||||
def load_lora_for_models(model, clip, _lora, strength_model, strength_clip):
|
||||
key_map = {}
|
||||
if model is not None:
|
||||
key_map = lora.model_lora_keys_unet(model.model, key_map)
|
||||
if clip is not None:
|
||||
key_map = lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
|
||||
loaded = lora.load_lora(_lora, key_map)
|
||||
if model is not None:
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
else:
|
||||
k = ()
|
||||
new_modelpatcher = None
|
||||
|
||||
if clip is not None:
|
||||
new_clip = clip.clone()
|
||||
k1 = new_clip.add_patches(loaded, strength_clip)
|
||||
else:
|
||||
k1 = ()
|
||||
new_clip = None
|
||||
k = set(k)
|
||||
k1 = set(k1)
|
||||
for x in loaded:
|
||||
@ -82,15 +93,12 @@ class CLIP:
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
params['device'] = offload_device
|
||||
if model_management.should_use_fp16(load_device, prioritize_performance=False):
|
||||
params['dtype'] = torch.float16
|
||||
else:
|
||||
params['dtype'] = torch.float32
|
||||
params['dtype'] = model_management.text_encoder_dtype(load_device)
|
||||
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.patcher = model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.layer_idx = None
|
||||
|
||||
def clone(self):
|
||||
@ -144,10 +152,24 @@ class VAE:
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
||||
|
||||
if config is None:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
|
||||
if "decoder.mid.block_1.mix_factor" in sd:
|
||||
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
decoder_config = encoder_config.copy()
|
||||
decoder_config["video_kernel_size"] = [3, 1, 1]
|
||||
decoder_config["alpha"] = 0.0
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
|
||||
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
|
||||
elif "taesd_decoder.1.weight" in sd:
|
||||
self.first_stage_model = taesd.TAESD()
|
||||
else:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
|
||||
else:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
@ -162,42 +184,43 @@ class VAE:
|
||||
if device is None:
|
||||
device = model_management.vae_device()
|
||||
self.device = device
|
||||
self.offload_device = model_management.vae_offload_device()
|
||||
offload_device = model_management.vae_offload_device()
|
||||
self.vae_dtype = model_management.vae_dtype()
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
|
||||
self.patcher = model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||
output = torch.clamp((
|
||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||
return output
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
|
||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
def decode(self, samples_in):
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
try:
|
||||
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
|
||||
model_management.free_memory(memory_used, self.device)
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
@ -210,22 +233,19 @@ class VAE:
|
||||
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
pixel_samples = self.decode_tiled_(samples_in)
|
||||
|
||||
self.first_stage_model = self.first_stage_model.to(self.offload_device)
|
||||
pixel_samples = pixel_samples.cpu().movedim(1,-1)
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
|
||||
self.first_stage_model = self.first_stage_model.to(self.offload_device)
|
||||
return output.movedim(1,-1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
try:
|
||||
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
||||
model_management.free_memory(memory_used, self.device)
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
@ -238,14 +258,12 @@ class VAE:
|
||||
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
samples = self.encode_tiled_(pixel_samples)
|
||||
|
||||
self.first_stage_model = self.first_stage_model.to(self.offload_device)
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
||||
self.first_stage_model = self.first_stage_model.to(self.offload_device)
|
||||
return samples
|
||||
|
||||
def get_sd(self):
|
||||
@ -260,10 +278,10 @@ class StyleModel:
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
@ -273,14 +291,14 @@ def load_style_model(ckpt_path):
|
||||
def load_clip(ckpt_paths, embedding_directory=None):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
clip_data.append(utils.load_torch_file(p, safe_load=True))
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
@ -309,11 +327,11 @@ def load_clip(ckpt_paths, embedding_directory=None):
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
return model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
#TODO: this function is a mess and should be removed eventually
|
||||
@ -351,16 +369,16 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
pass
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = comfy.utils.load_torch_file(ckpt_path)
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
model_config = comfy.supported_models_base.BASE({})
|
||||
model_config = supported_models_base.BASE({})
|
||||
|
||||
from . import latent_formats
|
||||
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
|
||||
model_config.unet_config = unet_config
|
||||
model_config.unet_config = model_detection.convert_config(unet_config)
|
||||
|
||||
if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
|
||||
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
|
||||
@ -378,7 +396,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
model.load_model_weights(state_dict, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
vae_sd = comfy.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True)
|
||||
vae_sd = utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True)
|
||||
vae = VAE(sd=vae_sd, config=vae_config)
|
||||
|
||||
if output_clip:
|
||||
@ -388,26 +406,28 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
|
||||
clip_target.clip = sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model.clip_h
|
||||
elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model.clip_l
|
||||
load_clip_weights(w, state_dict)
|
||||
|
||||
return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
return (model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
model = None
|
||||
model_patcher = None
|
||||
_model_patcher = None
|
||||
clip_target = None
|
||||
|
||||
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
parameters = utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters)
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
@ -428,47 +448,47 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
model.load_model_weights(sd, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
|
||||
vae_sd = utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
|
||||
vae_sd = model_config.process_vae_state_dict(vae_sd)
|
||||
vae = VAE(sd=vae_sd)
|
||||
|
||||
if output_clip:
|
||||
w = WeightsLoader()
|
||||
clip_target = model_config.clip_target()
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
sd = model_config.process_clip_state_dict(sd)
|
||||
load_model_weights(w, sd)
|
||||
if clip_target is not None:
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
sd = model_config.process_clip_state_dict(sd)
|
||||
load_model_weights(w, sd)
|
||||
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
print("left over keys:", left_over)
|
||||
|
||||
if output_model:
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
_model_patcher = model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
print("loaded straight to GPU")
|
||||
model_management.load_model_gpu(model_patcher)
|
||||
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
return (_model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_unet(unet_path): #load unet in diffusers format
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
def load_unet_state_dict(sd): #load unet in diffusers format
|
||||
parameters = utils.calculate_parameters(sd)
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters)
|
||||
if "input_blocks.0.0.weight" in sd: #ldm
|
||||
model_config = model_detection.model_config_from_unet(sd, "", unet_dtype)
|
||||
if model_config is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return None
|
||||
new_sd = sd
|
||||
|
||||
else: #diffusers
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype)
|
||||
if model_config is None:
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
return None
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
@ -480,9 +500,20 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
print("left over keys in unet:", left_over)
|
||||
return model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
|
||||
|
||||
def load_unet(unet_path):
|
||||
sd = utils.load_torch_file(unet_path)
|
||||
model = load_unet_state_dict(sd)
|
||||
if model is None:
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return model
|
||||
|
||||
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
||||
model_management.load_models_gpu([model, clip.load_model()])
|
||||
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
||||
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
|
||||
@ -9,34 +9,56 @@ from . import model_management
|
||||
from pkg_resources import resource_filename
|
||||
import contextlib
|
||||
|
||||
def gen_empty_tokens(special_tokens, length):
|
||||
start_token = special_tokens.get("start", None)
|
||||
end_token = special_tokens.get("end", None)
|
||||
pad_token = special_tokens.get("pad")
|
||||
output = []
|
||||
if start_token is not None:
|
||||
output.append(start_token)
|
||||
if end_token is not None:
|
||||
output.append(end_token)
|
||||
output += [pad_token] * (length - len(output))
|
||||
return output
|
||||
|
||||
class ClipTokenWeightEncoder:
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
to_encode = list(self.empty_tokens)
|
||||
to_encode = list()
|
||||
max_token_len = 0
|
||||
has_weights = False
|
||||
for x in token_weight_pairs:
|
||||
tokens = list(map(lambda a: a[0], x))
|
||||
max_token_len = max(len(tokens), max_token_len)
|
||||
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
|
||||
to_encode.append(tokens)
|
||||
|
||||
sections = len(to_encode)
|
||||
if has_weights or sections == 0:
|
||||
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
|
||||
|
||||
out, pooled = self.encode(to_encode)
|
||||
z_empty = out[0:1]
|
||||
if pooled.shape[0] > 1:
|
||||
first_pooled = pooled[1:2]
|
||||
if pooled is not None:
|
||||
first_pooled = pooled[0:1].cpu()
|
||||
else:
|
||||
first_pooled = pooled[0:1]
|
||||
first_pooled = pooled
|
||||
|
||||
output = []
|
||||
for k in range(1, out.shape[0]):
|
||||
for k in range(0, sections):
|
||||
z = out[k:k+1]
|
||||
for i in range(len(z)):
|
||||
for j in range(len(z[i])):
|
||||
weight = token_weight_pairs[k - 1][j][1]
|
||||
z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
|
||||
if has_weights:
|
||||
z_empty = out[-1]
|
||||
for i in range(len(z)):
|
||||
for j in range(len(z[i])):
|
||||
weight = token_weight_pairs[k][j][1]
|
||||
if weight != 1.0:
|
||||
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
|
||||
output.append(z)
|
||||
|
||||
if (len(output) == 0):
|
||||
return z_empty.cpu(), first_pooled.cpu()
|
||||
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
|
||||
return out[-1:].cpu(), first_pooled
|
||||
return torch.cat(output, dim=-2).cpu(), first_pooled
|
||||
|
||||
class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
LAYERS = [
|
||||
"last",
|
||||
@ -44,39 +66,45 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407},layer_norm_hidden_state=True, config_class=CLIPTextConfig,
|
||||
model_class=CLIPTextModel, inner_name="text_model"): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
self.num_layers = 12
|
||||
if textmodel_path is not None:
|
||||
self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
|
||||
self.transformer = model_class.from_pretrained(textmodel_path)
|
||||
else:
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
if not os.path.exists(textmodel_json_config):
|
||||
textmodel_json_config = resource_filename('comfy', 'sd1_clip_config.json')
|
||||
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
||||
config = config_class.from_json_file(textmodel_json_config)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
with ops.use_comfy_ops(device, dtype):
|
||||
with modeling_utils.no_init_weights():
|
||||
self.transformer = CLIPTextModel(config)
|
||||
self.transformer = model_class(config)
|
||||
|
||||
self.inner_name = inner_name
|
||||
if dtype is not None:
|
||||
self.transformer.to(dtype)
|
||||
self.transformer.text_model.embeddings.token_embedding.to(torch.float32)
|
||||
self.transformer.text_model.embeddings.position_embedding.to(torch.float32)
|
||||
inner_model = getattr(self.transformer, self.inner_name)
|
||||
if hasattr(inner_model, "embeddings"):
|
||||
inner_model.embeddings.to(torch.float32)
|
||||
else:
|
||||
self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32))
|
||||
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.empty_tokens = [[49406] + [49407] * 76]
|
||||
self.special_tokens = special_tokens
|
||||
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.enable_attention_masks = False
|
||||
|
||||
self.layer_norm_hidden_state = True
|
||||
self.layer_norm_hidden_state = layer_norm_hidden_state
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) <= self.num_layers
|
||||
@ -120,7 +148,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
else:
|
||||
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
|
||||
while len(tokens_temp) < len(x):
|
||||
tokens_temp += [self.empty_tokens[0][-1]]
|
||||
tokens_temp += [self.special_tokens["pad"]]
|
||||
out_tokens += [tokens_temp]
|
||||
|
||||
n = token_dict_size
|
||||
@ -145,12 +173,12 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
|
||||
tokens = torch.LongTensor(tokens).to(device)
|
||||
|
||||
if self.transformer.text_model.final_layer_norm.weight.dtype != torch.float32:
|
||||
if getattr(self.transformer, self.inner_name).final_layer_norm.weight.dtype != torch.float32:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
||||
precision_scope = lambda a, dtype: contextlib.nullcontext(a)
|
||||
|
||||
with precision_scope(model_management.get_autocast_device(device), torch.float32):
|
||||
with precision_scope(model_management.get_autocast_device(device), dtype=torch.float32):
|
||||
attention_mask = None
|
||||
if self.enable_attention_masks:
|
||||
attention_mask = torch.zeros_like(tokens)
|
||||
@ -171,12 +199,16 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
else:
|
||||
z = outputs.hidden_states[self.layer_idx]
|
||||
if self.layer_norm_hidden_state:
|
||||
z = self.transformer.text_model.final_layer_norm(z)
|
||||
z = getattr(self.transformer, self.inner_name).final_layer_norm(z)
|
||||
|
||||
pooled_output = outputs.pooler_output
|
||||
if self.text_projection is not None:
|
||||
if hasattr(outputs, "pooler_output"):
|
||||
pooled_output = outputs.pooler_output.float()
|
||||
else:
|
||||
pooled_output = None
|
||||
|
||||
if self.text_projection is not None and pooled_output is not None:
|
||||
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
|
||||
return z.float(), pooled_output.float()
|
||||
return z.float(), pooled_output
|
||||
|
||||
def encode(self, tokens):
|
||||
return self(tokens)
|
||||
@ -281,7 +313,13 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
|
||||
valid_file = None
|
||||
for embed_dir in embedding_directory:
|
||||
embed_path = os.path.join(embed_dir, embedding_name)
|
||||
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
|
||||
embed_dir = os.path.abspath(embed_dir)
|
||||
try:
|
||||
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
|
||||
continue
|
||||
except:
|
||||
continue
|
||||
if not os.path.isfile(embed_path):
|
||||
extensions = ['.safetensors', '.pt', '.bin']
|
||||
for x in extensions:
|
||||
@ -339,21 +377,28 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
embed_out = next(iter(values))
|
||||
return embed_out
|
||||
|
||||
class SD1Tokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'):
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
if not os.path.exists(os.path.join(tokenizer_path, "tokenizer_config.json")):
|
||||
# package based
|
||||
tokenizer_path = resource_filename('comfy', 'sd1_tokenizer/')
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
||||
self.max_length = max_length
|
||||
self.max_tokens_per_section = self.max_length - 2
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.start_token = empty[0]
|
||||
self.end_token = empty[1]
|
||||
if has_start_token:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
self.end_token = empty[1]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
self.start_token = None
|
||||
self.end_token = empty[0]
|
||||
self.pad_with_end = pad_with_end
|
||||
self.pad_to_max_length = pad_to_max_length
|
||||
|
||||
vocab = self.tokenizer.get_vocab()
|
||||
self.inv_vocab = {v: k for k, v in vocab.items()}
|
||||
self.embedding_directory = embedding_directory
|
||||
@ -414,11 +459,13 @@ class SD1Tokenizer:
|
||||
else:
|
||||
continue
|
||||
#parse word
|
||||
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
|
||||
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
|
||||
|
||||
#reshape token array to CLIP input size
|
||||
batched_tokens = []
|
||||
batch = [(self.start_token, 1.0, 0)]
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
for i, t_group in enumerate(tokens):
|
||||
#determine if we're going to try and keep the tokens in a single batch
|
||||
@ -435,16 +482,21 @@ class SD1Tokenizer:
|
||||
#add end token and pad
|
||||
else:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
||||
#start new batch
|
||||
batch = [(self.start_token, 1.0, 0)]
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
else:
|
||||
batch.extend([(t,w,i+1) for t,w in t_group])
|
||||
t_group = []
|
||||
|
||||
#fill last batch
|
||||
batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
@ -454,3 +506,40 @@ class SD1Tokenizer:
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
||||
|
||||
|
||||
class SD1Tokenizer:
|
||||
def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return getattr(self, self.clip).untokenize(token_weight_pair)
|
||||
|
||||
|
||||
class SD1ClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
|
||||
super().__init__()
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
getattr(self, self.clip).clip_layer(layer_idx)
|
||||
|
||||
def reset_clip_layer(self):
|
||||
getattr(self, self.clip).reset_clip_layer()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs = token_weight_pairs[self.clip_name]
|
||||
out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
|
||||
return out, pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
return getattr(self, self.clip).load_sd(sd)
|
||||
|
||||
@ -3,7 +3,7 @@ from pkg_resources import resource_filename
|
||||
from . import sd1_clip
|
||||
import os
|
||||
|
||||
class SD2ClipModel(sd1_clip.SD1ClipModel):
|
||||
class SD2ClipHModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
@ -12,9 +12,16 @@ class SD2ClipModel(sd1_clip.SD1ClipModel):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
|
||||
if not os.path.exists(textmodel_json_config):
|
||||
textmodel_json_config = resource_filename('comfy', 'sd2_clip_config.json')
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0})
|
||||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
|
||||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer)
|
||||
|
||||
class SD2ClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs)
|
||||
|
||||
@ -2,28 +2,27 @@ from . import sd1_clip
|
||||
import torch
|
||||
import os
|
||||
|
||||
class SDXLClipG(sd1_clip.SD1ClipModel):
|
||||
class SDXLClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
self.layer_norm_hidden_state = False
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return super().load_sd(sd)
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
|
||||
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
|
||||
|
||||
class SDXLTokenizer(sd1_clip.SD1Tokenizer):
|
||||
class SDXLTokenizer:
|
||||
def __init__(self, embedding_directory=None):
|
||||
self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
@ -38,8 +37,7 @@ class SDXLTokenizer(sd1_clip.SD1Tokenizer):
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__()
|
||||
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype)
|
||||
self.clip_l.layer_norm_hidden_state = False
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype, layer_norm_hidden_state=False)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
@ -63,21 +61,6 @@ class SDXLClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.clip_l.load_sd(sd)
|
||||
|
||||
class SDXLRefinerClipModel(torch.nn.Module):
|
||||
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__()
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_g.clip_layer(layer_idx)
|
||||
|
||||
def reset_clip_layer(self):
|
||||
self.clip_g.reset_clip_layer()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
return g_out, g_pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.clip_g.load_sd(sd)
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG)
|
||||
|
||||
@ -17,6 +17,7 @@ class SD15(supported_models_base.BASE):
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": False,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
@ -38,8 +39,15 @@ class SD15(supported_models_base.BASE):
|
||||
if ids.dtype == torch.float32:
|
||||
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
replace_prefix = {}
|
||||
replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"clip_l.": "cond_stage_model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
|
||||
|
||||
@ -49,6 +57,7 @@ class SD20(supported_models_base.BASE):
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
@ -62,12 +71,16 @@ class SD20(supported_models_base.BASE):
|
||||
return model_base.ModelType.EPS
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
replace_prefix = {}
|
||||
replace_prefix["conditioner.embedders.0.model."] = "cond_stage_model.model." #SD2 in sgm format
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24)
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {}
|
||||
replace_prefix[""] = "cond_stage_model.model."
|
||||
replace_prefix["clip_h"] = "cond_stage_model.model"
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
|
||||
return state_dict
|
||||
@ -81,6 +94,7 @@ class SD21UnclipL(SD20):
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 1536,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
@ -93,6 +107,7 @@ class SD21UnclipH(SD20):
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 2048,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
@ -104,7 +119,8 @@ class SDXLRefiner(supported_models_base.BASE):
|
||||
"use_linear_in_transformer": True,
|
||||
"context_dim": 1280,
|
||||
"adm_in_channels": 2560,
|
||||
"transformer_depth": [0, 4, 4, 0],
|
||||
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
@ -139,9 +155,10 @@ class SDXL(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 2, 10],
|
||||
"transformer_depth": [0, 0, 2, 2, 10, 10],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
@ -165,6 +182,7 @@ class SDXL(supported_models_base.BASE):
|
||||
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
|
||||
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
|
||||
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
|
||||
keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
|
||||
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
|
||||
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
@ -189,5 +207,40 @@ class SDXL(supported_models_base.BASE):
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
|
||||
|
||||
class SSD1B(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 2, 2, 4, 4],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
|
||||
class SVD_img2vid(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"in_channels": 8,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
"context_dim": 1024,
|
||||
"adm_in_channels": 768,
|
||||
"use_temporal_attention": True,
|
||||
"use_temporal_resblock": True
|
||||
}
|
||||
|
||||
clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
|
||||
sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SVD_img2vid(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self):
|
||||
return None
|
||||
|
||||
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B]
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -19,7 +19,7 @@ class BASE:
|
||||
clip_prefix = []
|
||||
clip_vision_prefix = None
|
||||
noise_aug_config = None
|
||||
beta_schedule = "linear"
|
||||
sampling_settings = {}
|
||||
latent_format = latent_formats.LatentFormat
|
||||
|
||||
@classmethod
|
||||
@ -53,6 +53,12 @@ class BASE:
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
||||
def process_vae_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "cond_stage_model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
@ -6,7 +6,7 @@ Tiny AutoEncoder for Stable Diffusion
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.utils
|
||||
from .. import utils
|
||||
|
||||
def conv(n_in, n_out, **kwargs):
|
||||
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
||||
@ -46,15 +46,16 @@ class TAESD(nn.Module):
|
||||
latent_magnitude = 3
|
||||
latent_shift = 0.5
|
||||
|
||||
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
|
||||
def __init__(self, encoder_path=None, decoder_path=None):
|
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
||||
super().__init__()
|
||||
self.encoder = Encoder()
|
||||
self.decoder = Decoder()
|
||||
self.taesd_encoder = Encoder()
|
||||
self.taesd_decoder = Decoder()
|
||||
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
|
||||
if encoder_path is not None:
|
||||
self.encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
|
||||
self.taesd_encoder.load_state_dict(utils.load_torch_file(encoder_path, safe_load=True))
|
||||
if decoder_path is not None:
|
||||
self.decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
|
||||
self.taesd_decoder.load_state_dict(utils.load_torch_file(decoder_path, safe_load=True))
|
||||
|
||||
@staticmethod
|
||||
def scale_latents(x):
|
||||
@ -65,3 +66,11 @@ class TAESD(nn.Module):
|
||||
def unscale_latents(x):
|
||||
"""[0, 1] -> raw latents"""
|
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
||||
|
||||
def decode(self, x):
|
||||
x_sample = self.taesd_decoder(x * self.vae_scale)
|
||||
x_sample = x_sample.sub(0.5).mul(2)
|
||||
return x_sample
|
||||
|
||||
def encode(self, x):
|
||||
return self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale
|
||||
|
||||
@ -172,25 +172,12 @@ UNET_MAP_BASIC = {
|
||||
|
||||
def unet_to_diffusers(unet_config):
|
||||
num_res_blocks = unet_config["num_res_blocks"]
|
||||
attention_resolutions = unet_config["attention_resolutions"]
|
||||
channel_mult = unet_config["channel_mult"]
|
||||
transformer_depth = unet_config["transformer_depth"]
|
||||
transformer_depth = unet_config["transformer_depth"][:]
|
||||
transformer_depth_output = unet_config["transformer_depth_output"][:]
|
||||
num_blocks = len(channel_mult)
|
||||
if isinstance(num_res_blocks, int):
|
||||
num_res_blocks = [num_res_blocks] * num_blocks
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = [transformer_depth] * num_blocks
|
||||
|
||||
transformers_per_layer = []
|
||||
res = 1
|
||||
for i in range(num_blocks):
|
||||
transformers = 0
|
||||
if res in attention_resolutions:
|
||||
transformers = transformer_depth[i]
|
||||
transformers_per_layer.append(transformers)
|
||||
res *= 2
|
||||
|
||||
transformers_mid = unet_config.get("transformer_depth_middle", transformer_depth[-1])
|
||||
transformers_mid = unet_config.get("transformer_depth_middle", None)
|
||||
|
||||
diffusers_unet_map = {}
|
||||
for x in range(num_blocks):
|
||||
@ -198,10 +185,11 @@ def unet_to_diffusers(unet_config):
|
||||
for i in range(num_res_blocks[x]):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
|
||||
if transformers_per_layer[x] > 0:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(transformers_per_layer[x]):
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
n += 1
|
||||
@ -220,7 +208,6 @@ def unet_to_diffusers(unet_config):
|
||||
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
|
||||
|
||||
num_res_blocks = list(reversed(num_res_blocks))
|
||||
transformers_per_layer = list(reversed(transformers_per_layer))
|
||||
for x in range(num_blocks):
|
||||
n = (num_res_blocks[x] + 1) * x
|
||||
l = num_res_blocks[x] + 1
|
||||
@ -229,11 +216,12 @@ def unet_to_diffusers(unet_config):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
|
||||
c += 1
|
||||
if transformers_per_layer[x] > 0:
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
c += 1
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(transformers_per_layer[x]):
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
if i == l - 1:
|
||||
@ -253,6 +241,26 @@ def repeat_to_batch_size(tensor, batch_size):
|
||||
return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size]
|
||||
return tensor
|
||||
|
||||
def resize_to_batch_size(tensor, batch_size):
|
||||
in_batch_size = tensor.shape[0]
|
||||
if in_batch_size == batch_size:
|
||||
return tensor
|
||||
|
||||
if batch_size <= 1:
|
||||
return tensor[:batch_size]
|
||||
|
||||
output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
|
||||
if batch_size < in_batch_size:
|
||||
scale = (in_batch_size - 1) / (batch_size - 1)
|
||||
for i in range(batch_size):
|
||||
output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
|
||||
else:
|
||||
scale = in_batch_size / batch_size
|
||||
for i in range(batch_size):
|
||||
output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]
|
||||
|
||||
return output
|
||||
|
||||
def convert_sd_to(state_dict, dtype):
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
@ -272,9 +280,17 @@ def set_attr(obj, attr, value):
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value))
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False))
|
||||
del prev
|
||||
|
||||
def copy_to_param(obj, attr, value):
|
||||
# inplace update tensor instead of replacing it
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
prev.data.copy_(value)
|
||||
|
||||
def get_attr(obj, attr):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs:
|
||||
@ -313,23 +329,25 @@ def bislerp(samples, width, height):
|
||||
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
|
||||
return res
|
||||
|
||||
def generate_bilinear_data(length_old, length_new):
|
||||
coords_1 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32)
|
||||
def generate_bilinear_data(length_old, length_new, device):
|
||||
coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
|
||||
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
|
||||
ratios = coords_1 - coords_1.floor()
|
||||
coords_1 = coords_1.to(torch.int64)
|
||||
|
||||
coords_2 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32) + 1
|
||||
coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
|
||||
coords_2[:,:,:,-1] -= 1
|
||||
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
|
||||
coords_2 = coords_2.to(torch.int64)
|
||||
return ratios, coords_1, coords_2
|
||||
|
||||
orig_dtype = samples.dtype
|
||||
samples = samples.float()
|
||||
n,c,h,w = samples.shape
|
||||
h_new, w_new = (height, width)
|
||||
|
||||
#linear w
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new)
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
|
||||
coords_1 = coords_1.expand((n, c, h, -1))
|
||||
coords_2 = coords_2.expand((n, c, h, -1))
|
||||
ratios = ratios.expand((n, 1, h, -1))
|
||||
@ -342,7 +360,7 @@ def bislerp(samples, width, height):
|
||||
result = result.reshape(n, h, w_new, c).movedim(-1, 1)
|
||||
|
||||
#linear h
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new)
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
|
||||
coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
|
||||
coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
|
||||
ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
|
||||
@ -353,7 +371,7 @@ def bislerp(samples, width, height):
|
||||
|
||||
result = slerp(pass_1, pass_2, ratios)
|
||||
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
|
||||
return result
|
||||
return result.to(orig_dtype)
|
||||
|
||||
def lanczos(samples, width, height):
|
||||
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
|
||||
|
||||
@ -16,7 +16,7 @@ class BasicScheduler:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -36,7 +36,7 @@ class KarrasScheduler:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -54,7 +54,7 @@ class ExponentialScheduler:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -73,7 +73,7 @@ class PolyexponentialScheduler:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -81,6 +81,25 @@ class PolyexponentialScheduler:
|
||||
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
||||
return (sigmas, )
|
||||
|
||||
class SDTurboScheduler:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"model": ("MODEL",),
|
||||
"steps": ("INT", {"default": 1, "min": 1, "max": 10}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
def get_sigmas(self, model, steps):
|
||||
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[:steps]
|
||||
sigmas = model.model.model_sampling.sigma(timesteps)
|
||||
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
|
||||
return (sigmas, )
|
||||
|
||||
class VPScheduler:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -92,7 +111,7 @@ class VPScheduler:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/schedulers"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -109,7 +128,7 @@ class SplitSigmas:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS","SIGMAS")
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/sigmas"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
@ -118,6 +137,24 @@ class SplitSigmas:
|
||||
sigmas2 = sigmas[step:]
|
||||
return (sigmas1, sigmas2)
|
||||
|
||||
class FlipSigmas:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"sigmas": ("SIGMAS", ),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling/sigmas"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
def get_sigmas(self, sigmas):
|
||||
sigmas = sigmas.flip(0)
|
||||
if sigmas[0] == 0:
|
||||
sigmas[0] = 0.0001
|
||||
return (sigmas,)
|
||||
|
||||
class KSamplerSelect:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -126,12 +163,12 @@ class KSamplerSelect:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/samplers"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
def get_sampler(self, sampler_name):
|
||||
sampler = comfy.samplers.sampler_class(sampler_name)()
|
||||
sampler = comfy.samplers.sampler_object(sampler_name)
|
||||
return (sampler, )
|
||||
|
||||
class SamplerDPMPP_2M_SDE:
|
||||
@ -145,7 +182,7 @@ class SamplerDPMPP_2M_SDE:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/samplers"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
@ -154,7 +191,7 @@ class SamplerDPMPP_2M_SDE:
|
||||
sampler_name = "dpmpp_2m_sde"
|
||||
else:
|
||||
sampler_name = "dpmpp_2m_sde_gpu"
|
||||
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})()
|
||||
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
|
||||
return (sampler, )
|
||||
|
||||
|
||||
@ -169,7 +206,7 @@ class SamplerDPMPP_SDE:
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "sampling/custom_sampling"
|
||||
CATEGORY = "sampling/custom_sampling/samplers"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
@ -178,7 +215,7 @@ class SamplerDPMPP_SDE:
|
||||
sampler_name = "dpmpp_sde"
|
||||
else:
|
||||
sampler_name = "dpmpp_sde_gpu"
|
||||
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})()
|
||||
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
|
||||
return (sampler, )
|
||||
|
||||
class SamplerCustom:
|
||||
@ -188,7 +225,7 @@ class SamplerCustom:
|
||||
{"model": ("MODEL",),
|
||||
"add_noise": ("BOOLEAN", {"default": True}),
|
||||
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
||||
"positive": ("CONDITIONING", ),
|
||||
"negative": ("CONDITIONING", ),
|
||||
"sampler": ("SAMPLER", ),
|
||||
@ -234,13 +271,15 @@ class SamplerCustom:
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SamplerCustom": SamplerCustom,
|
||||
"BasicScheduler": BasicScheduler,
|
||||
"KarrasScheduler": KarrasScheduler,
|
||||
"ExponentialScheduler": ExponentialScheduler,
|
||||
"PolyexponentialScheduler": PolyexponentialScheduler,
|
||||
"VPScheduler": VPScheduler,
|
||||
"SDTurboScheduler": SDTurboScheduler,
|
||||
"KSamplerSelect": KSamplerSelect,
|
||||
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
|
||||
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
|
||||
"BasicScheduler": BasicScheduler,
|
||||
"SplitSigmas": SplitSigmas,
|
||||
"FlipSigmas": FlipSigmas,
|
||||
}
|
||||
|
||||
@ -61,7 +61,53 @@ class FreeU:
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m, )
|
||||
|
||||
class FreeU_V2:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model, b1, b2, s1, s2):
|
||||
model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
on_cpu_devices = {}
|
||||
|
||||
def output_block_patch(h, hsp, transformer_options):
|
||||
scale = scale_dict.get(h.shape[1], None)
|
||||
if scale is not None:
|
||||
hidden_mean = h.mean(1).unsqueeze(1)
|
||||
B = hidden_mean.shape[0]
|
||||
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
||||
|
||||
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
|
||||
|
||||
if hsp.device not in on_cpu_devices:
|
||||
try:
|
||||
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
||||
except:
|
||||
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
|
||||
on_cpu_devices[hsp.device] = True
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
else:
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
|
||||
return h, hsp
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"FreeU": FreeU,
|
||||
"FreeU_V2": FreeU_V2,
|
||||
}
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import comfy.utils
|
||||
import torch
|
||||
|
||||
def reshape_latent_to(target_shape, latent):
|
||||
if latent.shape[1:] != target_shape[1:]:
|
||||
@ -67,8 +68,43 @@ class LatentMultiply:
|
||||
samples_out["samples"] = s1 * multiplier
|
||||
return (samples_out,)
|
||||
|
||||
class LatentInterpolate:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",),
|
||||
"samples2": ("LATENT",),
|
||||
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2, ratio):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
|
||||
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
||||
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
||||
|
||||
s1 = torch.nan_to_num(s1 / m1)
|
||||
s2 = torch.nan_to_num(s2 / m2)
|
||||
|
||||
t = (s1 * ratio + s2 * (1.0 - ratio))
|
||||
mt = torch.linalg.vector_norm(t, dim=(1))
|
||||
st = torch.nan_to_num(t / mt)
|
||||
|
||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||
return (samples_out,)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentAdd": LatentAdd,
|
||||
"LatentSubtract": LatentSubtract,
|
||||
"LatentMultiply": LatentMultiply,
|
||||
"LatentInterpolate": LatentInterpolate,
|
||||
}
|
||||
|
||||
@ -23,7 +23,7 @@ class Blend:
|
||||
"max": 1.0,
|
||||
"step": 0.01
|
||||
}),
|
||||
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
|
||||
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
|
||||
},
|
||||
}
|
||||
|
||||
@ -54,6 +54,8 @@ class Blend:
|
||||
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
|
||||
elif mode == "soft_light":
|
||||
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
|
||||
elif mode == "difference":
|
||||
return img1 - img2
|
||||
else:
|
||||
raise ValueError(f"Unsupported blend mode: {mode}")
|
||||
|
||||
@ -126,7 +128,7 @@ class Quantize:
|
||||
"max": 256,
|
||||
"step": 1
|
||||
}),
|
||||
"dither": (["none", "floyd-steinberg"],),
|
||||
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
|
||||
},
|
||||
}
|
||||
|
||||
@ -135,19 +137,47 @@ class Quantize:
|
||||
|
||||
CATEGORY = "image/postprocessing"
|
||||
|
||||
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
|
||||
def bayer(im, pal_im, order):
|
||||
def normalized_bayer_matrix(n):
|
||||
if n == 0:
|
||||
return np.zeros((1,1), "float32")
|
||||
else:
|
||||
q = 4 ** n
|
||||
m = q * normalized_bayer_matrix(n - 1)
|
||||
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
|
||||
|
||||
num_colors = len(pal_im.getpalette()) // 3
|
||||
spread = 2 * 256 / num_colors
|
||||
bayer_n = int(math.log2(order))
|
||||
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
|
||||
|
||||
result = torch.from_numpy(np.array(im).astype(np.float32))
|
||||
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
|
||||
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
|
||||
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
|
||||
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
|
||||
result = result.to(dtype=torch.uint8)
|
||||
|
||||
im = Image.fromarray(result.cpu().numpy())
|
||||
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
||||
return im
|
||||
|
||||
def quantize(self, image: torch.Tensor, colors: int, dither: str):
|
||||
batch_size, height, width, _ = image.shape
|
||||
result = torch.zeros_like(image)
|
||||
|
||||
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
|
||||
|
||||
for b in range(batch_size):
|
||||
tensor_image = image[b]
|
||||
img = (tensor_image * 255).to(torch.uint8).numpy()
|
||||
pil_image = Image.fromarray(img, mode='RGB')
|
||||
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
|
||||
|
||||
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
|
||||
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
|
||||
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
|
||||
|
||||
if dither == "none":
|
||||
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
||||
elif dither == "floyd-steinberg":
|
||||
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
|
||||
elif dither.startswith("bayer"):
|
||||
order = int(dither.split('-')[-1])
|
||||
quantized_image = Quantize.bayer(im, pal_im, order)
|
||||
|
||||
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
|
||||
result[b] = quantized_array
|
||||
|
||||
@ -4,7 +4,7 @@ class LatentRebatch:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "latents": ("LATENT",),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||
}}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
INPUT_IS_LIST = True
|
||||
|
||||
83
comfy_extras/nodes_hypertile.py
Normal file
83
comfy_extras/nodes_hypertile.py
Normal file
@ -0,0 +1,83 @@
|
||||
#Taken from: https://github.com/tfernd/HyperTile/
|
||||
|
||||
import math
|
||||
from einops import rearrange
|
||||
import random
|
||||
|
||||
def random_divisor(value: int, min_value: int, /, max_options: int = 1, counter = 0) -> int:
|
||||
min_value = min(min_value, value)
|
||||
|
||||
# All big divisors of value (inclusive)
|
||||
divisors = [i for i in range(min_value, value + 1) if value % i == 0]
|
||||
|
||||
ns = [value // i for i in divisors[:max_options]] # has at least 1 element
|
||||
|
||||
random.seed(counter)
|
||||
idx = random.randint(0, len(ns) - 1)
|
||||
|
||||
return ns[idx]
|
||||
|
||||
class HyperTile:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
|
||||
"swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
|
||||
"max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
|
||||
"scale_depth": ("BOOLEAN", {"default": False}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model, tile_size, swap_size, max_depth, scale_depth):
|
||||
model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
|
||||
apply_to = set()
|
||||
temp = model_channels
|
||||
for x in range(max_depth + 1):
|
||||
apply_to.add(temp)
|
||||
temp *= 2
|
||||
|
||||
latent_tile_size = max(32, tile_size) // 8
|
||||
self.temp = None
|
||||
self.counter = 1
|
||||
|
||||
def hypertile_in(q, k, v, extra_options):
|
||||
if q.shape[-1] in apply_to:
|
||||
shape = extra_options["original_shape"]
|
||||
aspect_ratio = shape[-1] / shape[-2]
|
||||
|
||||
hw = q.size(1)
|
||||
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
|
||||
|
||||
factor = 2**((q.shape[-1] // model_channels) - 1) if scale_depth else 1
|
||||
nh = random_divisor(h, latent_tile_size * factor, swap_size, self.counter)
|
||||
self.counter += 1
|
||||
nw = random_divisor(w, latent_tile_size * factor, swap_size, self.counter)
|
||||
self.counter += 1
|
||||
|
||||
if nh * nw > 1:
|
||||
q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
|
||||
self.temp = (nh, nw, h, w)
|
||||
return q, k, v
|
||||
|
||||
return q, k, v
|
||||
def hypertile_out(out, extra_options):
|
||||
if self.temp is not None:
|
||||
nh, nw, h, w = self.temp
|
||||
self.temp = None
|
||||
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
|
||||
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
|
||||
return out
|
||||
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_attn1_patch(hypertile_in)
|
||||
m.set_model_attn1_output_patch(hypertile_out)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"HyperTile": HyperTile,
|
||||
}
|
||||
175
comfy_extras/nodes_images.py
Normal file
175
comfy_extras/nodes_images.py
Normal file
@ -0,0 +1,175 @@
|
||||
import nodes
|
||||
import folder_paths
|
||||
from comfy.cli_args import args
|
||||
|
||||
from PIL import Image
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
|
||||
MAX_RESOLUTION = nodes.MAX_RESOLUTION
|
||||
|
||||
class ImageCrop:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "image": ("IMAGE",),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "crop"
|
||||
|
||||
CATEGORY = "image/transform"
|
||||
|
||||
def crop(self, image, width, height, x, y):
|
||||
x = min(x, image.shape[2] - 1)
|
||||
y = min(y, image.shape[1] - 1)
|
||||
to_x = width + x
|
||||
to_y = height + y
|
||||
img = image[:,y:to_y, x:to_x, :]
|
||||
return (img,)
|
||||
|
||||
class RepeatImageBatch:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "image": ("IMAGE",),
|
||||
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "repeat"
|
||||
|
||||
CATEGORY = "image/batch"
|
||||
|
||||
def repeat(self, image, amount):
|
||||
s = image.repeat((amount, 1,1,1))
|
||||
return (s,)
|
||||
|
||||
class SaveAnimatedWEBP:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type = "output"
|
||||
self.prefix_append = ""
|
||||
|
||||
methods = {"default": 4, "fastest": 0, "slowest": 6}
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"images": ("IMAGE", ),
|
||||
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
|
||||
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
||||
"lossless": ("BOOLEAN", {"default": True}),
|
||||
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
|
||||
"method": (list(s.methods.keys()),),
|
||||
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
|
||||
},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save_images"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
|
||||
method = self.methods.get(method)
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
pil_images = []
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||
pil_images.append(img)
|
||||
|
||||
metadata = pil_images[0].getexif()
|
||||
if not args.disable_metadata:
|
||||
if prompt is not None:
|
||||
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
|
||||
if extra_pnginfo is not None:
|
||||
inital_exif = 0x010f
|
||||
for x in extra_pnginfo:
|
||||
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
|
||||
inital_exif -= 1
|
||||
|
||||
if num_frames == 0:
|
||||
num_frames = len(pil_images)
|
||||
|
||||
c = len(pil_images)
|
||||
for i in range(0, c, num_frames):
|
||||
file = f"{filename}_{counter:05}_.webp"
|
||||
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type
|
||||
})
|
||||
counter += 1
|
||||
|
||||
animated = num_frames != 1
|
||||
return { "ui": { "images": results, "animated": (animated,) } }
|
||||
|
||||
class SaveAnimatedPNG:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type = "output"
|
||||
self.prefix_append = ""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"images": ("IMAGE", ),
|
||||
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
|
||||
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
||||
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
|
||||
},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save_images"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
pil_images = []
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||
pil_images.append(img)
|
||||
|
||||
metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = PngInfo()
|
||||
if prompt is not None:
|
||||
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
|
||||
|
||||
file = f"{filename}_{counter:05}_.png"
|
||||
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type
|
||||
})
|
||||
|
||||
return { "ui": { "images": results, "animated": (True,)} }
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageCrop": ImageCrop,
|
||||
"RepeatImageBatch": RepeatImageBatch,
|
||||
"SaveAnimatedWEBP": SaveAnimatedWEBP,
|
||||
"SaveAnimatedPNG": SaveAnimatedPNG,
|
||||
}
|
||||
205
comfy_extras/nodes_model_advanced.py
Normal file
205
comfy_extras/nodes_model_advanced.py
Normal file
@ -0,0 +1,205 @@
|
||||
import folder_paths
|
||||
import comfy.sd
|
||||
import comfy.model_sampling
|
||||
import torch
|
||||
|
||||
class LCM(comfy.model_sampling.EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
x0 = model_input - model_output * sigma
|
||||
|
||||
sigma_data = 0.5
|
||||
scaled_timestep = timestep * 10.0 #timestep_scaling
|
||||
|
||||
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
||||
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
||||
|
||||
return c_out * x0 + c_skip * model_input
|
||||
|
||||
class ModelSamplingDiscreteDistilled(torch.nn.Module):
|
||||
original_timesteps = 50
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.sigma_data = 1.0
|
||||
timesteps = 1000
|
||||
beta_start = 0.00085
|
||||
beta_end = 0.012
|
||||
|
||||
betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
|
||||
alphas = 1.0 - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
|
||||
self.skip_steps = timesteps // self.original_timesteps
|
||||
|
||||
|
||||
alphas_cumprod_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
|
||||
for x in range(self.original_timesteps):
|
||||
alphas_cumprod_valid[self.original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]
|
||||
|
||||
sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
def set_sigmas(self, sigmas):
|
||||
self.register_buffer('sigmas', sigmas)
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
|
||||
|
||||
def sigma(self, timestep):
|
||||
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent * 999.0)).item()
|
||||
|
||||
|
||||
def rescale_zero_terminal_snr_sigmas(sigmas):
|
||||
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
|
||||
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
||||
|
||||
# Store old values.
|
||||
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
||||
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
||||
|
||||
# Shift so the last timestep is zero.
|
||||
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
|
||||
|
||||
# Scale so the first timestep is back to the old value.
|
||||
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
||||
|
||||
# Convert alphas_bar_sqrt to betas
|
||||
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
||||
alphas_bar[-1] = 4.8973451890853435e-08
|
||||
return ((1 - alphas_bar) / alphas_bar) ** 0.5
|
||||
|
||||
class ModelSamplingDiscrete:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"sampling": (["eps", "v_prediction", "lcm"],),
|
||||
"zsnr": ("BOOLEAN", {"default": False}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, sampling, zsnr):
|
||||
m = model.clone()
|
||||
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
||||
if sampling == "eps":
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
elif sampling == "v_prediction":
|
||||
sampling_type = comfy.model_sampling.V_PREDICTION
|
||||
elif sampling == "lcm":
|
||||
sampling_type = LCM
|
||||
sampling_base = ModelSamplingDiscreteDistilled
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced()
|
||||
if zsnr:
|
||||
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
|
||||
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return (m, )
|
||||
|
||||
class ModelSamplingContinuousEDM:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"sampling": (["v_prediction", "eps"],),
|
||||
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
||||
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, sampling, sigma_max, sigma_min):
|
||||
m = model.clone()
|
||||
|
||||
if sampling == "eps":
|
||||
sampling_type = comfy.model_sampling.EPS
|
||||
elif sampling == "v_prediction":
|
||||
sampling_type = comfy.model_sampling.V_PREDICTION
|
||||
|
||||
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced()
|
||||
model_sampling.set_sigma_range(sigma_min, sigma_max)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
return (m, )
|
||||
|
||||
class RescaleCFG:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, multiplier):
|
||||
def rescale_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
cond_scale = args["cond_scale"]
|
||||
sigma = args["sigma"]
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
|
||||
x_orig = args["input"]
|
||||
|
||||
#rescale cfg has to be done on v-pred model output
|
||||
x = x_orig / (sigma * sigma + 1.0)
|
||||
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
||||
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
||||
|
||||
#rescalecfg
|
||||
x_cfg = uncond + cond_scale * (cond - uncond)
|
||||
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
|
||||
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
|
||||
|
||||
x_rescaled = x_cfg * (ro_pos / ro_cfg)
|
||||
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
|
||||
|
||||
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(rescale_cfg)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelSamplingDiscrete": ModelSamplingDiscrete,
|
||||
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
|
||||
"RescaleCFG": RescaleCFG,
|
||||
}
|
||||
53
comfy_extras/nodes_model_downscale.py
Normal file
53
comfy_extras/nodes_model_downscale.py
Normal file
@ -0,0 +1,53 @@
|
||||
import torch
|
||||
import comfy.utils
|
||||
|
||||
class PatchModelAddDownscale:
|
||||
upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"]
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}),
|
||||
"downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}),
|
||||
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
"end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
"downscale_after_skip": ("BOOLEAN", {"default": True}),
|
||||
"downscale_method": (s.upscale_methods,),
|
||||
"upscale_method": (s.upscale_methods,),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
|
||||
sigma_start = model.model.model_sampling.percent_to_sigma(start_percent)
|
||||
sigma_end = model.model.model_sampling.percent_to_sigma(end_percent)
|
||||
|
||||
def input_block_patch(h, transformer_options):
|
||||
if transformer_options["block"][1] == block_number:
|
||||
sigma = transformer_options["sigmas"][0].item()
|
||||
if sigma <= sigma_start and sigma >= sigma_end:
|
||||
h = comfy.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled")
|
||||
return h
|
||||
|
||||
def output_block_patch(h, hsp, transformer_options):
|
||||
if h.shape[2] != hsp.shape[2]:
|
||||
h = comfy.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled")
|
||||
return h, hsp
|
||||
|
||||
m = model.clone()
|
||||
if downscale_after_skip:
|
||||
m.set_model_input_block_patch_after_skip(input_block_patch)
|
||||
else:
|
||||
m.set_model_input_block_patch(input_block_patch)
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"PatchModelAddDownscale": PatchModelAddDownscale,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
# Sampling
|
||||
"PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)",
|
||||
}
|
||||
89
comfy_extras/nodes_video_model.py
Normal file
89
comfy_extras/nodes_video_model.py
Normal file
@ -0,0 +1,89 @@
|
||||
import nodes
|
||||
import torch
|
||||
import comfy.utils
|
||||
import comfy.sd
|
||||
import folder_paths
|
||||
|
||||
|
||||
class ImageOnlyCheckpointLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
|
||||
FUNCTION = "load_checkpoint"
|
||||
|
||||
CATEGORY = "loaders/video_models"
|
||||
|
||||
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
||||
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return (out[0], out[3], out[2])
|
||||
|
||||
|
||||
class SVD_img2vid_Conditioning:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_vision": ("CLIP_VISION",),
|
||||
"init_image": ("IMAGE",),
|
||||
"vae": ("VAE",),
|
||||
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
|
||||
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
|
||||
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
|
||||
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
RETURN_NAMES = ("positive", "negative", "latent")
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
if augmentation_level > 0:
|
||||
encode_pixels += torch.randn_like(pixels) * augmentation_level
|
||||
t = vae.encode(encode_pixels)
|
||||
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
|
||||
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
|
||||
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
||||
return (positive, negative, {"samples":latent})
|
||||
|
||||
class VideoLinearCFGGuidance:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "sampling/video_models"
|
||||
|
||||
def patch(self, model, min_cfg):
|
||||
def linear_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
cond_scale = args["cond_scale"]
|
||||
|
||||
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
|
||||
return uncond + scale * (cond - uncond)
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(linear_cfg)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
|
||||
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
|
||||
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
|
||||
}
|
||||
@ -2,7 +2,7 @@ torch
|
||||
torchaudio
|
||||
torchvision
|
||||
torchdiffeq>=0.2.3
|
||||
torchsde>=0.2.5
|
||||
torchsde>=0.2.6
|
||||
einops>=0.6.0
|
||||
open-clip-torch>=2.16.0
|
||||
transformers>=4.29.1
|
||||
|
||||
1
tests-ui/.gitignore
vendored
Normal file
1
tests-ui/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
node_modules
|
||||
3
tests-ui/babel.config.json
Normal file
3
tests-ui/babel.config.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"presets": ["@babel/preset-env"]
|
||||
}
|
||||
14
tests-ui/globalSetup.js
Normal file
14
tests-ui/globalSetup.js
Normal file
@ -0,0 +1,14 @@
|
||||
module.exports = async function () {
|
||||
global.ResizeObserver = class ResizeObserver {
|
||||
observe() {}
|
||||
unobserve() {}
|
||||
disconnect() {}
|
||||
};
|
||||
|
||||
const { nop } = require("./utils/nopProxy");
|
||||
global.enableWebGLCanvas = nop;
|
||||
|
||||
HTMLCanvasElement.prototype.getContext = nop;
|
||||
|
||||
localStorage["Comfy.Settings.Comfy.Logging.Enabled"] = "false";
|
||||
};
|
||||
9
tests-ui/jest.config.js
Normal file
9
tests-ui/jest.config.js
Normal file
@ -0,0 +1,9 @@
|
||||
/** @type {import('jest').Config} */
|
||||
const config = {
|
||||
testEnvironment: "jsdom",
|
||||
setupFiles: ["./globalSetup.js"],
|
||||
clearMocks: true,
|
||||
resetModules: true,
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
5566
tests-ui/package-lock.json
generated
Normal file
5566
tests-ui/package-lock.json
generated
Normal file
File diff suppressed because it is too large
Load Diff
30
tests-ui/package.json
Normal file
30
tests-ui/package.json
Normal file
@ -0,0 +1,30 @@
|
||||
{
|
||||
"name": "comfui-tests",
|
||||
"version": "1.0.0",
|
||||
"description": "UI tests",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "jest",
|
||||
"test:generate": "node setup.js"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "git+https://github.com/comfyanonymous/ComfyUI.git"
|
||||
},
|
||||
"keywords": [
|
||||
"comfyui",
|
||||
"test"
|
||||
],
|
||||
"author": "comfyanonymous",
|
||||
"license": "GPL-3.0",
|
||||
"bugs": {
|
||||
"url": "https://github.com/comfyanonymous/ComfyUI/issues"
|
||||
},
|
||||
"homepage": "https://github.com/comfyanonymous/ComfyUI#readme",
|
||||
"devDependencies": {
|
||||
"@babel/preset-env": "^7.22.20",
|
||||
"@types/jest": "^29.5.5",
|
||||
"jest": "^29.7.0",
|
||||
"jest-environment-jsdom": "^29.7.0"
|
||||
}
|
||||
}
|
||||
88
tests-ui/setup.js
Normal file
88
tests-ui/setup.js
Normal file
@ -0,0 +1,88 @@
|
||||
const { spawn } = require("child_process");
|
||||
const { resolve } = require("path");
|
||||
const { existsSync, mkdirSync, writeFileSync } = require("fs");
|
||||
const http = require("http");
|
||||
|
||||
async function setup() {
|
||||
// Wait up to 30s for it to start
|
||||
let success = false;
|
||||
let child;
|
||||
for (let i = 0; i < 30; i++) {
|
||||
try {
|
||||
await new Promise((res, rej) => {
|
||||
http
|
||||
.get("http://127.0.0.1:8188/object_info", (resp) => {
|
||||
let data = "";
|
||||
resp.on("data", (chunk) => {
|
||||
data += chunk;
|
||||
});
|
||||
resp.on("end", () => {
|
||||
// Modify the response data to add some checkpoints
|
||||
const objectInfo = JSON.parse(data);
|
||||
objectInfo.CheckpointLoaderSimple.input.required.ckpt_name[0] = ["model1.safetensors", "model2.ckpt"];
|
||||
objectInfo.VAELoader.input.required.vae_name[0] = ["vae1.safetensors", "vae2.ckpt"];
|
||||
|
||||
data = JSON.stringify(objectInfo, undefined, "\t");
|
||||
|
||||
const outDir = resolve("./data");
|
||||
if (!existsSync(outDir)) {
|
||||
mkdirSync(outDir);
|
||||
}
|
||||
|
||||
const outPath = resolve(outDir, "object_info.json");
|
||||
console.log(`Writing ${Object.keys(objectInfo).length} nodes to ${outPath}`);
|
||||
writeFileSync(outPath, data, {
|
||||
encoding: "utf8",
|
||||
});
|
||||
res();
|
||||
});
|
||||
})
|
||||
.on("error", rej);
|
||||
});
|
||||
success = true;
|
||||
break;
|
||||
} catch (error) {
|
||||
console.log(i + "/30", error);
|
||||
if (i === 0) {
|
||||
// Start the server on first iteration if it fails to connect
|
||||
console.log("Starting ComfyUI server...");
|
||||
|
||||
let python = resolve("../../python_embeded/python.exe");
|
||||
let args;
|
||||
let cwd;
|
||||
if (existsSync(python)) {
|
||||
args = ["-s", "ComfyUI/main.py"];
|
||||
cwd = "../..";
|
||||
} else {
|
||||
python = "python";
|
||||
args = ["main.py"];
|
||||
cwd = "..";
|
||||
}
|
||||
args.push("--cpu");
|
||||
console.log(python, ...args);
|
||||
child = spawn(python, args, { cwd });
|
||||
child.on("error", (err) => {
|
||||
console.log(`Server error (${err})`);
|
||||
i = 30;
|
||||
});
|
||||
child.on("exit", (code) => {
|
||||
if (!success) {
|
||||
console.log(`Server exited (${code})`);
|
||||
i = 30;
|
||||
}
|
||||
});
|
||||
}
|
||||
await new Promise((r) => {
|
||||
setTimeout(r, 1000);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
child?.kill();
|
||||
|
||||
if (!success) {
|
||||
throw new Error("Waiting for server failed...");
|
||||
}
|
||||
}
|
||||
|
||||
setup();
|
||||
196
tests-ui/tests/extensions.test.js
Normal file
196
tests-ui/tests/extensions.test.js
Normal file
@ -0,0 +1,196 @@
|
||||
// @ts-check
|
||||
/// <reference path="../node_modules/@types/jest/index.d.ts" />
|
||||
const { start } = require("../utils");
|
||||
const lg = require("../utils/litegraph");
|
||||
|
||||
describe("extensions", () => {
|
||||
beforeEach(() => {
|
||||
lg.setup(global);
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
lg.teardown(global);
|
||||
});
|
||||
|
||||
it("calls each extension hook", async () => {
|
||||
const mockExtension = {
|
||||
name: "TestExtension",
|
||||
init: jest.fn(),
|
||||
setup: jest.fn(),
|
||||
addCustomNodeDefs: jest.fn(),
|
||||
getCustomWidgets: jest.fn(),
|
||||
beforeRegisterNodeDef: jest.fn(),
|
||||
registerCustomNodes: jest.fn(),
|
||||
loadedGraphNode: jest.fn(),
|
||||
nodeCreated: jest.fn(),
|
||||
beforeConfigureGraph: jest.fn(),
|
||||
afterConfigureGraph: jest.fn(),
|
||||
};
|
||||
|
||||
const { app, ez, graph } = await start({
|
||||
async preSetup(app) {
|
||||
app.registerExtension(mockExtension);
|
||||
},
|
||||
});
|
||||
|
||||
// Basic initialisation hooks should be called once, with app
|
||||
expect(mockExtension.init).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.init).toHaveBeenCalledWith(app);
|
||||
|
||||
// Adding custom node defs should be passed the full list of nodes
|
||||
expect(mockExtension.addCustomNodeDefs).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.addCustomNodeDefs.mock.calls[0][1]).toStrictEqual(app);
|
||||
const defs = mockExtension.addCustomNodeDefs.mock.calls[0][0];
|
||||
expect(defs).toHaveProperty("KSampler");
|
||||
expect(defs).toHaveProperty("LoadImage");
|
||||
|
||||
// Get custom widgets is called once and should return new widget types
|
||||
expect(mockExtension.getCustomWidgets).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.getCustomWidgets).toHaveBeenCalledWith(app);
|
||||
|
||||
// Before register node def will be called once per node type
|
||||
const nodeNames = Object.keys(defs);
|
||||
const nodeCount = nodeNames.length;
|
||||
expect(mockExtension.beforeRegisterNodeDef).toHaveBeenCalledTimes(nodeCount);
|
||||
for (let i = 0; i < nodeCount; i++) {
|
||||
// It should be send the JS class and the original JSON definition
|
||||
const nodeClass = mockExtension.beforeRegisterNodeDef.mock.calls[i][0];
|
||||
const nodeDef = mockExtension.beforeRegisterNodeDef.mock.calls[i][1];
|
||||
|
||||
expect(nodeClass.name).toBe("ComfyNode");
|
||||
expect(nodeClass.comfyClass).toBe(nodeNames[i]);
|
||||
expect(nodeDef.name).toBe(nodeNames[i]);
|
||||
expect(nodeDef).toHaveProperty("input");
|
||||
expect(nodeDef).toHaveProperty("output");
|
||||
}
|
||||
|
||||
// Register custom nodes is called once after registerNode defs to allow adding other frontend nodes
|
||||
expect(mockExtension.registerCustomNodes).toHaveBeenCalledTimes(1);
|
||||
|
||||
// Before configure graph will be called here as the default graph is being loaded
|
||||
expect(mockExtension.beforeConfigureGraph).toHaveBeenCalledTimes(1);
|
||||
// it gets sent the graph data that is going to be loaded
|
||||
const graphData = mockExtension.beforeConfigureGraph.mock.calls[0][0];
|
||||
|
||||
// A node created is fired for each node constructor that is called
|
||||
expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length);
|
||||
for (let i = 0; i < graphData.nodes.length; i++) {
|
||||
expect(mockExtension.nodeCreated.mock.calls[i][0].type).toBe(graphData.nodes[i].type);
|
||||
}
|
||||
|
||||
// Each node then calls loadedGraphNode to allow them to be updated
|
||||
expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length);
|
||||
for (let i = 0; i < graphData.nodes.length; i++) {
|
||||
expect(mockExtension.loadedGraphNode.mock.calls[i][0].type).toBe(graphData.nodes[i].type);
|
||||
}
|
||||
|
||||
// After configure is then called once all the setup is done
|
||||
expect(mockExtension.afterConfigureGraph).toHaveBeenCalledTimes(1);
|
||||
|
||||
expect(mockExtension.setup).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.setup).toHaveBeenCalledWith(app);
|
||||
|
||||
// Ensure hooks are called in the correct order
|
||||
const callOrder = [
|
||||
"init",
|
||||
"addCustomNodeDefs",
|
||||
"getCustomWidgets",
|
||||
"beforeRegisterNodeDef",
|
||||
"registerCustomNodes",
|
||||
"beforeConfigureGraph",
|
||||
"nodeCreated",
|
||||
"loadedGraphNode",
|
||||
"afterConfigureGraph",
|
||||
"setup",
|
||||
];
|
||||
for (let i = 1; i < callOrder.length; i++) {
|
||||
const fn1 = mockExtension[callOrder[i - 1]];
|
||||
const fn2 = mockExtension[callOrder[i]];
|
||||
expect(fn1.mock.invocationCallOrder[0]).toBeLessThan(fn2.mock.invocationCallOrder[0]);
|
||||
}
|
||||
|
||||
graph.clear();
|
||||
|
||||
// Ensure adding a new node calls the correct callback
|
||||
ez.LoadImage();
|
||||
expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length);
|
||||
expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length + 1);
|
||||
expect(mockExtension.nodeCreated.mock.lastCall[0].type).toBe("LoadImage");
|
||||
|
||||
// Reload the graph to ensure correct hooks are fired
|
||||
await graph.reload();
|
||||
|
||||
// These hooks should not be fired again
|
||||
expect(mockExtension.init).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.addCustomNodeDefs).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.getCustomWidgets).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.registerCustomNodes).toHaveBeenCalledTimes(1);
|
||||
expect(mockExtension.beforeRegisterNodeDef).toHaveBeenCalledTimes(nodeCount);
|
||||
expect(mockExtension.setup).toHaveBeenCalledTimes(1);
|
||||
|
||||
// These should be called again
|
||||
expect(mockExtension.beforeConfigureGraph).toHaveBeenCalledTimes(2);
|
||||
expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length + 2);
|
||||
expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length + 1);
|
||||
expect(mockExtension.afterConfigureGraph).toHaveBeenCalledTimes(2);
|
||||
});
|
||||
|
||||
it("allows custom nodeDefs and widgets to be registered", async () => {
|
||||
const widgetMock = jest.fn((node, inputName, inputData, app) => {
|
||||
expect(node.constructor.comfyClass).toBe("TestNode");
|
||||
expect(inputName).toBe("test_input");
|
||||
expect(inputData[0]).toBe("CUSTOMWIDGET");
|
||||
expect(inputData[1]?.hello).toBe("world");
|
||||
expect(app).toStrictEqual(app);
|
||||
|
||||
return {
|
||||
widget: node.addWidget("button", inputName, "hello", () => {}),
|
||||
};
|
||||
});
|
||||
|
||||
// Register our extension that adds a custom node + widget type
|
||||
const mockExtension = {
|
||||
name: "TestExtension",
|
||||
addCustomNodeDefs: (nodeDefs) => {
|
||||
nodeDefs["TestNode"] = {
|
||||
output: [],
|
||||
output_name: [],
|
||||
output_is_list: [],
|
||||
name: "TestNode",
|
||||
display_name: "TestNode",
|
||||
category: "Test",
|
||||
input: {
|
||||
required: {
|
||||
test_input: ["CUSTOMWIDGET", { hello: "world" }],
|
||||
},
|
||||
},
|
||||
};
|
||||
},
|
||||
getCustomWidgets: jest.fn(() => {
|
||||
return {
|
||||
CUSTOMWIDGET: widgetMock,
|
||||
};
|
||||
}),
|
||||
};
|
||||
|
||||
const { graph, ez } = await start({
|
||||
async preSetup(app) {
|
||||
app.registerExtension(mockExtension);
|
||||
},
|
||||
});
|
||||
|
||||
expect(mockExtension.getCustomWidgets).toBeCalledTimes(1);
|
||||
|
||||
graph.clear();
|
||||
expect(widgetMock).toBeCalledTimes(0);
|
||||
const node = ez.TestNode();
|
||||
expect(widgetMock).toBeCalledTimes(1);
|
||||
|
||||
// Ensure our custom widget is created
|
||||
expect(node.inputs.length).toBe(0);
|
||||
expect(node.widgets.length).toBe(1);
|
||||
const w = node.widgets[0].widget;
|
||||
expect(w.name).toBe("test_input");
|
||||
expect(w.type).toBe("button");
|
||||
});
|
||||
});
|
||||
818
tests-ui/tests/groupNode.test.js
Normal file
818
tests-ui/tests/groupNode.test.js
Normal file
@ -0,0 +1,818 @@
|
||||
// @ts-check
|
||||
/// <reference path="../node_modules/@types/jest/index.d.ts" />
|
||||
|
||||
const { start, createDefaultWorkflow } = require("../utils");
|
||||
const lg = require("../utils/litegraph");
|
||||
|
||||
describe("group node", () => {
|
||||
beforeEach(() => {
|
||||
lg.setup(global);
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
lg.teardown(global);
|
||||
});
|
||||
|
||||
/**
|
||||
*
|
||||
* @param {*} app
|
||||
* @param {*} graph
|
||||
* @param {*} name
|
||||
* @param {*} nodes
|
||||
* @returns { Promise<InstanceType<import("../utils/ezgraph")["EzNode"]>> }
|
||||
*/
|
||||
async function convertToGroup(app, graph, name, nodes) {
|
||||
// Select the nodes we are converting
|
||||
for (const n of nodes) {
|
||||
n.select(true);
|
||||
}
|
||||
|
||||
expect(Object.keys(app.canvas.selected_nodes).sort((a, b) => +a - +b)).toEqual(
|
||||
nodes.map((n) => n.id + "").sort((a, b) => +a - +b)
|
||||
);
|
||||
|
||||
global.prompt = jest.fn().mockImplementation(() => name);
|
||||
const groupNode = await nodes[0].menu["Convert to Group Node"].call(false);
|
||||
|
||||
// Check group name was requested
|
||||
expect(window.prompt).toHaveBeenCalled();
|
||||
|
||||
// Ensure old nodes are removed
|
||||
for (const n of nodes) {
|
||||
expect(n.isRemoved).toBeTruthy();
|
||||
}
|
||||
|
||||
expect(groupNode.type).toEqual("workflow/" + name);
|
||||
|
||||
return graph.find(groupNode);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { Record<string, string | number> | number[] } idMap
|
||||
* @param { Record<string, Record<string, unknown>> } valueMap
|
||||
*/
|
||||
function getOutput(idMap = {}, valueMap = {}) {
|
||||
if (idMap instanceof Array) {
|
||||
idMap = idMap.reduce((p, n) => {
|
||||
p[n] = n + "";
|
||||
return p;
|
||||
}, {});
|
||||
}
|
||||
const expected = {
|
||||
1: { inputs: { ckpt_name: "model1.safetensors", ...valueMap?.[1] }, class_type: "CheckpointLoaderSimple" },
|
||||
2: { inputs: { text: "positive", clip: ["1", 1], ...valueMap?.[2] }, class_type: "CLIPTextEncode" },
|
||||
3: { inputs: { text: "negative", clip: ["1", 1], ...valueMap?.[3] }, class_type: "CLIPTextEncode" },
|
||||
4: { inputs: { width: 512, height: 512, batch_size: 1, ...valueMap?.[4] }, class_type: "EmptyLatentImage" },
|
||||
5: {
|
||||
inputs: {
|
||||
seed: 0,
|
||||
steps: 20,
|
||||
cfg: 8,
|
||||
sampler_name: "euler",
|
||||
scheduler: "normal",
|
||||
denoise: 1,
|
||||
model: ["1", 0],
|
||||
positive: ["2", 0],
|
||||
negative: ["3", 0],
|
||||
latent_image: ["4", 0],
|
||||
...valueMap?.[5],
|
||||
},
|
||||
class_type: "KSampler",
|
||||
},
|
||||
6: { inputs: { samples: ["5", 0], vae: ["1", 2], ...valueMap?.[6] }, class_type: "VAEDecode" },
|
||||
7: { inputs: { filename_prefix: "ComfyUI", images: ["6", 0], ...valueMap?.[7] }, class_type: "SaveImage" },
|
||||
};
|
||||
|
||||
// Map old IDs to new at the top level
|
||||
const mapped = {};
|
||||
for (const oldId in idMap) {
|
||||
mapped[idMap[oldId]] = expected[oldId];
|
||||
delete expected[oldId];
|
||||
}
|
||||
Object.assign(mapped, expected);
|
||||
|
||||
// Map old IDs to new inside links
|
||||
for (const k in mapped) {
|
||||
for (const input in mapped[k].inputs) {
|
||||
const v = mapped[k].inputs[input];
|
||||
if (v instanceof Array) {
|
||||
if (v[0] in idMap) {
|
||||
v[0] = idMap[v[0]] + "";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return mapped;
|
||||
}
|
||||
|
||||
test("can be created from selected nodes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty]);
|
||||
|
||||
// Ensure links are now to the group node
|
||||
expect(group.inputs).toHaveLength(2);
|
||||
expect(group.outputs).toHaveLength(3);
|
||||
|
||||
expect(group.inputs.map((i) => i.input.name)).toEqual(["clip", "CLIPTextEncode clip"]);
|
||||
expect(group.outputs.map((i) => i.output.name)).toEqual(["LATENT", "CONDITIONING", "CLIPTextEncode CONDITIONING"]);
|
||||
|
||||
// ckpt clip to both clip inputs on the group
|
||||
expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[group.id, 0],
|
||||
[group.id, 1],
|
||||
]);
|
||||
|
||||
// group conditioning to sampler
|
||||
expect(group.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[nodes.sampler.id, 1],
|
||||
]);
|
||||
// group conditioning 2 to sampler
|
||||
expect(
|
||||
group.outputs["CLIPTextEncode CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])
|
||||
).toEqual([[nodes.sampler.id, 2]]);
|
||||
// group latent to sampler
|
||||
expect(group.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[nodes.sampler.id, 3],
|
||||
]);
|
||||
});
|
||||
|
||||
test("maintains all output links on conversion", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const save2 = ez.SaveImage(...nodes.decode.outputs);
|
||||
const save3 = ez.SaveImage(...nodes.decode.outputs);
|
||||
// Ensure an output with multiple links maintains them on convert to group
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.sampler, nodes.decode]);
|
||||
expect(group.outputs[0].connections.length).toBe(3);
|
||||
expect(group.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id);
|
||||
expect(group.outputs[0].connections[1].targetNode.id).toBe(save2.id);
|
||||
expect(group.outputs[0].connections[2].targetNode.id).toBe(save3.id);
|
||||
|
||||
// and they're still linked when converting back to nodes
|
||||
const newNodes = group.menu["Convert to nodes"].call();
|
||||
const decode = graph.find(newNodes.find((n) => n.type === "VAEDecode"));
|
||||
expect(decode.outputs[0].connections.length).toBe(3);
|
||||
expect(decode.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id);
|
||||
expect(decode.outputs[0].connections[1].targetNode.id).toBe(save2.id);
|
||||
expect(decode.outputs[0].connections[2].targetNode.id).toBe(save3.id);
|
||||
});
|
||||
test("can be be converted back to nodes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const toConvert = [nodes.pos, nodes.neg, nodes.empty, nodes.sampler];
|
||||
const group = await convertToGroup(app, graph, "test", toConvert);
|
||||
|
||||
// Edit some values to ensure they are set back onto the converted nodes
|
||||
expect(group.widgets["text"].value).toBe("positive");
|
||||
group.widgets["text"].value = "pos";
|
||||
expect(group.widgets["CLIPTextEncode text"].value).toBe("negative");
|
||||
group.widgets["CLIPTextEncode text"].value = "neg";
|
||||
expect(group.widgets["width"].value).toBe(512);
|
||||
group.widgets["width"].value = 1024;
|
||||
expect(group.widgets["sampler_name"].value).toBe("euler");
|
||||
group.widgets["sampler_name"].value = "ddim";
|
||||
expect(group.widgets["control_after_generate"].value).toBe("randomize");
|
||||
group.widgets["control_after_generate"].value = "fixed";
|
||||
|
||||
/** @type { Array<any> } */
|
||||
group.menu["Convert to nodes"].call();
|
||||
|
||||
// ensure widget values are set
|
||||
const pos = graph.find(nodes.pos.id);
|
||||
expect(pos.node.type).toBe("CLIPTextEncode");
|
||||
expect(pos.widgets["text"].value).toBe("pos");
|
||||
const neg = graph.find(nodes.neg.id);
|
||||
expect(neg.node.type).toBe("CLIPTextEncode");
|
||||
expect(neg.widgets["text"].value).toBe("neg");
|
||||
const empty = graph.find(nodes.empty.id);
|
||||
expect(empty.node.type).toBe("EmptyLatentImage");
|
||||
expect(empty.widgets["width"].value).toBe(1024);
|
||||
const sampler = graph.find(nodes.sampler.id);
|
||||
expect(sampler.node.type).toBe("KSampler");
|
||||
expect(sampler.widgets["sampler_name"].value).toBe("ddim");
|
||||
expect(sampler.widgets["control_after_generate"].value).toBe("fixed");
|
||||
|
||||
// validate links
|
||||
expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[pos.id, 0],
|
||||
[neg.id, 0],
|
||||
]);
|
||||
|
||||
expect(pos.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[nodes.sampler.id, 1],
|
||||
]);
|
||||
|
||||
expect(neg.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[nodes.sampler.id, 2],
|
||||
]);
|
||||
|
||||
expect(empty.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([
|
||||
[nodes.sampler.id, 3],
|
||||
]);
|
||||
});
|
||||
test("it can embed reroutes as inputs", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
// Add and connect a reroute to the clip text encodes
|
||||
const reroute = ez.Reroute();
|
||||
nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]);
|
||||
reroute.outputs[0].connectTo(nodes.pos.inputs[0]);
|
||||
reroute.outputs[0].connectTo(nodes.neg.inputs[0]);
|
||||
|
||||
// Convert to group and ensure we only have 1 input of the correct type
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty, reroute]);
|
||||
expect(group.inputs).toHaveLength(1);
|
||||
expect(group.inputs[0].input.type).toEqual("CLIP");
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput());
|
||||
});
|
||||
test("it can embed reroutes as outputs", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
// Add a reroute with no output so we output IMAGE even though its used internally
|
||||
const reroute = ez.Reroute();
|
||||
nodes.decode.outputs.IMAGE.connectTo(reroute.inputs[0]);
|
||||
|
||||
// Convert to group and ensure there is an IMAGE output
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.decode, nodes.save, reroute]);
|
||||
expect(group.outputs).toHaveLength(1);
|
||||
expect(group.outputs[0].output.type).toEqual("IMAGE");
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.decode.id, nodes.save.id]));
|
||||
});
|
||||
test("it can embed reroutes as pipes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
// Use reroutes as a pipe
|
||||
const rerouteModel = ez.Reroute();
|
||||
const rerouteClip = ez.Reroute();
|
||||
const rerouteVae = ez.Reroute();
|
||||
nodes.ckpt.outputs.MODEL.connectTo(rerouteModel.inputs[0]);
|
||||
nodes.ckpt.outputs.CLIP.connectTo(rerouteClip.inputs[0]);
|
||||
nodes.ckpt.outputs.VAE.connectTo(rerouteVae.inputs[0]);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [rerouteModel, rerouteClip, rerouteVae]);
|
||||
|
||||
expect(group.outputs).toHaveLength(3);
|
||||
expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]);
|
||||
|
||||
expect(group.outputs).toHaveLength(3);
|
||||
expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]);
|
||||
|
||||
group.outputs[0].connectTo(nodes.sampler.inputs.model);
|
||||
group.outputs[1].connectTo(nodes.pos.inputs.clip);
|
||||
group.outputs[1].connectTo(nodes.neg.inputs.clip);
|
||||
});
|
||||
test("can handle reroutes used internally", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
let reroutes = [];
|
||||
let prevNode = nodes.ckpt;
|
||||
for(let i = 0; i < 5; i++) {
|
||||
const reroute = ez.Reroute();
|
||||
prevNode.outputs[0].connectTo(reroute.inputs[0]);
|
||||
prevNode = reroute;
|
||||
reroutes.push(reroute);
|
||||
}
|
||||
prevNode.outputs[0].connectTo(nodes.sampler.inputs.model);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [...reroutes, ...Object.values(nodes)]);
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput());
|
||||
|
||||
group.menu["Convert to nodes"].call();
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput());
|
||||
});
|
||||
test("creates with widget values from inner nodes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
nodes.ckpt.widgets.ckpt_name.value = "model2.ckpt";
|
||||
nodes.pos.widgets.text.value = "hello";
|
||||
nodes.neg.widgets.text.value = "world";
|
||||
nodes.empty.widgets.width.value = 256;
|
||||
nodes.empty.widgets.height.value = 1024;
|
||||
nodes.sampler.widgets.seed.value = 1;
|
||||
nodes.sampler.widgets.control_after_generate.value = "increment";
|
||||
nodes.sampler.widgets.steps.value = 8;
|
||||
nodes.sampler.widgets.cfg.value = 4.5;
|
||||
nodes.sampler.widgets.sampler_name.value = "uni_pc";
|
||||
nodes.sampler.widgets.scheduler.value = "karras";
|
||||
nodes.sampler.widgets.denoise.value = 0.9;
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [
|
||||
nodes.ckpt,
|
||||
nodes.pos,
|
||||
nodes.neg,
|
||||
nodes.empty,
|
||||
nodes.sampler,
|
||||
]);
|
||||
|
||||
expect(group.widgets["ckpt_name"].value).toEqual("model2.ckpt");
|
||||
expect(group.widgets["text"].value).toEqual("hello");
|
||||
expect(group.widgets["CLIPTextEncode text"].value).toEqual("world");
|
||||
expect(group.widgets["width"].value).toEqual(256);
|
||||
expect(group.widgets["height"].value).toEqual(1024);
|
||||
expect(group.widgets["seed"].value).toEqual(1);
|
||||
expect(group.widgets["control_after_generate"].value).toEqual("increment");
|
||||
expect(group.widgets["steps"].value).toEqual(8);
|
||||
expect(group.widgets["cfg"].value).toEqual(4.5);
|
||||
expect(group.widgets["sampler_name"].value).toEqual("uni_pc");
|
||||
expect(group.widgets["scheduler"].value).toEqual("karras");
|
||||
expect(group.widgets["denoise"].value).toEqual(0.9);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(
|
||||
getOutput([nodes.ckpt.id, nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id], {
|
||||
[nodes.ckpt.id]: { ckpt_name: "model2.ckpt" },
|
||||
[nodes.pos.id]: { text: "hello" },
|
||||
[nodes.neg.id]: { text: "world" },
|
||||
[nodes.empty.id]: { width: 256, height: 1024 },
|
||||
[nodes.sampler.id]: {
|
||||
seed: 1,
|
||||
steps: 8,
|
||||
cfg: 4.5,
|
||||
sampler_name: "uni_pc",
|
||||
scheduler: "karras",
|
||||
denoise: 0.9,
|
||||
},
|
||||
})
|
||||
);
|
||||
});
|
||||
test("group inputs can be reroutes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]);
|
||||
|
||||
const reroute = ez.Reroute();
|
||||
nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]);
|
||||
|
||||
reroute.outputs[0].connectTo(group.inputs[0]);
|
||||
reroute.outputs[0].connectTo(group.inputs[1]);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id]));
|
||||
});
|
||||
test("group outputs can be reroutes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]);
|
||||
|
||||
const reroute1 = ez.Reroute();
|
||||
const reroute2 = ez.Reroute();
|
||||
group.outputs[0].connectTo(reroute1.inputs[0]);
|
||||
group.outputs[1].connectTo(reroute2.inputs[0]);
|
||||
|
||||
reroute1.outputs[0].connectTo(nodes.sampler.inputs.positive);
|
||||
reroute2.outputs[0].connectTo(nodes.sampler.inputs.negative);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id]));
|
||||
});
|
||||
test("groups can connect to each other", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const group1 = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]);
|
||||
const group2 = await convertToGroup(app, graph, "test2", [nodes.empty, nodes.sampler]);
|
||||
|
||||
group1.outputs[0].connectTo(group2.inputs["positive"]);
|
||||
group1.outputs[1].connectTo(group2.inputs["negative"]);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(
|
||||
getOutput([nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id])
|
||||
);
|
||||
});
|
||||
test("displays generated image on group node", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
let group = await convertToGroup(app, graph, "test", [
|
||||
nodes.pos,
|
||||
nodes.neg,
|
||||
nodes.empty,
|
||||
nodes.sampler,
|
||||
nodes.decode,
|
||||
nodes.save,
|
||||
]);
|
||||
|
||||
const { api } = require("../../web/scripts/api");
|
||||
|
||||
api.dispatchEvent(new CustomEvent("execution_start", {}));
|
||||
api.dispatchEvent(new CustomEvent("executing", { detail: `${nodes.save.id}` }));
|
||||
// Event should be forwarded to group node id
|
||||
expect(+app.runningNodeId).toEqual(group.id);
|
||||
expect(group.node["imgs"]).toBeFalsy();
|
||||
api.dispatchEvent(
|
||||
new CustomEvent("executed", {
|
||||
detail: {
|
||||
node: `${nodes.save.id}`,
|
||||
output: {
|
||||
images: [
|
||||
{
|
||||
filename: "test.png",
|
||||
type: "output",
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
})
|
||||
);
|
||||
|
||||
// Trigger paint
|
||||
group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas);
|
||||
|
||||
expect(group.node["images"]).toEqual([
|
||||
{
|
||||
filename: "test.png",
|
||||
type: "output",
|
||||
},
|
||||
]);
|
||||
|
||||
// Reload
|
||||
const workflow = JSON.stringify((await graph.toPrompt()).workflow);
|
||||
await app.loadGraphData(JSON.parse(workflow));
|
||||
group = graph.find(group);
|
||||
|
||||
// Trigger inner nodes to get created
|
||||
group.node["getInnerNodes"]();
|
||||
|
||||
// Check it works for internal node ids
|
||||
api.dispatchEvent(new CustomEvent("execution_start", {}));
|
||||
api.dispatchEvent(new CustomEvent("executing", { detail: `${group.id}:5` }));
|
||||
// Event should be forwarded to group node id
|
||||
expect(+app.runningNodeId).toEqual(group.id);
|
||||
expect(group.node["imgs"]).toBeFalsy();
|
||||
api.dispatchEvent(
|
||||
new CustomEvent("executed", {
|
||||
detail: {
|
||||
node: `${group.id}:5`,
|
||||
output: {
|
||||
images: [
|
||||
{
|
||||
filename: "test2.png",
|
||||
type: "output",
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
})
|
||||
);
|
||||
|
||||
// Trigger paint
|
||||
group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas);
|
||||
|
||||
expect(group.node["images"]).toEqual([
|
||||
{
|
||||
filename: "test2.png",
|
||||
type: "output",
|
||||
},
|
||||
]);
|
||||
});
|
||||
test("allows widgets to be converted to inputs", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]);
|
||||
group.widgets[0].convertToInput();
|
||||
|
||||
const primitive = ez.PrimitiveNode();
|
||||
primitive.outputs[0].connectTo(group.inputs["text"]);
|
||||
primitive.widgets[0].value = "hello";
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual(
|
||||
getOutput([nodes.pos.id, nodes.neg.id], {
|
||||
[nodes.pos.id]: { text: "hello" },
|
||||
})
|
||||
);
|
||||
});
|
||||
test("can be copied", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
|
||||
const group1 = await convertToGroup(app, graph, "test", [
|
||||
nodes.pos,
|
||||
nodes.neg,
|
||||
nodes.empty,
|
||||
nodes.sampler,
|
||||
nodes.decode,
|
||||
nodes.save,
|
||||
]);
|
||||
|
||||
group1.widgets["text"].value = "hello";
|
||||
group1.widgets["width"].value = 256;
|
||||
group1.widgets["seed"].value = 1;
|
||||
|
||||
// Clone the node
|
||||
group1.menu.Clone.call();
|
||||
expect(app.graph._nodes).toHaveLength(3);
|
||||
const group2 = graph.find(app.graph._nodes[2]);
|
||||
expect(group2.node.type).toEqual("workflow/test");
|
||||
expect(group2.id).not.toEqual(group1.id);
|
||||
|
||||
// Reconnect ckpt
|
||||
nodes.ckpt.outputs.MODEL.connectTo(group2.inputs["model"]);
|
||||
nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["clip"]);
|
||||
nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["CLIPTextEncode clip"]);
|
||||
nodes.ckpt.outputs.VAE.connectTo(group2.inputs["vae"]);
|
||||
|
||||
group2.widgets["text"].value = "world";
|
||||
group2.widgets["width"].value = 1024;
|
||||
group2.widgets["seed"].value = 100;
|
||||
|
||||
let i = 0;
|
||||
expect((await graph.toPrompt()).output).toEqual({
|
||||
...getOutput([nodes.empty.id, nodes.pos.id, nodes.neg.id, nodes.sampler.id, nodes.decode.id, nodes.save.id], {
|
||||
[nodes.empty.id]: { width: 256 },
|
||||
[nodes.pos.id]: { text: "hello" },
|
||||
[nodes.sampler.id]: { seed: 1 },
|
||||
}),
|
||||
...getOutput(
|
||||
{
|
||||
[nodes.empty.id]: `${group2.id}:${i++}`,
|
||||
[nodes.pos.id]: `${group2.id}:${i++}`,
|
||||
[nodes.neg.id]: `${group2.id}:${i++}`,
|
||||
[nodes.sampler.id]: `${group2.id}:${i++}`,
|
||||
[nodes.decode.id]: `${group2.id}:${i++}`,
|
||||
[nodes.save.id]: `${group2.id}:${i++}`,
|
||||
},
|
||||
{
|
||||
[nodes.empty.id]: { width: 1024 },
|
||||
[nodes.pos.id]: { text: "world" },
|
||||
[nodes.sampler.id]: { seed: 100 },
|
||||
}
|
||||
),
|
||||
});
|
||||
|
||||
graph.arrange();
|
||||
});
|
||||
test("is embedded in workflow", async () => {
|
||||
let { ez, graph, app } = await start();
|
||||
const nodes = createDefaultWorkflow(ez, graph);
|
||||
let group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]);
|
||||
const workflow = JSON.stringify((await graph.toPrompt()).workflow);
|
||||
|
||||
// Clear the environment
|
||||
({ ez, graph, app } = await start({
|
||||
resetEnv: true,
|
||||
}));
|
||||
// Ensure the node isnt registered
|
||||
expect(() => ez["workflow/test"]).toThrow();
|
||||
|
||||
// Reload the workflow
|
||||
await app.loadGraphData(JSON.parse(workflow));
|
||||
|
||||
// Ensure the node is found
|
||||
group = graph.find(group);
|
||||
|
||||
// Generate prompt and ensure it is as expected
|
||||
expect((await graph.toPrompt()).output).toEqual(
|
||||
getOutput({
|
||||
[nodes.pos.id]: `${group.id}:0`,
|
||||
[nodes.neg.id]: `${group.id}:1`,
|
||||
})
|
||||
);
|
||||
});
|
||||
test("shows missing node error on missing internal node when loading graph data", async () => {
|
||||
const { graph } = await start();
|
||||
|
||||
const dialogShow = jest.spyOn(graph.app.ui.dialog, "show");
|
||||
await graph.app.loadGraphData({
|
||||
last_node_id: 3,
|
||||
last_link_id: 1,
|
||||
nodes: [
|
||||
{
|
||||
id: 3,
|
||||
type: "workflow/testerror",
|
||||
},
|
||||
],
|
||||
links: [],
|
||||
groups: [],
|
||||
config: {},
|
||||
extra: {
|
||||
groupNodes: {
|
||||
testerror: {
|
||||
nodes: [
|
||||
{
|
||||
type: "NotKSampler",
|
||||
},
|
||||
{
|
||||
type: "NotVAEDecode",
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
expect(dialogShow).toBeCalledTimes(1);
|
||||
const call = dialogShow.mock.calls[0][0].innerHTML;
|
||||
expect(call).toContain("the following node types were not found");
|
||||
expect(call).toContain("NotKSampler");
|
||||
expect(call).toContain("NotVAEDecode");
|
||||
expect(call).toContain("workflow/testerror");
|
||||
});
|
||||
test("maintains widget inputs on conversion back to nodes", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
let pos = ez.CLIPTextEncode({ text: "positive" });
|
||||
pos.node.title = "Positive";
|
||||
let neg = ez.CLIPTextEncode({ text: "negative" });
|
||||
neg.node.title = "Negative";
|
||||
pos.widgets.text.convertToInput();
|
||||
neg.widgets.text.convertToInput();
|
||||
|
||||
let primitive = ez.PrimitiveNode();
|
||||
primitive.outputs[0].connectTo(pos.inputs.text);
|
||||
primitive.outputs[0].connectTo(neg.inputs.text);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [pos, neg, primitive]);
|
||||
// This will use a primitive widget named 'value'
|
||||
expect(group.widgets.length).toBe(1);
|
||||
expect(group.widgets["value"].value).toBe("positive");
|
||||
|
||||
const newNodes = group.menu["Convert to nodes"].call();
|
||||
pos = graph.find(newNodes.find((n) => n.title === "Positive"));
|
||||
neg = graph.find(newNodes.find((n) => n.title === "Negative"));
|
||||
primitive = graph.find(newNodes.find((n) => n.type === "PrimitiveNode"));
|
||||
|
||||
expect(pos.inputs).toHaveLength(2);
|
||||
expect(neg.inputs).toHaveLength(2);
|
||||
expect(primitive.outputs[0].connections).toHaveLength(2);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual({
|
||||
1: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" },
|
||||
2: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" },
|
||||
});
|
||||
});
|
||||
test("adds widgets in node execution order", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const scale = ez.LatentUpscale();
|
||||
const save = ez.SaveImage();
|
||||
const empty = ez.EmptyLatentImage();
|
||||
const decode = ez.VAEDecode();
|
||||
|
||||
scale.outputs.LATENT.connectTo(decode.inputs.samples);
|
||||
decode.outputs.IMAGE.connectTo(save.inputs.images);
|
||||
empty.outputs.LATENT.connectTo(scale.inputs.samples);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [scale, save, empty, decode]);
|
||||
const widgets = group.widgets.map((w) => w.widget.name);
|
||||
expect(widgets).toStrictEqual([
|
||||
"width",
|
||||
"height",
|
||||
"batch_size",
|
||||
"upscale_method",
|
||||
"LatentUpscale width",
|
||||
"LatentUpscale height",
|
||||
"crop",
|
||||
"filename_prefix",
|
||||
]);
|
||||
});
|
||||
test("adds output for external links when converting to group", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const img = ez.EmptyLatentImage();
|
||||
let decode = ez.VAEDecode(...img.outputs);
|
||||
const preview1 = ez.PreviewImage(...decode.outputs);
|
||||
const preview2 = ez.PreviewImage(...decode.outputs);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [img, decode, preview1]);
|
||||
|
||||
// Ensure we have an output connected to the 2nd preview node
|
||||
expect(group.outputs.length).toBe(1);
|
||||
expect(group.outputs[0].connections.length).toBe(1);
|
||||
expect(group.outputs[0].connections[0].targetNode.id).toBe(preview2.id);
|
||||
|
||||
// Convert back and ensure bothe previews are still connected
|
||||
group.menu["Convert to nodes"].call();
|
||||
decode = graph.find(decode);
|
||||
expect(decode.outputs[0].connections.length).toBe(2);
|
||||
expect(decode.outputs[0].connections[0].targetNode.id).toBe(preview1.id);
|
||||
expect(decode.outputs[0].connections[1].targetNode.id).toBe(preview2.id);
|
||||
});
|
||||
test("adds output for external links when converting to group when nodes are not in execution order", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const sampler = ez.KSampler();
|
||||
const ckpt = ez.CheckpointLoaderSimple();
|
||||
const empty = ez.EmptyLatentImage();
|
||||
const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" });
|
||||
const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" });
|
||||
const decode1 = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE);
|
||||
const save = ez.SaveImage(decode1.outputs.IMAGE);
|
||||
ckpt.outputs.MODEL.connectTo(sampler.inputs.model);
|
||||
pos.outputs.CONDITIONING.connectTo(sampler.inputs.positive);
|
||||
neg.outputs.CONDITIONING.connectTo(sampler.inputs.negative);
|
||||
empty.outputs.LATENT.connectTo(sampler.inputs.latent_image);
|
||||
|
||||
const encode = ez.VAEEncode(decode1.outputs.IMAGE);
|
||||
const vae = ez.VAELoader();
|
||||
const decode2 = ez.VAEDecode(encode.outputs.LATENT, vae.outputs.VAE);
|
||||
const preview = ez.PreviewImage(decode2.outputs.IMAGE);
|
||||
vae.outputs.VAE.connectTo(encode.inputs.vae);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [vae, decode1, encode, sampler]);
|
||||
|
||||
expect(group.outputs.length).toBe(3);
|
||||
expect(group.outputs[0].output.name).toBe("VAE");
|
||||
expect(group.outputs[0].output.type).toBe("VAE");
|
||||
expect(group.outputs[1].output.name).toBe("IMAGE");
|
||||
expect(group.outputs[1].output.type).toBe("IMAGE");
|
||||
expect(group.outputs[2].output.name).toBe("LATENT");
|
||||
expect(group.outputs[2].output.type).toBe("LATENT");
|
||||
|
||||
expect(group.outputs[0].connections.length).toBe(1);
|
||||
expect(group.outputs[0].connections[0].targetNode.id).toBe(decode2.id);
|
||||
expect(group.outputs[0].connections[0].targetInput.index).toBe(1);
|
||||
|
||||
expect(group.outputs[1].connections.length).toBe(1);
|
||||
expect(group.outputs[1].connections[0].targetNode.id).toBe(save.id);
|
||||
expect(group.outputs[1].connections[0].targetInput.index).toBe(0);
|
||||
|
||||
expect(group.outputs[2].connections.length).toBe(1);
|
||||
expect(group.outputs[2].connections[0].targetNode.id).toBe(decode2.id);
|
||||
expect(group.outputs[2].connections[0].targetInput.index).toBe(0);
|
||||
|
||||
expect((await graph.toPrompt()).output).toEqual({
|
||||
...getOutput({ 1: ckpt.id, 2: pos.id, 3: neg.id, 4: empty.id, 5: sampler.id, 6: decode1.id, 7: save.id }),
|
||||
[vae.id]: { inputs: { vae_name: "vae1.safetensors" }, class_type: vae.node.type },
|
||||
[encode.id]: { inputs: { pixels: ["6", 0], vae: [vae.id + "", 0] }, class_type: encode.node.type },
|
||||
[decode2.id]: { inputs: { samples: [encode.id + "", 0], vae: [vae.id + "", 0] }, class_type: decode2.node.type },
|
||||
[preview.id]: { inputs: { images: [decode2.id + "", 0] }, class_type: preview.node.type },
|
||||
});
|
||||
});
|
||||
test("works with IMAGEUPLOAD widget", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const img = ez.LoadImage();
|
||||
const preview1 = ez.PreviewImage(img.outputs[0]);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [img, preview1]);
|
||||
const widget = group.widgets["upload"];
|
||||
expect(widget).toBeTruthy();
|
||||
expect(widget.widget.type).toBe("button");
|
||||
});
|
||||
test("internal primitive populates widgets for all linked inputs", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const img = ez.LoadImage();
|
||||
const scale1 = ez.ImageScale(img.outputs[0]);
|
||||
const scale2 = ez.ImageScale(img.outputs[0]);
|
||||
ez.PreviewImage(scale1.outputs[0]);
|
||||
ez.PreviewImage(scale2.outputs[0]);
|
||||
|
||||
scale1.widgets.width.convertToInput();
|
||||
scale2.widgets.height.convertToInput();
|
||||
|
||||
const primitive = ez.PrimitiveNode();
|
||||
primitive.outputs[0].connectTo(scale1.inputs.width);
|
||||
primitive.outputs[0].connectTo(scale2.inputs.height);
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [img, primitive, scale1, scale2]);
|
||||
group.widgets.value.value = 100;
|
||||
expect((await graph.toPrompt()).output).toEqual({
|
||||
1: {
|
||||
inputs: { image: img.widgets.image.value, upload: "image" },
|
||||
class_type: "LoadImage",
|
||||
},
|
||||
2: {
|
||||
inputs: { upscale_method: "nearest-exact", width: 100, height: 512, crop: "disabled", image: ["1", 0] },
|
||||
class_type: "ImageScale",
|
||||
},
|
||||
3: {
|
||||
inputs: { upscale_method: "nearest-exact", width: 512, height: 100, crop: "disabled", image: ["1", 0] },
|
||||
class_type: "ImageScale",
|
||||
},
|
||||
4: { inputs: { images: ["2", 0] }, class_type: "PreviewImage" },
|
||||
5: { inputs: { images: ["3", 0] }, class_type: "PreviewImage" },
|
||||
});
|
||||
});
|
||||
test("primitive control widgets values are copied on convert", async () => {
|
||||
const { ez, graph, app } = await start();
|
||||
const sampler = ez.KSampler();
|
||||
sampler.widgets.seed.convertToInput();
|
||||
sampler.widgets.sampler_name.convertToInput();
|
||||
|
||||
let p1 = ez.PrimitiveNode();
|
||||
let p2 = ez.PrimitiveNode();
|
||||
p1.outputs[0].connectTo(sampler.inputs.seed);
|
||||
p2.outputs[0].connectTo(sampler.inputs.sampler_name);
|
||||
|
||||
p1.widgets.control_after_generate.value = "increment";
|
||||
p2.widgets.control_after_generate.value = "decrement";
|
||||
p2.widgets.control_filter_list.value = "/.*/";
|
||||
|
||||
p2.node.title = "p2";
|
||||
|
||||
const group = await convertToGroup(app, graph, "test", [sampler, p1, p2]);
|
||||
expect(group.widgets.control_after_generate.value).toBe("increment");
|
||||
expect(group.widgets["p2 control_after_generate"].value).toBe("decrement");
|
||||
expect(group.widgets["p2 control_filter_list"].value).toBe("/.*/");
|
||||
|
||||
group.widgets.control_after_generate.value = "fixed";
|
||||
group.widgets["p2 control_after_generate"].value = "randomize";
|
||||
group.widgets["p2 control_filter_list"].value = "/.+/";
|
||||
|
||||
group.menu["Convert to nodes"].call();
|
||||
p1 = graph.find(p1);
|
||||
p2 = graph.find(p2);
|
||||
|
||||
expect(p1.widgets.control_after_generate.value).toBe("fixed");
|
||||
expect(p2.widgets.control_after_generate.value).toBe("randomize");
|
||||
expect(p2.widgets.control_filter_list.value).toBe("/.+/");
|
||||
});
|
||||
});
|
||||
395
tests-ui/tests/widgetInputs.test.js
Normal file
395
tests-ui/tests/widgetInputs.test.js
Normal file
@ -0,0 +1,395 @@
|
||||
// @ts-check
|
||||
/// <reference path="../node_modules/@types/jest/index.d.ts" />
|
||||
|
||||
const { start, makeNodeDef, checkBeforeAndAfterReload, assertNotNullOrUndefined } = require("../utils");
|
||||
const lg = require("../utils/litegraph");
|
||||
|
||||
/**
|
||||
* @typedef { import("../utils/ezgraph") } Ez
|
||||
* @typedef { ReturnType<Ez["Ez"]["graph"]>["ez"] } EzNodeFactory
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param { EzNodeFactory } ez
|
||||
* @param { InstanceType<Ez["EzGraph"]> } graph
|
||||
* @param { InstanceType<Ez["EzInput"]> } input
|
||||
* @param { string } widgetType
|
||||
* @param { number } controlWidgetCount
|
||||
* @returns
|
||||
*/
|
||||
async function connectPrimitiveAndReload(ez, graph, input, widgetType, controlWidgetCount = 0) {
|
||||
// Connect to primitive and ensure its still connected after
|
||||
let primitive = ez.PrimitiveNode();
|
||||
primitive.outputs[0].connectTo(input);
|
||||
|
||||
await checkBeforeAndAfterReload(graph, async () => {
|
||||
primitive = graph.find(primitive);
|
||||
let { connections } = primitive.outputs[0];
|
||||
expect(connections).toHaveLength(1);
|
||||
expect(connections[0].targetNode.id).toBe(input.node.node.id);
|
||||
|
||||
// Ensure widget is correct type
|
||||
const valueWidget = primitive.widgets.value;
|
||||
expect(valueWidget.widget.type).toBe(widgetType);
|
||||
|
||||
// Check if control_after_generate should be added
|
||||
if (controlWidgetCount) {
|
||||
const controlWidget = primitive.widgets.control_after_generate;
|
||||
expect(controlWidget.widget.type).toBe("combo");
|
||||
if(widgetType === "combo") {
|
||||
const filterWidget = primitive.widgets.control_filter_list;
|
||||
expect(filterWidget.widget.type).toBe("string");
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure we dont have other widgets
|
||||
expect(primitive.node.widgets).toHaveLength(1 + controlWidgetCount);
|
||||
});
|
||||
|
||||
return primitive;
|
||||
}
|
||||
|
||||
describe("widget inputs", () => {
|
||||
beforeEach(() => {
|
||||
lg.setup(global);
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
lg.teardown(global);
|
||||
});
|
||||
|
||||
[
|
||||
{ name: "int", type: "INT", widget: "number", control: 1 },
|
||||
{ name: "float", type: "FLOAT", widget: "number", control: 1 },
|
||||
{ name: "text", type: "STRING" },
|
||||
{
|
||||
name: "customtext",
|
||||
type: "STRING",
|
||||
opt: { multiline: true },
|
||||
},
|
||||
{ name: "toggle", type: "BOOLEAN" },
|
||||
{ name: "combo", type: ["a", "b", "c"], control: 2 },
|
||||
].forEach((c) => {
|
||||
test(`widget conversion + primitive works on ${c.name}`, async () => {
|
||||
const { ez, graph } = await start({
|
||||
mockNodeDefs: makeNodeDef("TestNode", { [c.name]: [c.type, c.opt ?? {}] }),
|
||||
});
|
||||
|
||||
// Create test node and convert to input
|
||||
const n = ez.TestNode();
|
||||
const w = n.widgets[c.name];
|
||||
w.convertToInput();
|
||||
expect(w.isConvertedToInput).toBeTruthy();
|
||||
const input = w.getConvertedInput();
|
||||
expect(input).toBeTruthy();
|
||||
|
||||
// @ts-ignore : input is valid here
|
||||
await connectPrimitiveAndReload(ez, graph, input, c.widget ?? c.name, c.control);
|
||||
});
|
||||
});
|
||||
|
||||
test("converted widget works after reload", async () => {
|
||||
const { ez, graph } = await start();
|
||||
let n = ez.CheckpointLoaderSimple();
|
||||
|
||||
const inputCount = n.inputs.length;
|
||||
|
||||
// Convert ckpt name to an input
|
||||
n.widgets.ckpt_name.convertToInput();
|
||||
expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy();
|
||||
expect(n.inputs.ckpt_name).toBeTruthy();
|
||||
expect(n.inputs.length).toEqual(inputCount + 1);
|
||||
|
||||
// Convert back to widget and ensure input is removed
|
||||
n.widgets.ckpt_name.convertToWidget();
|
||||
expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy();
|
||||
expect(n.inputs.ckpt_name).toBeFalsy();
|
||||
expect(n.inputs.length).toEqual(inputCount);
|
||||
|
||||
// Convert again and reload the graph to ensure it maintains state
|
||||
n.widgets.ckpt_name.convertToInput();
|
||||
expect(n.inputs.length).toEqual(inputCount + 1);
|
||||
|
||||
const primitive = await connectPrimitiveAndReload(ez, graph, n.inputs.ckpt_name, "combo", 2);
|
||||
|
||||
// Disconnect & reconnect
|
||||
primitive.outputs[0].connections[0].disconnect();
|
||||
let { connections } = primitive.outputs[0];
|
||||
expect(connections).toHaveLength(0);
|
||||
|
||||
primitive.outputs[0].connectTo(n.inputs.ckpt_name);
|
||||
({ connections } = primitive.outputs[0]);
|
||||
expect(connections).toHaveLength(1);
|
||||
expect(connections[0].targetNode.id).toBe(n.node.id);
|
||||
|
||||
// Convert back to widget and ensure input is removed
|
||||
n.widgets.ckpt_name.convertToWidget();
|
||||
expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy();
|
||||
expect(n.inputs.ckpt_name).toBeFalsy();
|
||||
expect(n.inputs.length).toEqual(inputCount);
|
||||
});
|
||||
|
||||
test("converted widget works on clone", async () => {
|
||||
const { graph, ez } = await start();
|
||||
let n = ez.CheckpointLoaderSimple();
|
||||
|
||||
// Convert the widget to an input
|
||||
n.widgets.ckpt_name.convertToInput();
|
||||
expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy();
|
||||
|
||||
// Clone the node
|
||||
n.menu["Clone"].call();
|
||||
expect(graph.nodes).toHaveLength(2);
|
||||
const clone = graph.nodes[1];
|
||||
expect(clone.id).not.toEqual(n.id);
|
||||
|
||||
// Ensure the clone has an input
|
||||
expect(clone.widgets.ckpt_name.isConvertedToInput).toBeTruthy();
|
||||
expect(clone.inputs.ckpt_name).toBeTruthy();
|
||||
|
||||
// Ensure primitive connects to both nodes
|
||||
let primitive = ez.PrimitiveNode();
|
||||
primitive.outputs[0].connectTo(n.inputs.ckpt_name);
|
||||
primitive.outputs[0].connectTo(clone.inputs.ckpt_name);
|
||||
expect(primitive.outputs[0].connections).toHaveLength(2);
|
||||
|
||||
// Convert back to widget and ensure input is removed
|
||||
clone.widgets.ckpt_name.convertToWidget();
|
||||
expect(clone.widgets.ckpt_name.isConvertedToInput).toBeFalsy();
|
||||
expect(clone.inputs.ckpt_name).toBeFalsy();
|
||||
});
|
||||
|
||||
test("shows missing node error on custom node with converted input", async () => {
|
||||
const { graph } = await start();
|
||||
|
||||
const dialogShow = jest.spyOn(graph.app.ui.dialog, "show");
|
||||
|
||||
await graph.app.loadGraphData({
|
||||
last_node_id: 3,
|
||||
last_link_id: 4,
|
||||
nodes: [
|
||||
{
|
||||
id: 1,
|
||||
type: "TestNode",
|
||||
pos: [41.87329101561909, 389.7381480823742],
|
||||
size: { 0: 220, 1: 374 },
|
||||
flags: {},
|
||||
order: 1,
|
||||
mode: 0,
|
||||
inputs: [{ name: "test", type: "FLOAT", link: 4, widget: { name: "test" }, slot_index: 0 }],
|
||||
outputs: [],
|
||||
properties: { "Node name for S&R": "TestNode" },
|
||||
widgets_values: [1],
|
||||
},
|
||||
{
|
||||
id: 3,
|
||||
type: "PrimitiveNode",
|
||||
pos: [-312, 433],
|
||||
size: { 0: 210, 1: 82 },
|
||||
flags: {},
|
||||
order: 0,
|
||||
mode: 0,
|
||||
outputs: [{ links: [4], widget: { name: "test" } }],
|
||||
title: "test",
|
||||
properties: {},
|
||||
},
|
||||
],
|
||||
links: [[4, 3, 0, 1, 6, "FLOAT"]],
|
||||
groups: [],
|
||||
config: {},
|
||||
extra: {},
|
||||
version: 0.4,
|
||||
});
|
||||
|
||||
expect(dialogShow).toBeCalledTimes(1);
|
||||
expect(dialogShow.mock.calls[0][0].innerHTML).toContain("the following node types were not found");
|
||||
expect(dialogShow.mock.calls[0][0].innerHTML).toContain("TestNode");
|
||||
});
|
||||
|
||||
test("defaultInput widgets can be converted back to inputs", async () => {
|
||||
const { graph, ez } = await start({
|
||||
mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { defaultInput: true }] }),
|
||||
});
|
||||
|
||||
// Create test node and ensure it starts as an input
|
||||
let n = ez.TestNode();
|
||||
let w = n.widgets.example;
|
||||
expect(w.isConvertedToInput).toBeTruthy();
|
||||
let input = w.getConvertedInput();
|
||||
expect(input).toBeTruthy();
|
||||
|
||||
// Ensure it can be converted to
|
||||
w.convertToWidget();
|
||||
expect(w.isConvertedToInput).toBeFalsy();
|
||||
expect(n.inputs.length).toEqual(0);
|
||||
// and from
|
||||
w.convertToInput();
|
||||
expect(w.isConvertedToInput).toBeTruthy();
|
||||
input = w.getConvertedInput();
|
||||
|
||||
// Reload and ensure it still only has 1 converted widget
|
||||
if (!assertNotNullOrUndefined(input)) return;
|
||||
|
||||
await connectPrimitiveAndReload(ez, graph, input, "number", 1);
|
||||
n = graph.find(n);
|
||||
expect(n.widgets).toHaveLength(1);
|
||||
w = n.widgets.example;
|
||||
expect(w.isConvertedToInput).toBeTruthy();
|
||||
|
||||
// Convert back to widget and ensure it is still a widget after reload
|
||||
w.convertToWidget();
|
||||
await graph.reload();
|
||||
n = graph.find(n);
|
||||
expect(n.widgets).toHaveLength(1);
|
||||
expect(n.widgets[0].isConvertedToInput).toBeFalsy();
|
||||
expect(n.inputs.length).toEqual(0);
|
||||
});
|
||||
|
||||
test("forceInput widgets can not be converted back to inputs", async () => {
|
||||
const { graph, ez } = await start({
|
||||
mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { forceInput: true }] }),
|
||||
});
|
||||
|
||||
// Create test node and ensure it starts as an input
|
||||
let n = ez.TestNode();
|
||||
let w = n.widgets.example;
|
||||
expect(w.isConvertedToInput).toBeTruthy();
|
||||
const input = w.getConvertedInput();
|
||||
expect(input).toBeTruthy();
|
||||
|
||||
// Convert to widget should error
|
||||
expect(() => w.convertToWidget()).toThrow();
|
||||
|
||||
// Reload and ensure it still only has 1 converted widget
|
||||
if (assertNotNullOrUndefined(input)) {
|
||||
await connectPrimitiveAndReload(ez, graph, input, "number", 1);
|
||||
n = graph.find(n);
|
||||
expect(n.widgets).toHaveLength(1);
|
||||
expect(n.widgets.example.isConvertedToInput).toBeTruthy();
|
||||
}
|
||||
});
|
||||
|
||||
test("primitive can connect to matching combos on converted widgets", async () => {
|
||||
const { ez } = await start({
|
||||
mockNodeDefs: {
|
||||
...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }),
|
||||
...makeNodeDef("TestNode2", { example: [["A", "B", "C"], { forceInput: true }] }),
|
||||
},
|
||||
});
|
||||
|
||||
const n1 = ez.TestNode1();
|
||||
const n2 = ez.TestNode2();
|
||||
const p = ez.PrimitiveNode();
|
||||
p.outputs[0].connectTo(n1.inputs[0]);
|
||||
p.outputs[0].connectTo(n2.inputs[0]);
|
||||
expect(p.outputs[0].connections).toHaveLength(2);
|
||||
const valueWidget = p.widgets.value;
|
||||
expect(valueWidget.widget.type).toBe("combo");
|
||||
expect(valueWidget.widget.options.values).toEqual(["A", "B", "C"]);
|
||||
});
|
||||
|
||||
test("primitive can not connect to non matching combos on converted widgets", async () => {
|
||||
const { ez } = await start({
|
||||
mockNodeDefs: {
|
||||
...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }),
|
||||
...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true }] }),
|
||||
},
|
||||
});
|
||||
|
||||
const n1 = ez.TestNode1();
|
||||
const n2 = ez.TestNode2();
|
||||
const p = ez.PrimitiveNode();
|
||||
p.outputs[0].connectTo(n1.inputs[0]);
|
||||
expect(() => p.outputs[0].connectTo(n2.inputs[0])).toThrow();
|
||||
expect(p.outputs[0].connections).toHaveLength(1);
|
||||
});
|
||||
|
||||
test("combo output can not connect to non matching combos list input", async () => {
|
||||
const { ez } = await start({
|
||||
mockNodeDefs: {
|
||||
...makeNodeDef("TestNode1", {}, [["A", "B"]]),
|
||||
...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true}] }),
|
||||
...makeNodeDef("TestNode3", { example: [["A", "B", "C"], { forceInput: true}] }),
|
||||
},
|
||||
});
|
||||
|
||||
const n1 = ez.TestNode1();
|
||||
const n2 = ez.TestNode2();
|
||||
const n3 = ez.TestNode3();
|
||||
|
||||
n1.outputs[0].connectTo(n2.inputs[0]);
|
||||
expect(() => n1.outputs[0].connectTo(n3.inputs[0])).toThrow();
|
||||
});
|
||||
|
||||
test("combo primitive can filter list when control_after_generate called", async () => {
|
||||
const { ez } = await start({
|
||||
mockNodeDefs: {
|
||||
...makeNodeDef("TestNode1", { example: [["A", "B", "C", "D", "AA", "BB", "CC", "DD", "AAA", "BBB"], {}] }),
|
||||
},
|
||||
});
|
||||
|
||||
const n1 = ez.TestNode1();
|
||||
n1.widgets.example.convertToInput();
|
||||
const p = ez.PrimitiveNode()
|
||||
p.outputs[0].connectTo(n1.inputs[0]);
|
||||
|
||||
const value = p.widgets.value;
|
||||
const control = p.widgets.control_after_generate.widget;
|
||||
const filter = p.widgets.control_filter_list;
|
||||
|
||||
expect(p.widgets.length).toBe(3);
|
||||
control.value = "increment";
|
||||
expect(value.value).toBe("A");
|
||||
|
||||
// Manually trigger after queue when set to increment
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("B");
|
||||
|
||||
// Filter to items containing D
|
||||
filter.value = "D";
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("D");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("DD");
|
||||
|
||||
// Check decrement
|
||||
value.value = "BBB";
|
||||
control.value = "decrement";
|
||||
filter.value = "B";
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("BB");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("B");
|
||||
|
||||
// Check regex works
|
||||
value.value = "BBB";
|
||||
filter.value = "/[AB]|^C$/";
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("AAA");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("BB");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("AA");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("C");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("B");
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("A");
|
||||
|
||||
// Check random
|
||||
control.value = "randomize";
|
||||
filter.value = "/D/";
|
||||
for(let i = 0; i < 100; i++) {
|
||||
control["afterQueued"]();
|
||||
expect(value.value === "D" || value.value === "DD").toBeTruthy();
|
||||
}
|
||||
|
||||
// Ensure it doesnt apply when fixed
|
||||
control.value = "fixed";
|
||||
value.value = "B";
|
||||
filter.value = "C";
|
||||
control["afterQueued"]();
|
||||
expect(value.value).toBe("B");
|
||||
});
|
||||
});
|
||||
439
tests-ui/utils/ezgraph.js
Normal file
439
tests-ui/utils/ezgraph.js
Normal file
@ -0,0 +1,439 @@
|
||||
// @ts-check
|
||||
/// <reference path="../../web/types/litegraph.d.ts" />
|
||||
|
||||
/**
|
||||
* @typedef { import("../../web/scripts/app")["app"] } app
|
||||
* @typedef { import("../../web/types/litegraph") } LG
|
||||
* @typedef { import("../../web/types/litegraph").IWidget } IWidget
|
||||
* @typedef { import("../../web/types/litegraph").ContextMenuItem } ContextMenuItem
|
||||
* @typedef { import("../../web/types/litegraph").INodeInputSlot } INodeInputSlot
|
||||
* @typedef { import("../../web/types/litegraph").INodeOutputSlot } INodeOutputSlot
|
||||
* @typedef { InstanceType<LG["LGraphNode"]> & { widgets?: Array<IWidget> } } LGNode
|
||||
* @typedef { (...args: EzOutput[] | [...EzOutput[], Record<string, unknown>]) => EzNode } EzNodeFactory
|
||||
*/
|
||||
|
||||
export class EzConnection {
|
||||
/** @type { app } */
|
||||
app;
|
||||
/** @type { InstanceType<LG["LLink"]> } */
|
||||
link;
|
||||
|
||||
get originNode() {
|
||||
return new EzNode(this.app, this.app.graph.getNodeById(this.link.origin_id));
|
||||
}
|
||||
|
||||
get originOutput() {
|
||||
return this.originNode.outputs[this.link.origin_slot];
|
||||
}
|
||||
|
||||
get targetNode() {
|
||||
return new EzNode(this.app, this.app.graph.getNodeById(this.link.target_id));
|
||||
}
|
||||
|
||||
get targetInput() {
|
||||
return this.targetNode.inputs[this.link.target_slot];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { app } app
|
||||
* @param { InstanceType<LG["LLink"]> } link
|
||||
*/
|
||||
constructor(app, link) {
|
||||
this.app = app;
|
||||
this.link = link;
|
||||
}
|
||||
|
||||
disconnect() {
|
||||
this.targetInput.disconnect();
|
||||
}
|
||||
}
|
||||
|
||||
export class EzSlot {
|
||||
/** @type { EzNode } */
|
||||
node;
|
||||
/** @type { number } */
|
||||
index;
|
||||
|
||||
/**
|
||||
* @param { EzNode } node
|
||||
* @param { number } index
|
||||
*/
|
||||
constructor(node, index) {
|
||||
this.node = node;
|
||||
this.index = index;
|
||||
}
|
||||
}
|
||||
|
||||
export class EzInput extends EzSlot {
|
||||
/** @type { INodeInputSlot } */
|
||||
input;
|
||||
|
||||
/**
|
||||
* @param { EzNode } node
|
||||
* @param { number } index
|
||||
* @param { INodeInputSlot } input
|
||||
*/
|
||||
constructor(node, index, input) {
|
||||
super(node, index);
|
||||
this.input = input;
|
||||
}
|
||||
|
||||
disconnect() {
|
||||
this.node.node.disconnectInput(this.index);
|
||||
}
|
||||
}
|
||||
|
||||
export class EzOutput extends EzSlot {
|
||||
/** @type { INodeOutputSlot } */
|
||||
output;
|
||||
|
||||
/**
|
||||
* @param { EzNode } node
|
||||
* @param { number } index
|
||||
* @param { INodeOutputSlot } output
|
||||
*/
|
||||
constructor(node, index, output) {
|
||||
super(node, index);
|
||||
this.output = output;
|
||||
}
|
||||
|
||||
get connections() {
|
||||
return (this.node.node.outputs?.[this.index]?.links ?? []).map(
|
||||
(l) => new EzConnection(this.node.app, this.node.app.graph.links[l])
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { EzInput } input
|
||||
*/
|
||||
connectTo(input) {
|
||||
if (!input) throw new Error("Invalid input");
|
||||
|
||||
/**
|
||||
* @type { LG["LLink"] | null }
|
||||
*/
|
||||
const link = this.node.node.connect(this.index, input.node.node, input.index);
|
||||
if (!link) {
|
||||
const inp = input.input;
|
||||
const inName = inp.name || inp.label || inp.type;
|
||||
throw new Error(
|
||||
`Connecting from ${input.node.node.type}[${inName}#${input.index}] -> ${this.node.node.type}[${
|
||||
this.output.name ?? this.output.type
|
||||
}#${this.index}] failed.`
|
||||
);
|
||||
}
|
||||
return link;
|
||||
}
|
||||
}
|
||||
|
||||
export class EzNodeMenuItem {
|
||||
/** @type { EzNode } */
|
||||
node;
|
||||
/** @type { number } */
|
||||
index;
|
||||
/** @type { ContextMenuItem } */
|
||||
item;
|
||||
|
||||
/**
|
||||
* @param { EzNode } node
|
||||
* @param { number } index
|
||||
* @param { ContextMenuItem } item
|
||||
*/
|
||||
constructor(node, index, item) {
|
||||
this.node = node;
|
||||
this.index = index;
|
||||
this.item = item;
|
||||
}
|
||||
|
||||
call(selectNode = true) {
|
||||
if (!this.item?.callback) throw new Error(`Menu Item ${this.item?.content ?? "[null]"} has no callback.`);
|
||||
if (selectNode) {
|
||||
this.node.select();
|
||||
}
|
||||
return this.item.callback.call(this.node.node, undefined, undefined, undefined, undefined, this.node.node);
|
||||
}
|
||||
}
|
||||
|
||||
export class EzWidget {
|
||||
/** @type { EzNode } */
|
||||
node;
|
||||
/** @type { number } */
|
||||
index;
|
||||
/** @type { IWidget } */
|
||||
widget;
|
||||
|
||||
/**
|
||||
* @param { EzNode } node
|
||||
* @param { number } index
|
||||
* @param { IWidget } widget
|
||||
*/
|
||||
constructor(node, index, widget) {
|
||||
this.node = node;
|
||||
this.index = index;
|
||||
this.widget = widget;
|
||||
}
|
||||
|
||||
get value() {
|
||||
return this.widget.value;
|
||||
}
|
||||
|
||||
set value(v) {
|
||||
this.widget.value = v;
|
||||
}
|
||||
|
||||
get isConvertedToInput() {
|
||||
// @ts-ignore : this type is valid for converted widgets
|
||||
return this.widget.type === "converted-widget";
|
||||
}
|
||||
|
||||
getConvertedInput() {
|
||||
if (!this.isConvertedToInput) throw new Error(`Widget ${this.widget.name} is not converted to input.`);
|
||||
|
||||
return this.node.inputs.find((inp) => inp.input["widget"]?.name === this.widget.name);
|
||||
}
|
||||
|
||||
convertToWidget() {
|
||||
if (!this.isConvertedToInput)
|
||||
throw new Error(`Widget ${this.widget.name} cannot be converted as it is already a widget.`);
|
||||
this.node.menu[`Convert ${this.widget.name} to widget`].call();
|
||||
}
|
||||
|
||||
convertToInput() {
|
||||
if (this.isConvertedToInput)
|
||||
throw new Error(`Widget ${this.widget.name} cannot be converted as it is already an input.`);
|
||||
this.node.menu[`Convert ${this.widget.name} to input`].call();
|
||||
}
|
||||
}
|
||||
|
||||
export class EzNode {
|
||||
/** @type { app } */
|
||||
app;
|
||||
/** @type { LGNode } */
|
||||
node;
|
||||
|
||||
/**
|
||||
* @param { app } app
|
||||
* @param { LGNode } node
|
||||
*/
|
||||
constructor(app, node) {
|
||||
this.app = app;
|
||||
this.node = node;
|
||||
}
|
||||
|
||||
get id() {
|
||||
return this.node.id;
|
||||
}
|
||||
|
||||
get inputs() {
|
||||
return this.#makeLookupArray("inputs", "name", EzInput);
|
||||
}
|
||||
|
||||
get outputs() {
|
||||
return this.#makeLookupArray("outputs", "name", EzOutput);
|
||||
}
|
||||
|
||||
get widgets() {
|
||||
return this.#makeLookupArray("widgets", "name", EzWidget);
|
||||
}
|
||||
|
||||
get menu() {
|
||||
return this.#makeLookupArray(() => this.app.canvas.getNodeMenuOptions(this.node), "content", EzNodeMenuItem);
|
||||
}
|
||||
|
||||
get isRemoved() {
|
||||
return !this.app.graph.getNodeById(this.id);
|
||||
}
|
||||
|
||||
select(addToSelection = false) {
|
||||
this.app.canvas.selectNode(this.node, addToSelection);
|
||||
}
|
||||
|
||||
// /**
|
||||
// * @template { "inputs" | "outputs" } T
|
||||
// * @param { T } type
|
||||
// * @returns { Record<string, type extends "inputs" ? EzInput : EzOutput> & (type extends "inputs" ? EzInput [] : EzOutput[]) }
|
||||
// */
|
||||
// #getSlotItems(type) {
|
||||
// // @ts-ignore : these items are correct
|
||||
// return (this.node[type] ?? []).reduce((p, s, i) => {
|
||||
// if (s.name in p) {
|
||||
// throw new Error(`Unable to store input ${s.name} on array as name conflicts.`);
|
||||
// }
|
||||
// // @ts-ignore
|
||||
// p.push((p[s.name] = new (type === "inputs" ? EzInput : EzOutput)(this, i, s)));
|
||||
// return p;
|
||||
// }, Object.assign([], { $: this }));
|
||||
// }
|
||||
|
||||
/**
|
||||
* @template { { new(node: EzNode, index: number, obj: any): any } } T
|
||||
* @param { "inputs" | "outputs" | "widgets" | (() => Array<unknown>) } nodeProperty
|
||||
* @param { string } nameProperty
|
||||
* @param { T } ctor
|
||||
* @returns { Record<string, InstanceType<T>> & Array<InstanceType<T>> }
|
||||
*/
|
||||
#makeLookupArray(nodeProperty, nameProperty, ctor) {
|
||||
const items = typeof nodeProperty === "function" ? nodeProperty() : this.node[nodeProperty];
|
||||
// @ts-ignore
|
||||
return (items ?? []).reduce((p, s, i) => {
|
||||
if (!s) return p;
|
||||
|
||||
const name = s[nameProperty];
|
||||
const item = new ctor(this, i, s);
|
||||
// @ts-ignore
|
||||
p.push(item);
|
||||
if (name) {
|
||||
// @ts-ignore
|
||||
if (name in p) {
|
||||
throw new Error(`Unable to store ${nodeProperty} ${name} on array as name conflicts.`);
|
||||
}
|
||||
}
|
||||
// @ts-ignore
|
||||
p[name] = item;
|
||||
return p;
|
||||
}, Object.assign([], { $: this }));
|
||||
}
|
||||
}
|
||||
|
||||
export class EzGraph {
|
||||
/** @type { app } */
|
||||
app;
|
||||
|
||||
/**
|
||||
* @param { app } app
|
||||
*/
|
||||
constructor(app) {
|
||||
this.app = app;
|
||||
}
|
||||
|
||||
get nodes() {
|
||||
return this.app.graph._nodes.map((n) => new EzNode(this.app, n));
|
||||
}
|
||||
|
||||
clear() {
|
||||
this.app.graph.clear();
|
||||
}
|
||||
|
||||
arrange() {
|
||||
this.app.graph.arrange();
|
||||
}
|
||||
|
||||
stringify() {
|
||||
return JSON.stringify(this.app.graph.serialize(), undefined, "\t");
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { number | LGNode | EzNode } obj
|
||||
* @returns { EzNode }
|
||||
*/
|
||||
find(obj) {
|
||||
let match;
|
||||
let id;
|
||||
if (typeof obj === "number") {
|
||||
id = obj;
|
||||
} else {
|
||||
id = obj.id;
|
||||
}
|
||||
|
||||
match = this.app.graph.getNodeById(id);
|
||||
|
||||
if (!match) {
|
||||
throw new Error(`Unable to find node with ID ${id}.`);
|
||||
}
|
||||
|
||||
return new EzNode(this.app, match);
|
||||
}
|
||||
|
||||
/**
|
||||
* @returns { Promise<void> }
|
||||
*/
|
||||
reload() {
|
||||
const graph = JSON.parse(JSON.stringify(this.app.graph.serialize()));
|
||||
return new Promise((r) => {
|
||||
this.app.graph.clear();
|
||||
setTimeout(async () => {
|
||||
await this.app.loadGraphData(graph);
|
||||
r();
|
||||
}, 10);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* @returns { Promise<{
|
||||
* workflow: {},
|
||||
* output: Record<string, {
|
||||
* class_name: string,
|
||||
* inputs: Record<string, [string, number] | unknown>
|
||||
* }>}> }
|
||||
*/
|
||||
toPrompt() {
|
||||
// @ts-ignore
|
||||
return this.app.graphToPrompt();
|
||||
}
|
||||
}
|
||||
|
||||
export const Ez = {
|
||||
/**
|
||||
* Quickly build and interact with a ComfyUI graph
|
||||
* @example
|
||||
* const { ez, graph } = Ez.graph(app);
|
||||
* graph.clear();
|
||||
* const [model, clip, vae] = ez.CheckpointLoaderSimple().outputs;
|
||||
* const [pos] = ez.CLIPTextEncode(clip, { text: "positive" }).outputs;
|
||||
* const [neg] = ez.CLIPTextEncode(clip, { text: "negative" }).outputs;
|
||||
* const [latent] = ez.KSampler(model, pos, neg, ...ez.EmptyLatentImage().outputs).outputs;
|
||||
* const [image] = ez.VAEDecode(latent, vae).outputs;
|
||||
* const saveNode = ez.SaveImage(image);
|
||||
* console.log(saveNode);
|
||||
* graph.arrange();
|
||||
* @param { app } app
|
||||
* @param { LG["LiteGraph"] } LiteGraph
|
||||
* @param { LG["LGraphCanvas"] } LGraphCanvas
|
||||
* @param { boolean } clearGraph
|
||||
* @returns { { graph: EzGraph, ez: Record<string, EzNodeFactory> } }
|
||||
*/
|
||||
graph(app, LiteGraph = window["LiteGraph"], LGraphCanvas = window["LGraphCanvas"], clearGraph = true) {
|
||||
// Always set the active canvas so things work
|
||||
LGraphCanvas.active_canvas = app.canvas;
|
||||
|
||||
if (clearGraph) {
|
||||
app.graph.clear();
|
||||
}
|
||||
|
||||
// @ts-ignore : this proxy handles utility methods & node creation
|
||||
const factory = new Proxy(
|
||||
{},
|
||||
{
|
||||
get(_, p) {
|
||||
if (typeof p !== "string") throw new Error("Invalid node");
|
||||
const node = LiteGraph.createNode(p);
|
||||
if (!node) throw new Error(`Unknown node "${p}"`);
|
||||
app.graph.add(node);
|
||||
|
||||
/**
|
||||
* @param {Parameters<EzNodeFactory>} args
|
||||
*/
|
||||
return function (...args) {
|
||||
const ezNode = new EzNode(app, node);
|
||||
const inputs = ezNode.inputs;
|
||||
|
||||
let slot = 0;
|
||||
for (const arg of args) {
|
||||
if (arg instanceof EzOutput) {
|
||||
arg.connectTo(inputs[slot++]);
|
||||
} else {
|
||||
for (const k in arg) {
|
||||
ezNode.widgets[k].value = arg[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ezNode;
|
||||
};
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
return { graph: new EzGraph(app), ez: factory };
|
||||
},
|
||||
};
|
||||
106
tests-ui/utils/index.js
Normal file
106
tests-ui/utils/index.js
Normal file
@ -0,0 +1,106 @@
|
||||
const { mockApi } = require("./setup");
|
||||
const { Ez } = require("./ezgraph");
|
||||
const lg = require("./litegraph");
|
||||
|
||||
/**
|
||||
*
|
||||
* @param { Parameters<mockApi>[0] & { resetEnv?: boolean, preSetup?(app): Promise<void> } } config
|
||||
* @returns
|
||||
*/
|
||||
export async function start(config = {}) {
|
||||
if(config.resetEnv) {
|
||||
jest.resetModules();
|
||||
jest.resetAllMocks();
|
||||
lg.setup(global);
|
||||
}
|
||||
|
||||
mockApi(config);
|
||||
const { app } = require("../../web/scripts/app");
|
||||
config.preSetup?.(app);
|
||||
await app.setup();
|
||||
return { ...Ez.graph(app, global["LiteGraph"], global["LGraphCanvas"]), app };
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { ReturnType<Ez["graph"]>["graph"] } graph
|
||||
* @param { (hasReloaded: boolean) => (Promise<void> | void) } cb
|
||||
*/
|
||||
export async function checkBeforeAndAfterReload(graph, cb) {
|
||||
await cb(false);
|
||||
await graph.reload();
|
||||
await cb(true);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param { string } name
|
||||
* @param { Record<string, string | [string | string[], any]> } input
|
||||
* @param { (string | string[])[] | Record<string, string | string[]> } output
|
||||
* @returns { Record<string, import("../../web/types/comfy").ComfyObjectInfo> }
|
||||
*/
|
||||
export function makeNodeDef(name, input, output = {}) {
|
||||
const nodeDef = {
|
||||
name,
|
||||
category: "test",
|
||||
output: [],
|
||||
output_name: [],
|
||||
output_is_list: [],
|
||||
input: {
|
||||
required: {},
|
||||
},
|
||||
};
|
||||
for (const k in input) {
|
||||
nodeDef.input.required[k] = typeof input[k] === "string" ? [input[k], {}] : [...input[k]];
|
||||
}
|
||||
if (output instanceof Array) {
|
||||
output = output.reduce((p, c) => {
|
||||
p[c] = c;
|
||||
return p;
|
||||
}, {});
|
||||
}
|
||||
for (const k in output) {
|
||||
nodeDef.output.push(output[k]);
|
||||
nodeDef.output_name.push(k);
|
||||
nodeDef.output_is_list.push(false);
|
||||
}
|
||||
|
||||
return { [name]: nodeDef };
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* @template { any } T
|
||||
* @param { T } x
|
||||
* @returns { x is Exclude<T, null | undefined> }
|
||||
*/
|
||||
export function assertNotNullOrUndefined(x) {
|
||||
expect(x).not.toEqual(null);
|
||||
expect(x).not.toEqual(undefined);
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param { ReturnType<Ez["graph"]>["ez"] } ez
|
||||
* @param { ReturnType<Ez["graph"]>["graph"] } graph
|
||||
*/
|
||||
export function createDefaultWorkflow(ez, graph) {
|
||||
graph.clear();
|
||||
const ckpt = ez.CheckpointLoaderSimple();
|
||||
|
||||
const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" });
|
||||
const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" });
|
||||
|
||||
const empty = ez.EmptyLatentImage();
|
||||
const sampler = ez.KSampler(
|
||||
ckpt.outputs.MODEL,
|
||||
pos.outputs.CONDITIONING,
|
||||
neg.outputs.CONDITIONING,
|
||||
empty.outputs.LATENT
|
||||
);
|
||||
|
||||
const decode = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE);
|
||||
const save = ez.SaveImage(decode.outputs.IMAGE);
|
||||
graph.arrange();
|
||||
|
||||
return { ckpt, pos, neg, empty, sampler, decode, save };
|
||||
}
|
||||
36
tests-ui/utils/litegraph.js
Normal file
36
tests-ui/utils/litegraph.js
Normal file
@ -0,0 +1,36 @@
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
const { nop } = require("../utils/nopProxy");
|
||||
|
||||
function forEachKey(cb) {
|
||||
for (const k of [
|
||||
"LiteGraph",
|
||||
"LGraph",
|
||||
"LLink",
|
||||
"LGraphNode",
|
||||
"LGraphGroup",
|
||||
"DragAndScale",
|
||||
"LGraphCanvas",
|
||||
"ContextMenu",
|
||||
]) {
|
||||
cb(k);
|
||||
}
|
||||
}
|
||||
|
||||
export function setup(ctx) {
|
||||
const lg = fs.readFileSync(path.resolve("../web/lib/litegraph.core.js"), "utf-8");
|
||||
const globalTemp = {};
|
||||
(function (console) {
|
||||
eval(lg);
|
||||
}).call(globalTemp, nop);
|
||||
|
||||
forEachKey((k) => (ctx[k] = globalTemp[k]));
|
||||
require(path.resolve("../web/lib/litegraph.extensions.js"));
|
||||
}
|
||||
|
||||
export function teardown(ctx) {
|
||||
forEachKey((k) => delete ctx[k]);
|
||||
|
||||
// Clear document after each run
|
||||
document.getElementsByTagName("html")[0].innerHTML = "";
|
||||
}
|
||||
6
tests-ui/utils/nopProxy.js
Normal file
6
tests-ui/utils/nopProxy.js
Normal file
@ -0,0 +1,6 @@
|
||||
export const nop = new Proxy(function () {}, {
|
||||
get: () => nop,
|
||||
set: () => true,
|
||||
apply: () => nop,
|
||||
construct: () => nop,
|
||||
});
|
||||
49
tests-ui/utils/setup.js
Normal file
49
tests-ui/utils/setup.js
Normal file
@ -0,0 +1,49 @@
|
||||
require("../../web/scripts/api");
|
||||
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
function* walkSync(dir) {
|
||||
const files = fs.readdirSync(dir, { withFileTypes: true });
|
||||
for (const file of files) {
|
||||
if (file.isDirectory()) {
|
||||
yield* walkSync(path.join(dir, file.name));
|
||||
} else {
|
||||
yield path.join(dir, file.name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @typedef { import("../../web/types/comfy").ComfyObjectInfo } ComfyObjectInfo
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param { { mockExtensions?: string[], mockNodeDefs?: Record<string, ComfyObjectInfo> } } config
|
||||
*/
|
||||
export function mockApi({ mockExtensions, mockNodeDefs } = {}) {
|
||||
if (!mockExtensions) {
|
||||
mockExtensions = Array.from(walkSync(path.resolve("../web/extensions/core")))
|
||||
.filter((x) => x.endsWith(".js"))
|
||||
.map((x) => path.relative(path.resolve("../web"), x));
|
||||
}
|
||||
if (!mockNodeDefs) {
|
||||
mockNodeDefs = JSON.parse(fs.readFileSync(path.resolve("./data/object_info.json")));
|
||||
}
|
||||
|
||||
const events = new EventTarget();
|
||||
const mockApi = {
|
||||
addEventListener: events.addEventListener.bind(events),
|
||||
removeEventListener: events.removeEventListener.bind(events),
|
||||
dispatchEvent: events.dispatchEvent.bind(events),
|
||||
getSystemStats: jest.fn(),
|
||||
getExtensions: jest.fn(() => mockExtensions),
|
||||
getNodeDefs: jest.fn(() => mockNodeDefs),
|
||||
init: jest.fn(),
|
||||
apiURL: jest.fn((x) => "../../web/" + x),
|
||||
};
|
||||
jest.mock("../../web/scripts/api", () => ({
|
||||
get api() {
|
||||
return mockApi;
|
||||
},
|
||||
}));
|
||||
}
|
||||
@ -174,6 +174,213 @@ const colorPalettes = {
|
||||
"tr-odd-bg-color": "#073642",
|
||||
}
|
||||
},
|
||||
},
|
||||
"arc": {
|
||||
"id": "arc",
|
||||
"name": "Arc",
|
||||
"colors": {
|
||||
"node_slot": {
|
||||
"BOOLEAN": "",
|
||||
"CLIP": "#eacb8b",
|
||||
"CLIP_VISION": "#A8DADC",
|
||||
"CLIP_VISION_OUTPUT": "#ad7452",
|
||||
"CONDITIONING": "#cf876f",
|
||||
"CONTROL_NET": "#00d78d",
|
||||
"CONTROL_NET_WEIGHTS": "",
|
||||
"FLOAT": "",
|
||||
"GLIGEN": "",
|
||||
"IMAGE": "#80a1c0",
|
||||
"IMAGEUPLOAD": "",
|
||||
"INT": "",
|
||||
"LATENT": "#b38ead",
|
||||
"LATENT_KEYFRAME": "",
|
||||
"MASK": "#a3bd8d",
|
||||
"MODEL": "#8978a7",
|
||||
"SAMPLER": "",
|
||||
"SIGMAS": "",
|
||||
"STRING": "",
|
||||
"STYLE_MODEL": "#C2FFAE",
|
||||
"T2I_ADAPTER_WEIGHTS": "",
|
||||
"TAESD": "#DCC274",
|
||||
"TIMESTEP_KEYFRAME": "",
|
||||
"UPSCALE_MODEL": "",
|
||||
"VAE": "#be616b"
|
||||
},
|
||||
"litegraph_base": {
|
||||
"BACKGROUND_IMAGE": "",
|
||||
"CLEAR_BACKGROUND_COLOR": "#2b2f38",
|
||||
"NODE_TITLE_COLOR": "#b2b7bd",
|
||||
"NODE_SELECTED_TITLE_COLOR": "#FFF",
|
||||
"NODE_TEXT_SIZE": 14,
|
||||
"NODE_TEXT_COLOR": "#AAA",
|
||||
"NODE_SUBTEXT_SIZE": 12,
|
||||
"NODE_DEFAULT_COLOR": "#2b2f38",
|
||||
"NODE_DEFAULT_BGCOLOR": "#242730",
|
||||
"NODE_DEFAULT_BOXCOLOR": "#6e7581",
|
||||
"NODE_DEFAULT_SHAPE": "box",
|
||||
"NODE_BOX_OUTLINE_COLOR": "#FFF",
|
||||
"DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)",
|
||||
"DEFAULT_GROUP_FONT": 22,
|
||||
"WIDGET_BGCOLOR": "#2b2f38",
|
||||
"WIDGET_OUTLINE_COLOR": "#6e7581",
|
||||
"WIDGET_TEXT_COLOR": "#DDD",
|
||||
"WIDGET_SECONDARY_TEXT_COLOR": "#b2b7bd",
|
||||
"LINK_COLOR": "#9A9",
|
||||
"EVENT_LINK_COLOR": "#A86",
|
||||
"CONNECTING_LINK_COLOR": "#AFA"
|
||||
},
|
||||
"comfy_base": {
|
||||
"fg-color": "#fff",
|
||||
"bg-color": "#2b2f38",
|
||||
"comfy-menu-bg": "#242730",
|
||||
"comfy-input-bg": "#2b2f38",
|
||||
"input-text": "#ddd",
|
||||
"descrip-text": "#b2b7bd",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#6e7581",
|
||||
"tr-even-bg-color": "#2b2f38",
|
||||
"tr-odd-bg-color": "#242730"
|
||||
}
|
||||
},
|
||||
},
|
||||
"nord": {
|
||||
"id": "nord",
|
||||
"name": "Nord",
|
||||
"colors": {
|
||||
"node_slot": {
|
||||
"BOOLEAN": "",
|
||||
"CLIP": "#eacb8b",
|
||||
"CLIP_VISION": "#A8DADC",
|
||||
"CLIP_VISION_OUTPUT": "#ad7452",
|
||||
"CONDITIONING": "#cf876f",
|
||||
"CONTROL_NET": "#00d78d",
|
||||
"CONTROL_NET_WEIGHTS": "",
|
||||
"FLOAT": "",
|
||||
"GLIGEN": "",
|
||||
"IMAGE": "#80a1c0",
|
||||
"IMAGEUPLOAD": "",
|
||||
"INT": "",
|
||||
"LATENT": "#b38ead",
|
||||
"LATENT_KEYFRAME": "",
|
||||
"MASK": "#a3bd8d",
|
||||
"MODEL": "#8978a7",
|
||||
"SAMPLER": "",
|
||||
"SIGMAS": "",
|
||||
"STRING": "",
|
||||
"STYLE_MODEL": "#C2FFAE",
|
||||
"T2I_ADAPTER_WEIGHTS": "",
|
||||
"TAESD": "#DCC274",
|
||||
"TIMESTEP_KEYFRAME": "",
|
||||
"UPSCALE_MODEL": "",
|
||||
"VAE": "#be616b"
|
||||
},
|
||||
"litegraph_base": {
|
||||
"BACKGROUND_IMAGE": "",
|
||||
"CLEAR_BACKGROUND_COLOR": "#212732",
|
||||
"NODE_TITLE_COLOR": "#999",
|
||||
"NODE_SELECTED_TITLE_COLOR": "#e5eaf0",
|
||||
"NODE_TEXT_SIZE": 14,
|
||||
"NODE_TEXT_COLOR": "#bcc2c8",
|
||||
"NODE_SUBTEXT_SIZE": 12,
|
||||
"NODE_DEFAULT_COLOR": "#2e3440",
|
||||
"NODE_DEFAULT_BGCOLOR": "#161b22",
|
||||
"NODE_DEFAULT_BOXCOLOR": "#545d70",
|
||||
"NODE_DEFAULT_SHAPE": "box",
|
||||
"NODE_BOX_OUTLINE_COLOR": "#e5eaf0",
|
||||
"DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)",
|
||||
"DEFAULT_GROUP_FONT": 24,
|
||||
"WIDGET_BGCOLOR": "#2e3440",
|
||||
"WIDGET_OUTLINE_COLOR": "#545d70",
|
||||
"WIDGET_TEXT_COLOR": "#bcc2c8",
|
||||
"WIDGET_SECONDARY_TEXT_COLOR": "#999",
|
||||
"LINK_COLOR": "#9A9",
|
||||
"EVENT_LINK_COLOR": "#A86",
|
||||
"CONNECTING_LINK_COLOR": "#AFA"
|
||||
},
|
||||
"comfy_base": {
|
||||
"fg-color": "#e5eaf0",
|
||||
"bg-color": "#2e3440",
|
||||
"comfy-menu-bg": "#161b22",
|
||||
"comfy-input-bg": "#2e3440",
|
||||
"input-text": "#bcc2c8",
|
||||
"descrip-text": "#999",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#545d70",
|
||||
"tr-even-bg-color": "#2e3440",
|
||||
"tr-odd-bg-color": "#161b22"
|
||||
}
|
||||
},
|
||||
},
|
||||
"github": {
|
||||
"id": "github",
|
||||
"name": "Github",
|
||||
"colors": {
|
||||
"node_slot": {
|
||||
"BOOLEAN": "",
|
||||
"CLIP": "#eacb8b",
|
||||
"CLIP_VISION": "#A8DADC",
|
||||
"CLIP_VISION_OUTPUT": "#ad7452",
|
||||
"CONDITIONING": "#cf876f",
|
||||
"CONTROL_NET": "#00d78d",
|
||||
"CONTROL_NET_WEIGHTS": "",
|
||||
"FLOAT": "",
|
||||
"GLIGEN": "",
|
||||
"IMAGE": "#80a1c0",
|
||||
"IMAGEUPLOAD": "",
|
||||
"INT": "",
|
||||
"LATENT": "#b38ead",
|
||||
"LATENT_KEYFRAME": "",
|
||||
"MASK": "#a3bd8d",
|
||||
"MODEL": "#8978a7",
|
||||
"SAMPLER": "",
|
||||
"SIGMAS": "",
|
||||
"STRING": "",
|
||||
"STYLE_MODEL": "#C2FFAE",
|
||||
"T2I_ADAPTER_WEIGHTS": "",
|
||||
"TAESD": "#DCC274",
|
||||
"TIMESTEP_KEYFRAME": "",
|
||||
"UPSCALE_MODEL": "",
|
||||
"VAE": "#be616b"
|
||||
},
|
||||
"litegraph_base": {
|
||||
"BACKGROUND_IMAGE": "",
|
||||
"CLEAR_BACKGROUND_COLOR": "#040506",
|
||||
"NODE_TITLE_COLOR": "#999",
|
||||
"NODE_SELECTED_TITLE_COLOR": "#e5eaf0",
|
||||
"NODE_TEXT_SIZE": 14,
|
||||
"NODE_TEXT_COLOR": "#bcc2c8",
|
||||
"NODE_SUBTEXT_SIZE": 12,
|
||||
"NODE_DEFAULT_COLOR": "#161b22",
|
||||
"NODE_DEFAULT_BGCOLOR": "#13171d",
|
||||
"NODE_DEFAULT_BOXCOLOR": "#30363d",
|
||||
"NODE_DEFAULT_SHAPE": "box",
|
||||
"NODE_BOX_OUTLINE_COLOR": "#e5eaf0",
|
||||
"DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)",
|
||||
"DEFAULT_GROUP_FONT": 24,
|
||||
"WIDGET_BGCOLOR": "#161b22",
|
||||
"WIDGET_OUTLINE_COLOR": "#30363d",
|
||||
"WIDGET_TEXT_COLOR": "#bcc2c8",
|
||||
"WIDGET_SECONDARY_TEXT_COLOR": "#999",
|
||||
"LINK_COLOR": "#9A9",
|
||||
"EVENT_LINK_COLOR": "#A86",
|
||||
"CONNECTING_LINK_COLOR": "#AFA"
|
||||
},
|
||||
"comfy_base": {
|
||||
"fg-color": "#e5eaf0",
|
||||
"bg-color": "#161b22",
|
||||
"comfy-menu-bg": "#13171d",
|
||||
"comfy-input-bg": "#161b22",
|
||||
"input-text": "#bcc2c8",
|
||||
"descrip-text": "#999",
|
||||
"drag-text": "#ccc",
|
||||
"error-text": "#ff4444",
|
||||
"border-color": "#30363d",
|
||||
"tr-even-bg-color": "#161b22",
|
||||
"tr-odd-bg-color": "#13171d"
|
||||
}
|
||||
},
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ const ext = {
|
||||
requestAnimationFrame(() => {
|
||||
const currentNode = LGraphCanvas.active_canvas.current_node;
|
||||
const clickedComboValue = currentNode.widgets
|
||||
.filter(w => w.type === "combo" && w.options.values.length === values.length)
|
||||
?.filter(w => w.type === "combo" && w.options.values.length === values.length)
|
||||
.find(w => w.options.values.every((v, i) => v === values[i]))
|
||||
?.value;
|
||||
|
||||
|
||||
1080
web/extensions/core/groupNode.js
Normal file
1080
web/extensions/core/groupNode.js
Normal file
File diff suppressed because it is too large
Load Diff
@ -42,7 +42,7 @@ async function uploadMask(filepath, formData) {
|
||||
});
|
||||
|
||||
ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']] = new Image();
|
||||
ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src = api.apiURL("/view?" + new URLSearchParams(filepath).toString() + app.getPreviewFormatParam());
|
||||
ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src = api.apiURL("/view?" + new URLSearchParams(filepath).toString() + app.getPreviewFormatParam() + app.getRandParam());
|
||||
|
||||
if(ComfyApp.clipspace.images)
|
||||
ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']] = filepath;
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import { app } from "../../scripts/app.js";
|
||||
import { ComfyDialog, $el } from "../../scripts/ui.js";
|
||||
import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js";
|
||||
|
||||
// Adds the ability to save and add multiple nodes as a template
|
||||
// To save:
|
||||
@ -14,6 +15,9 @@ import { ComfyDialog, $el } from "../../scripts/ui.js";
|
||||
// To delete/rename:
|
||||
// Right click the canvas
|
||||
// Node templates -> Manage
|
||||
//
|
||||
// To rearrange:
|
||||
// Open the manage dialog and Drag and drop elements using the "Name:" label as handle
|
||||
|
||||
const id = "Comfy.NodeTemplates";
|
||||
|
||||
@ -22,16 +26,42 @@ class ManageTemplates extends ComfyDialog {
|
||||
super();
|
||||
this.element.classList.add("comfy-manage-templates");
|
||||
this.templates = this.load();
|
||||
this.draggedEl = null;
|
||||
this.saveVisualCue = null;
|
||||
this.emptyImg = new Image();
|
||||
this.emptyImg.src = '';
|
||||
|
||||
this.importInput = $el("input", {
|
||||
type: "file",
|
||||
accept: ".json",
|
||||
multiple: true,
|
||||
style: { display: "none" },
|
||||
parent: document.body,
|
||||
onchange: () => this.importAll(),
|
||||
});
|
||||
}
|
||||
|
||||
createButtons() {
|
||||
const btns = super.createButtons();
|
||||
btns[0].textContent = "Cancel";
|
||||
btns[0].textContent = "Close";
|
||||
btns[0].onclick = (e) => {
|
||||
clearTimeout(this.saveVisualCue);
|
||||
this.close();
|
||||
};
|
||||
btns.unshift(
|
||||
$el("button", {
|
||||
type: "button",
|
||||
textContent: "Save",
|
||||
onclick: () => this.save(),
|
||||
textContent: "Export",
|
||||
onclick: () => this.exportAll(),
|
||||
})
|
||||
);
|
||||
btns.unshift(
|
||||
$el("button", {
|
||||
type: "button",
|
||||
textContent: "Import",
|
||||
onclick: () => {
|
||||
this.importInput.click();
|
||||
},
|
||||
})
|
||||
);
|
||||
return btns;
|
||||
@ -46,27 +76,54 @@ class ManageTemplates extends ComfyDialog {
|
||||
}
|
||||
}
|
||||
|
||||
save() {
|
||||
// Find all visible inputs and save them as our new list
|
||||
const inputs = this.element.querySelectorAll("input");
|
||||
const updated = [];
|
||||
store() {
|
||||
localStorage.setItem(id, JSON.stringify(this.templates));
|
||||
}
|
||||
|
||||
for (let i = 0; i < inputs.length; i++) {
|
||||
const input = inputs[i];
|
||||
if (input.parentElement.style.display !== "none") {
|
||||
const t = this.templates[i];
|
||||
t.name = input.value.trim() || input.getAttribute("data-name");
|
||||
updated.push(t);
|
||||
async importAll() {
|
||||
for (const file of this.importInput.files) {
|
||||
if (file.type === "application/json" || file.name.endsWith(".json")) {
|
||||
const reader = new FileReader();
|
||||
reader.onload = async () => {
|
||||
var importFile = JSON.parse(reader.result);
|
||||
if (importFile && importFile?.templates) {
|
||||
for (const template of importFile.templates) {
|
||||
if (template?.name && template?.data) {
|
||||
this.templates.push(template);
|
||||
}
|
||||
}
|
||||
this.store();
|
||||
}
|
||||
};
|
||||
await reader.readAsText(file);
|
||||
}
|
||||
}
|
||||
|
||||
this.templates = updated;
|
||||
this.store();
|
||||
this.importInput.value = null;
|
||||
|
||||
this.close();
|
||||
}
|
||||
|
||||
store() {
|
||||
localStorage.setItem(id, JSON.stringify(this.templates));
|
||||
exportAll() {
|
||||
if (this.templates.length == 0) {
|
||||
alert("No templates to export.");
|
||||
return;
|
||||
}
|
||||
|
||||
const json = JSON.stringify({ templates: this.templates }, null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], { type: "application/json" });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: "node_templates.json",
|
||||
style: { display: "none" },
|
||||
parent: document.body,
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function () {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
}
|
||||
|
||||
show() {
|
||||
@ -74,42 +131,155 @@ class ManageTemplates extends ComfyDialog {
|
||||
super.show(
|
||||
$el(
|
||||
"div",
|
||||
{
|
||||
style: {
|
||||
display: "grid",
|
||||
gridTemplateColumns: "1fr auto",
|
||||
gap: "5px",
|
||||
},
|
||||
},
|
||||
this.templates.flatMap((t) => {
|
||||
{},
|
||||
this.templates.flatMap((t,i) => {
|
||||
let nameInput;
|
||||
return [
|
||||
$el(
|
||||
"label",
|
||||
"div",
|
||||
{
|
||||
textContent: "Name: ",
|
||||
dataset: { id: i },
|
||||
className: "tempateManagerRow",
|
||||
style: {
|
||||
display: "grid",
|
||||
gridTemplateColumns: "1fr auto",
|
||||
border: "1px dashed transparent",
|
||||
gap: "5px",
|
||||
backgroundColor: "var(--comfy-menu-bg)"
|
||||
},
|
||||
ondragstart: (e) => {
|
||||
this.draggedEl = e.currentTarget;
|
||||
e.currentTarget.style.opacity = "0.6";
|
||||
e.currentTarget.style.border = "1px dashed yellow";
|
||||
e.dataTransfer.effectAllowed = 'move';
|
||||
e.dataTransfer.setDragImage(this.emptyImg, 0, 0);
|
||||
},
|
||||
ondragend: (e) => {
|
||||
e.target.style.opacity = "1";
|
||||
e.currentTarget.style.border = "1px dashed transparent";
|
||||
e.currentTarget.removeAttribute("draggable");
|
||||
|
||||
// rearrange the elements in the localStorage
|
||||
this.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => {
|
||||
var prev_i = el.dataset.id;
|
||||
|
||||
if ( el == this.draggedEl && prev_i != i ) {
|
||||
this.templates.splice(i, 0, this.templates.splice(prev_i, 1)[0]);
|
||||
}
|
||||
el.dataset.id = i;
|
||||
});
|
||||
this.store();
|
||||
},
|
||||
ondragover: (e) => {
|
||||
e.preventDefault();
|
||||
if ( e.currentTarget == this.draggedEl )
|
||||
return;
|
||||
|
||||
let rect = e.currentTarget.getBoundingClientRect();
|
||||
if (e.clientY > rect.top + rect.height / 2) {
|
||||
e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget.nextSibling);
|
||||
} else {
|
||||
e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget);
|
||||
}
|
||||
}
|
||||
},
|
||||
[
|
||||
$el("input", {
|
||||
value: t.name,
|
||||
dataset: { name: t.name },
|
||||
$: (el) => (nameInput = el),
|
||||
}),
|
||||
$el(
|
||||
"label",
|
||||
{
|
||||
textContent: "Name: ",
|
||||
style: {
|
||||
cursor: "grab",
|
||||
},
|
||||
onmousedown: (e) => {
|
||||
// enable dragging only from the label
|
||||
if (e.target.localName == 'label')
|
||||
e.currentTarget.parentNode.draggable = 'true';
|
||||
}
|
||||
},
|
||||
[
|
||||
$el("input", {
|
||||
value: t.name,
|
||||
dataset: { name: t.name },
|
||||
style: {
|
||||
transitionProperty: 'background-color',
|
||||
transitionDuration: '0s',
|
||||
},
|
||||
onchange: (e) => {
|
||||
clearTimeout(this.saveVisualCue);
|
||||
var el = e.target;
|
||||
var row = el.parentNode.parentNode;
|
||||
this.templates[row.dataset.id].name = el.value.trim() || 'untitled';
|
||||
this.store();
|
||||
el.style.backgroundColor = 'rgb(40, 95, 40)';
|
||||
el.style.transitionDuration = '0s';
|
||||
this.saveVisualCue = setTimeout(function () {
|
||||
el.style.transitionDuration = '.7s';
|
||||
el.style.backgroundColor = 'var(--comfy-input-bg)';
|
||||
}, 15);
|
||||
},
|
||||
onkeypress: (e) => {
|
||||
var el = e.target;
|
||||
clearTimeout(this.saveVisualCue);
|
||||
el.style.transitionDuration = '0s';
|
||||
el.style.backgroundColor = 'var(--comfy-input-bg)';
|
||||
},
|
||||
$: (el) => (nameInput = el),
|
||||
})
|
||||
]
|
||||
),
|
||||
$el(
|
||||
"div",
|
||||
{},
|
||||
[
|
||||
$el("button", {
|
||||
textContent: "Export",
|
||||
style: {
|
||||
fontSize: "12px",
|
||||
fontWeight: "normal",
|
||||
},
|
||||
onclick: (e) => {
|
||||
const json = JSON.stringify({templates: [t]}, null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], {type: "application/json"});
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: (nameInput.value || t.name) + ".json",
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function () {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
},
|
||||
}),
|
||||
$el("button", {
|
||||
textContent: "Delete",
|
||||
style: {
|
||||
fontSize: "12px",
|
||||
color: "red",
|
||||
fontWeight: "normal",
|
||||
},
|
||||
onclick: (e) => {
|
||||
const item = e.target.parentNode.parentNode;
|
||||
item.parentNode.removeChild(item);
|
||||
this.templates.splice(item.dataset.id*1, 1);
|
||||
this.store();
|
||||
// update the rows index, setTimeout ensures that the list is updated
|
||||
var that = this;
|
||||
setTimeout(function (){
|
||||
that.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => {
|
||||
el.dataset.id = i;
|
||||
});
|
||||
}, 0);
|
||||
},
|
||||
}),
|
||||
]
|
||||
),
|
||||
]
|
||||
),
|
||||
$el("button", {
|
||||
textContent: "Delete",
|
||||
style: {
|
||||
fontSize: "12px",
|
||||
color: "red",
|
||||
fontWeight: "normal",
|
||||
},
|
||||
onclick: (e) => {
|
||||
nameInput.value = "";
|
||||
e.target.style.display = "none";
|
||||
e.target.previousElementSibling.style.display = "none";
|
||||
},
|
||||
}),
|
||||
)
|
||||
];
|
||||
})
|
||||
)
|
||||
@ -122,11 +292,11 @@ app.registerExtension({
|
||||
setup() {
|
||||
const manage = new ManageTemplates();
|
||||
|
||||
const clipboardAction = (cb) => {
|
||||
const clipboardAction = async (cb) => {
|
||||
// We use the clipboard functions but dont want to overwrite the current user clipboard
|
||||
// Restore it after we've run our callback
|
||||
const old = localStorage.getItem("litegrapheditor_clipboard");
|
||||
cb();
|
||||
await cb();
|
||||
localStorage.setItem("litegrapheditor_clipboard", old);
|
||||
};
|
||||
|
||||
@ -140,13 +310,31 @@ app.registerExtension({
|
||||
disabled: !Object.keys(app.canvas.selected_nodes || {}).length,
|
||||
callback: () => {
|
||||
const name = prompt("Enter name");
|
||||
if (!name || !name.trim()) return;
|
||||
if (!name?.trim()) return;
|
||||
|
||||
clipboardAction(() => {
|
||||
app.canvas.copyToClipboard();
|
||||
let data = localStorage.getItem("litegrapheditor_clipboard");
|
||||
data = JSON.parse(data);
|
||||
const nodeIds = Object.keys(app.canvas.selected_nodes);
|
||||
for (let i = 0; i < nodeIds.length; i++) {
|
||||
const node = app.graph.getNodeById(nodeIds[i]);
|
||||
const nodeData = node?.constructor.nodeData;
|
||||
|
||||
let groupData = GroupNodeHandler.getGroupData(node);
|
||||
if (groupData) {
|
||||
groupData = groupData.nodeData;
|
||||
if (!data.groupNodes) {
|
||||
data.groupNodes = {};
|
||||
}
|
||||
data.groupNodes[nodeData.name] = groupData;
|
||||
data.nodes[i].type = nodeData.name;
|
||||
}
|
||||
}
|
||||
|
||||
manage.templates.push({
|
||||
name,
|
||||
data: localStorage.getItem("litegrapheditor_clipboard"),
|
||||
data: JSON.stringify(data),
|
||||
});
|
||||
manage.store();
|
||||
});
|
||||
@ -154,29 +342,31 @@ app.registerExtension({
|
||||
});
|
||||
|
||||
// Map each template to a menu item
|
||||
const subItems = manage.templates.map((t) => ({
|
||||
content: t.name,
|
||||
callback: () => {
|
||||
clipboardAction(() => {
|
||||
localStorage.setItem("litegrapheditor_clipboard", t.data);
|
||||
app.canvas.pasteFromClipboard();
|
||||
});
|
||||
},
|
||||
}));
|
||||
|
||||
if (subItems.length) {
|
||||
subItems.push(null, {
|
||||
content: "Manage",
|
||||
callback: () => manage.show(),
|
||||
});
|
||||
|
||||
options.push({
|
||||
content: "Node Templates",
|
||||
submenu: {
|
||||
options: subItems,
|
||||
const subItems = manage.templates.map((t) => {
|
||||
return {
|
||||
content: t.name,
|
||||
callback: () => {
|
||||
clipboardAction(async () => {
|
||||
const data = JSON.parse(t.data);
|
||||
await GroupNodeConfig.registerFromWorkflow(data.groupNodes, {});
|
||||
localStorage.setItem("litegrapheditor_clipboard", t.data);
|
||||
app.canvas.pasteFromClipboard();
|
||||
});
|
||||
},
|
||||
});
|
||||
}
|
||||
};
|
||||
});
|
||||
|
||||
subItems.push(null, {
|
||||
content: "Manage",
|
||||
callback: () => manage.show(),
|
||||
});
|
||||
|
||||
options.push({
|
||||
content: "Node Templates",
|
||||
submenu: {
|
||||
options: subItems,
|
||||
},
|
||||
});
|
||||
|
||||
return options;
|
||||
};
|
||||
|
||||
150
web/extensions/core/undoRedo.js
Normal file
150
web/extensions/core/undoRedo.js
Normal file
@ -0,0 +1,150 @@
|
||||
import { app } from "../../scripts/app.js";
|
||||
|
||||
const MAX_HISTORY = 50;
|
||||
|
||||
let undo = [];
|
||||
let redo = [];
|
||||
let activeState = null;
|
||||
let isOurLoad = false;
|
||||
function checkState() {
|
||||
const currentState = app.graph.serialize();
|
||||
if (!graphEqual(activeState, currentState)) {
|
||||
undo.push(activeState);
|
||||
if (undo.length > MAX_HISTORY) {
|
||||
undo.shift();
|
||||
}
|
||||
activeState = clone(currentState);
|
||||
redo.length = 0;
|
||||
}
|
||||
}
|
||||
|
||||
const loadGraphData = app.loadGraphData;
|
||||
app.loadGraphData = async function () {
|
||||
const v = await loadGraphData.apply(this, arguments);
|
||||
if (isOurLoad) {
|
||||
isOurLoad = false;
|
||||
} else {
|
||||
checkState();
|
||||
}
|
||||
return v;
|
||||
};
|
||||
|
||||
function clone(obj) {
|
||||
try {
|
||||
if (typeof structuredClone !== "undefined") {
|
||||
return structuredClone(obj);
|
||||
}
|
||||
} catch (error) {
|
||||
// structuredClone is stricter than using JSON.parse/stringify so fallback to that
|
||||
}
|
||||
|
||||
return JSON.parse(JSON.stringify(obj));
|
||||
}
|
||||
|
||||
function graphEqual(a, b, root = true) {
|
||||
if (a === b) return true;
|
||||
|
||||
if (typeof a == "object" && a && typeof b == "object" && b) {
|
||||
const keys = Object.getOwnPropertyNames(a);
|
||||
|
||||
if (keys.length != Object.getOwnPropertyNames(b).length) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (const key of keys) {
|
||||
let av = a[key];
|
||||
let bv = b[key];
|
||||
if (root && key === "nodes") {
|
||||
// Nodes need to be sorted as the order changes when selecting nodes
|
||||
av = [...av].sort((a, b) => a.id - b.id);
|
||||
bv = [...bv].sort((a, b) => a.id - b.id);
|
||||
}
|
||||
if (!graphEqual(av, bv, false)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
const undoRedo = async (e) => {
|
||||
if (e.ctrlKey || e.metaKey) {
|
||||
if (e.key === "y") {
|
||||
const prevState = redo.pop();
|
||||
if (prevState) {
|
||||
undo.push(activeState);
|
||||
isOurLoad = true;
|
||||
await app.loadGraphData(prevState);
|
||||
activeState = prevState;
|
||||
}
|
||||
return true;
|
||||
} else if (e.key === "z") {
|
||||
const prevState = undo.pop();
|
||||
if (prevState) {
|
||||
redo.push(activeState);
|
||||
isOurLoad = true;
|
||||
await app.loadGraphData(prevState);
|
||||
activeState = prevState;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const bindInput = (activeEl) => {
|
||||
if (activeEl?.tagName !== "CANVAS" && activeEl?.tagName !== "BODY") {
|
||||
for (const evt of ["change", "input", "blur"]) {
|
||||
if (`on${evt}` in activeEl) {
|
||||
const listener = () => {
|
||||
checkState();
|
||||
activeEl.removeEventListener(evt, listener);
|
||||
};
|
||||
activeEl.addEventListener(evt, listener);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
window.addEventListener(
|
||||
"keydown",
|
||||
(e) => {
|
||||
requestAnimationFrame(async () => {
|
||||
const activeEl = document.activeElement;
|
||||
if (activeEl?.tagName === "INPUT" || activeEl?.type === "textarea") {
|
||||
// Ignore events on inputs, they have their native history
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if this is a ctrl+z ctrl+y
|
||||
if (await undoRedo(e)) return;
|
||||
|
||||
// If our active element is some type of input then handle changes after they're done
|
||||
if (bindInput(activeEl)) return;
|
||||
checkState();
|
||||
});
|
||||
},
|
||||
true
|
||||
);
|
||||
|
||||
// Handle clicking DOM elements (e.g. widgets)
|
||||
window.addEventListener("mouseup", () => {
|
||||
checkState();
|
||||
});
|
||||
|
||||
// Handle litegraph clicks
|
||||
const processMouseUp = LGraphCanvas.prototype.processMouseUp;
|
||||
LGraphCanvas.prototype.processMouseUp = function (e) {
|
||||
const v = processMouseUp.apply(this, arguments);
|
||||
checkState();
|
||||
return v;
|
||||
};
|
||||
const processMouseDown = LGraphCanvas.prototype.processMouseDown;
|
||||
LGraphCanvas.prototype.processMouseDown = function (e) {
|
||||
const v = processMouseDown.apply(this, arguments);
|
||||
checkState();
|
||||
return v;
|
||||
};
|
||||
@ -1,4 +1,4 @@
|
||||
import { ComfyWidgets, addValueControlWidget } from "../../scripts/widgets.js";
|
||||
import { ComfyWidgets, addValueControlWidgets } from "../../scripts/widgets.js";
|
||||
import { app } from "../../scripts/app.js";
|
||||
|
||||
const CONVERTED_TYPE = "converted-widget";
|
||||
@ -100,6 +100,131 @@ function getWidgetType(config) {
|
||||
return { type };
|
||||
}
|
||||
|
||||
|
||||
function isValidCombo(combo, obj) {
|
||||
// New input isnt a combo
|
||||
if (!(obj instanceof Array)) {
|
||||
console.log(`connection rejected: tried to connect combo to ${obj}`);
|
||||
return false;
|
||||
}
|
||||
// New imput combo has a different size
|
||||
if (combo.length !== obj.length) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
// New input combo has different elements
|
||||
if (combo.find((v, i) => obj[i] !== v)) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
export function mergeIfValid(output, config2, forceUpdate, recreateWidget, config1) {
|
||||
if (!config1) {
|
||||
config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG]();
|
||||
}
|
||||
|
||||
if (config1[0] instanceof Array) {
|
||||
if (!isValidCombo(config1[0], config2[0])) return false;
|
||||
} else if (config1[0] !== config2[0]) {
|
||||
// Types dont match
|
||||
console.log(`connection rejected: types dont match`, config1[0], config2[0]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const keys = new Set([...Object.keys(config1[1] ?? {}), ...Object.keys(config2[1] ?? {})]);
|
||||
|
||||
let customConfig;
|
||||
const getCustomConfig = () => {
|
||||
if (!customConfig) {
|
||||
if (typeof structuredClone === "undefined") {
|
||||
customConfig = JSON.parse(JSON.stringify(config1[1] ?? {}));
|
||||
} else {
|
||||
customConfig = structuredClone(config1[1] ?? {});
|
||||
}
|
||||
}
|
||||
return customConfig;
|
||||
};
|
||||
|
||||
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
|
||||
for (const k of keys.values()) {
|
||||
if (k !== "default" && k !== "forceInput" && k !== "defaultInput") {
|
||||
let v1 = config1[1][k];
|
||||
let v2 = config2[1]?.[k];
|
||||
|
||||
if (v1 === v2 || (!v1 && !v2)) continue;
|
||||
|
||||
if (isNumber) {
|
||||
if (k === "min") {
|
||||
const theirMax = config2[1]?.["max"];
|
||||
if (theirMax != null && v1 > theirMax) {
|
||||
console.log("connection rejected: min > max", v1, theirMax);
|
||||
return false;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2);
|
||||
continue;
|
||||
} else if (k === "max") {
|
||||
const theirMin = config2[1]?.["min"];
|
||||
if (theirMin != null && v1 < theirMin) {
|
||||
console.log("connection rejected: max < min", v1, theirMin);
|
||||
return false;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2);
|
||||
continue;
|
||||
} else if (k === "step") {
|
||||
let step;
|
||||
if (v1 == null) {
|
||||
// No current step
|
||||
step = v2;
|
||||
} else if (v2 == null) {
|
||||
// No new step
|
||||
step = v1;
|
||||
} else {
|
||||
if (v1 < v2) {
|
||||
// Ensure v1 is larger for the mod
|
||||
const a = v2;
|
||||
v2 = v1;
|
||||
v1 = a;
|
||||
}
|
||||
if (v1 % v2) {
|
||||
console.log("connection rejected: steps not divisible", "current:", v1, "new:", v2);
|
||||
return false;
|
||||
}
|
||||
|
||||
step = v1;
|
||||
}
|
||||
|
||||
getCustomConfig()[k] = step;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`connection rejected: config ${k} values dont match`, v1, v2);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (customConfig || forceUpdate) {
|
||||
if (customConfig) {
|
||||
output.widget[CONFIG] = [config1[0], customConfig];
|
||||
}
|
||||
|
||||
const widget = recreateWidget?.call(this);
|
||||
// When deleting a node this can be null
|
||||
if (widget) {
|
||||
const min = widget.options.min;
|
||||
const max = widget.options.max;
|
||||
if (min != null && widget.value < min) widget.value = min;
|
||||
if (max != null && widget.value > max) widget.value = max;
|
||||
widget.callback(widget.value);
|
||||
}
|
||||
}
|
||||
|
||||
return { customConfig };
|
||||
}
|
||||
|
||||
app.registerExtension({
|
||||
name: "Comfy.WidgetInputs",
|
||||
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
||||
@ -256,6 +381,28 @@ app.registerExtension({
|
||||
|
||||
return r;
|
||||
};
|
||||
|
||||
// Prevent connecting COMBO lists to converted inputs that dont match types
|
||||
const onConnectInput = nodeType.prototype.onConnectInput;
|
||||
nodeType.prototype.onConnectInput = function (targetSlot, type, output, originNode, originSlot) {
|
||||
const v = onConnectInput?.(this, arguments);
|
||||
// Not a combo, ignore
|
||||
if (type !== "COMBO") return v;
|
||||
// Primitive output, allow that to handle
|
||||
if (originNode.outputs[originSlot].widget) return v;
|
||||
|
||||
// Ensure target is also a combo
|
||||
const targetCombo = this.inputs[targetSlot].widget?.[GET_CONFIG]?.()?.[0];
|
||||
if (!targetCombo || !(targetCombo instanceof Array)) return v;
|
||||
|
||||
// Check they match
|
||||
const originConfig = originNode.constructor?.nodeData?.output?.[originSlot];
|
||||
if (!originConfig || !isValidCombo(targetCombo, originConfig)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return v;
|
||||
};
|
||||
},
|
||||
registerCustomNodes() {
|
||||
class PrimitiveNode {
|
||||
@ -265,7 +412,7 @@ app.registerExtension({
|
||||
this.isVirtualNode = true;
|
||||
}
|
||||
|
||||
applyToGraph() {
|
||||
applyToGraph(extraLinks = []) {
|
||||
if (!this.outputs[0].links?.length) return;
|
||||
|
||||
function get_links(node) {
|
||||
@ -282,10 +429,9 @@ app.registerExtension({
|
||||
return links;
|
||||
}
|
||||
|
||||
let links = get_links(this);
|
||||
let links = [...get_links(this).map((l) => app.graph.links[l]), ...extraLinks];
|
||||
// For each output link copy our value over the original widget value
|
||||
for (const l of links) {
|
||||
const linkInfo = app.graph.links[l];
|
||||
for (const linkInfo of links) {
|
||||
const node = this.graph.getNodeById(linkInfo.target_id);
|
||||
const input = node.inputs[linkInfo.target_slot];
|
||||
const widgetName = input.widget.name;
|
||||
@ -315,7 +461,7 @@ app.registerExtension({
|
||||
|
||||
onAfterGraphConfigured() {
|
||||
if (this.outputs[0].links?.length && !this.widgets?.length) {
|
||||
this.#onFirstConnection();
|
||||
if (!this.#onFirstConnection()) return;
|
||||
|
||||
// Populate widget values from config data
|
||||
if (this.widgets) {
|
||||
@ -362,7 +508,12 @@ app.registerExtension({
|
||||
}
|
||||
|
||||
if (this.outputs[slot].links?.length) {
|
||||
return this.#isValidConnection(input);
|
||||
const valid = this.#isValidConnection(input);
|
||||
if (valid) {
|
||||
// On connect of additional outputs, copy our value to their widget
|
||||
this.applyToGraph([{ target_id: target_node.id, target_slot }]);
|
||||
}
|
||||
return valid;
|
||||
}
|
||||
}
|
||||
|
||||
@ -386,13 +537,16 @@ app.registerExtension({
|
||||
widget = input.widget;
|
||||
}
|
||||
|
||||
const { type } = getWidgetType(widget[GET_CONFIG]());
|
||||
const config = widget[GET_CONFIG]?.();
|
||||
if (!config) return;
|
||||
|
||||
const { type } = getWidgetType(config);
|
||||
// Update our output to restrict to the widget type
|
||||
this.outputs[0].type = type;
|
||||
this.outputs[0].name = type;
|
||||
this.outputs[0].widget = widget;
|
||||
|
||||
this.#createWidget(widget[CONFIG] ?? widget[GET_CONFIG](), theirNode, widget.name, recreating);
|
||||
this.#createWidget(widget[CONFIG] ?? config, theirNode, widget.name, recreating);
|
||||
}
|
||||
|
||||
#createWidget(inputData, node, widgetName, recreating) {
|
||||
@ -416,8 +570,16 @@ app.registerExtension({
|
||||
}
|
||||
}
|
||||
|
||||
if (widget.type === "number" || widget.type === "combo") {
|
||||
addValueControlWidget(this, widget, "fixed");
|
||||
if (!inputData?.[1]?.control_after_generate && (widget.type === "number" || widget.type === "combo")) {
|
||||
let control_value = this.widgets_values?.[1];
|
||||
if (!control_value) {
|
||||
control_value = "fixed";
|
||||
}
|
||||
addValueControlWidgets(this, widget, control_value, undefined, inputData);
|
||||
let filter = this.widgets_values?.[2];
|
||||
if(filter && this.widgets.length === 3) {
|
||||
this.widgets[2].value = filter;
|
||||
}
|
||||
}
|
||||
|
||||
// When our value changes, update other widgets to reflect our changes
|
||||
@ -453,6 +615,7 @@ app.registerExtension({
|
||||
this.#removeWidgets();
|
||||
this.#onFirstConnection(true);
|
||||
for (let i = 0; i < this.widgets?.length; i++) this.widgets[i].value = values[i];
|
||||
return this.widgets[0];
|
||||
}
|
||||
|
||||
#mergeWidgetConfig() {
|
||||
@ -493,122 +656,8 @@ app.registerExtension({
|
||||
#isValidConnection(input, forceUpdate) {
|
||||
// Only allow connections where the configs match
|
||||
const output = this.outputs[0];
|
||||
const config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG]();
|
||||
const config2 = input.widget[GET_CONFIG]();
|
||||
|
||||
if (config1[0] instanceof Array) {
|
||||
// New input isnt a combo
|
||||
if (!(config2[0] instanceof Array)) {
|
||||
console.log(`connection rejected: tried to connect combo to ${config2[0]}`);
|
||||
return false;
|
||||
}
|
||||
// New imput combo has a different size
|
||||
if (config1[0].length !== config2[0].length) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
// New input combo has different elements
|
||||
if (config1[0].find((v, i) => config2[0][i] !== v)) {
|
||||
console.log(`connection rejected: combo lists dont match`);
|
||||
return false;
|
||||
}
|
||||
} else if (config1[0] !== config2[0]) {
|
||||
// Types dont match
|
||||
console.log(`connection rejected: types dont match`, config1[0], config2[0]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const keys = new Set([...Object.keys(config1[1] ?? {}), ...Object.keys(config2[1] ?? {})]);
|
||||
|
||||
let customConfig;
|
||||
const getCustomConfig = () => {
|
||||
if (!customConfig) {
|
||||
if (typeof structuredClone === "undefined") {
|
||||
customConfig = JSON.parse(JSON.stringify(config1[1] ?? {}));
|
||||
} else {
|
||||
customConfig = structuredClone(config1[1] ?? {});
|
||||
}
|
||||
}
|
||||
return customConfig;
|
||||
};
|
||||
|
||||
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
|
||||
for (const k of keys.values()) {
|
||||
if (k !== "default" && k !== "forceInput" && k !== "defaultInput") {
|
||||
let v1 = config1[1][k];
|
||||
let v2 = config2[1][k];
|
||||
|
||||
if (v1 === v2 || (!v1 && !v2)) continue;
|
||||
|
||||
if (isNumber) {
|
||||
if (k === "min") {
|
||||
const theirMax = config2[1]["max"];
|
||||
if (theirMax != null && v1 > theirMax) {
|
||||
console.log("connection rejected: min > max", v1, theirMax);
|
||||
return false;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2);
|
||||
continue;
|
||||
} else if (k === "max") {
|
||||
const theirMin = config2[1]["min"];
|
||||
if (theirMin != null && v1 < theirMin) {
|
||||
console.log("connection rejected: max < min", v1, theirMin);
|
||||
return false;
|
||||
}
|
||||
getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2);
|
||||
continue;
|
||||
} else if (k === "step") {
|
||||
let step;
|
||||
if (v1 == null) {
|
||||
// No current step
|
||||
step = v2;
|
||||
} else if (v2 == null) {
|
||||
// No new step
|
||||
step = v1;
|
||||
} else {
|
||||
if (v1 < v2) {
|
||||
// Ensure v1 is larger for the mod
|
||||
const a = v2;
|
||||
v2 = v1;
|
||||
v1 = a;
|
||||
}
|
||||
if (v1 % v2) {
|
||||
console.log("connection rejected: steps not divisible", "current:", v1, "new:", v2);
|
||||
return false;
|
||||
}
|
||||
|
||||
step = v1;
|
||||
}
|
||||
|
||||
getCustomConfig()[k] = step;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`connection rejected: config ${k} values dont match`, v1, v2);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (customConfig || forceUpdate) {
|
||||
if (customConfig) {
|
||||
output.widget[CONFIG] = [config1[0], customConfig];
|
||||
}
|
||||
|
||||
this.#recreateWidget();
|
||||
|
||||
const widget = this.widgets[0];
|
||||
// When deleting a node this can be null
|
||||
if (widget) {
|
||||
const min = widget.options.min;
|
||||
const max = widget.options.max;
|
||||
if (min != null && widget.value < min) widget.value = min;
|
||||
if (max != null && widget.value > max) widget.value = max;
|
||||
widget.callback(widget.value);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
return !!mergeIfValid.call(this, output, config2, forceUpdate, this.#recreateWidget);
|
||||
}
|
||||
|
||||
#removeWidgets() {
|
||||
|
||||
@ -2533,7 +2533,7 @@
|
||||
var w = this.widgets[i];
|
||||
if(!w)
|
||||
continue;
|
||||
if(w.options && w.options.property && this.properties[ w.options.property ])
|
||||
if(w.options && w.options.property && (this.properties[ w.options.property ] != undefined))
|
||||
w.value = JSON.parse( JSON.stringify( this.properties[ w.options.property ] ) );
|
||||
}
|
||||
if (info.widgets_values) {
|
||||
@ -5714,10 +5714,10 @@ LGraphNode.prototype.executeAction = function(action)
|
||||
* @method enableWebGL
|
||||
**/
|
||||
LGraphCanvas.prototype.enableWebGL = function() {
|
||||
if (typeof GL === undefined) {
|
||||
if (typeof GL === "undefined") {
|
||||
throw "litegl.js must be included to use a WebGL canvas";
|
||||
}
|
||||
if (typeof enableWebGLCanvas === undefined) {
|
||||
if (typeof enableWebGLCanvas === "undefined") {
|
||||
throw "webglCanvas.js must be included to use this feature";
|
||||
}
|
||||
|
||||
@ -7110,15 +7110,16 @@ LGraphNode.prototype.executeAction = function(action)
|
||||
}
|
||||
};
|
||||
|
||||
LGraphCanvas.prototype.copyToClipboard = function() {
|
||||
LGraphCanvas.prototype.copyToClipboard = function(nodes) {
|
||||
var clipboard_info = {
|
||||
nodes: [],
|
||||
links: []
|
||||
};
|
||||
var index = 0;
|
||||
var selected_nodes_array = [];
|
||||
for (var i in this.selected_nodes) {
|
||||
var node = this.selected_nodes[i];
|
||||
if (!nodes) nodes = this.selected_nodes;
|
||||
for (var i in nodes) {
|
||||
var node = nodes[i];
|
||||
if (node.clonable === false)
|
||||
continue;
|
||||
node._relative_id = index;
|
||||
@ -11702,7 +11703,7 @@ LGraphNode.prototype.executeAction = function(action)
|
||||
default:
|
||||
iS = 0; // try with first if no name set
|
||||
}
|
||||
if (typeof options.node_from.outputs[iS] !== undefined){
|
||||
if (typeof options.node_from.outputs[iS] !== "undefined"){
|
||||
if (iS!==false && iS>-1){
|
||||
options.node_from.connectByType( iS, node, options.node_from.outputs[iS].type );
|
||||
}
|
||||
@ -11730,7 +11731,7 @@ LGraphNode.prototype.executeAction = function(action)
|
||||
default:
|
||||
iS = 0; // try with first if no name set
|
||||
}
|
||||
if (typeof options.node_to.inputs[iS] !== undefined){
|
||||
if (typeof options.node_to.inputs[iS] !== "undefined"){
|
||||
if (iS!==false && iS>-1){
|
||||
// try connection
|
||||
options.node_to.connectByTypeOutput(iS,node,options.node_to.inputs[iS].type);
|
||||
|
||||
@ -254,9 +254,9 @@ class ComfyApi extends EventTarget {
|
||||
* Gets the prompt execution history
|
||||
* @returns Prompt history including node outputs
|
||||
*/
|
||||
async getHistory() {
|
||||
async getHistory(max_items=200) {
|
||||
try {
|
||||
const res = await this.fetchApi("/history");
|
||||
const res = await this.fetchApi(`/history?max_items=${max_items}`);
|
||||
return { History: Object.values(await res.json()) };
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
|
||||
@ -3,7 +3,26 @@ import { ComfyWidgets } from "./widgets.js";
|
||||
import { ComfyUI, $el } from "./ui.js";
|
||||
import { api } from "./api.js";
|
||||
import { defaultGraph } from "./defaultGraph.js";
|
||||
import { getPngMetadata, importA1111, getLatentMetadata } from "./pnginfo.js";
|
||||
import { getPngMetadata, getWebpMetadata, importA1111, getLatentMetadata } from "./pnginfo.js";
|
||||
import { addDomClippingSetting } from "./domWidget.js";
|
||||
import { createImageHost, calculateImageGrid } from "./ui/imagePreview.js"
|
||||
|
||||
export const ANIM_PREVIEW_WIDGET = "$$comfy_animation_preview"
|
||||
|
||||
function sanitizeNodeName(string) {
|
||||
let entityMap = {
|
||||
'&': '',
|
||||
'<': '',
|
||||
'>': '',
|
||||
'"': '',
|
||||
"'": '',
|
||||
'`': '',
|
||||
'=': ''
|
||||
};
|
||||
return String(string).replace(/[&<>"'`=]/g, function fromEntityMap (s) {
|
||||
return entityMap[s];
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* @typedef {import("types/comfy").ComfyExtension} ComfyExtension
|
||||
@ -67,6 +86,10 @@ export class ComfyApp {
|
||||
return "";
|
||||
}
|
||||
|
||||
getRandParam() {
|
||||
return "&rand=" + Math.random();
|
||||
}
|
||||
|
||||
static isImageNode(node) {
|
||||
return node.imgs || (node && node.widgets && node.widgets.findIndex(obj => obj.name === 'image') >= 0);
|
||||
}
|
||||
@ -389,8 +412,10 @@ export class ComfyApp {
|
||||
return shiftY;
|
||||
}
|
||||
|
||||
node.prototype.setSizeForImage = function () {
|
||||
if (this.inputHeight) {
|
||||
node.prototype.setSizeForImage = function (force) {
|
||||
if(!force && this.animatedImages) return;
|
||||
|
||||
if (this.inputHeight || this.freeWidgetSpace > 210) {
|
||||
this.setSize(this.size);
|
||||
return;
|
||||
}
|
||||
@ -406,13 +431,20 @@ export class ComfyApp {
|
||||
let imagesChanged = false
|
||||
|
||||
const output = app.nodeOutputs[this.id + ""];
|
||||
if (output && output.images) {
|
||||
if (output?.images) {
|
||||
this.animatedImages = output?.animated?.find(Boolean);
|
||||
if (this.images !== output.images) {
|
||||
this.images = output.images;
|
||||
imagesChanged = true;
|
||||
imgURLs = imgURLs.concat(output.images.map(params => {
|
||||
return api.apiURL("/view?" + new URLSearchParams(params).toString() + app.getPreviewFormatParam());
|
||||
}))
|
||||
imgURLs = imgURLs.concat(
|
||||
output.images.map((params) => {
|
||||
return api.apiURL(
|
||||
"/view?" +
|
||||
new URLSearchParams(params).toString() +
|
||||
(this.animatedImages ? "" : app.getPreviewFormatParam()) + app.getRandParam()
|
||||
);
|
||||
})
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@ -491,8 +523,36 @@ export class ComfyApp {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (this.imgs && this.imgs.length) {
|
||||
const canvas = graph.list_of_graphcanvas[0];
|
||||
if (this.imgs?.length) {
|
||||
const widgetIdx = this.widgets?.findIndex((w) => w.name === ANIM_PREVIEW_WIDGET);
|
||||
|
||||
if(this.animatedImages) {
|
||||
// Instead of using the canvas we'll use a IMG
|
||||
if(widgetIdx > -1) {
|
||||
// Replace content
|
||||
const widget = this.widgets[widgetIdx];
|
||||
widget.options.host.updateImages(this.imgs);
|
||||
} else {
|
||||
const host = createImageHost(this);
|
||||
this.setSizeForImage(true);
|
||||
const widget = this.addDOMWidget(ANIM_PREVIEW_WIDGET, "img", host.el, {
|
||||
host,
|
||||
getHeight: host.getHeight,
|
||||
onDraw: host.onDraw,
|
||||
hideOnZoom: false
|
||||
});
|
||||
widget.serializeValue = () => undefined;
|
||||
widget.options.host.updateImages(this.imgs);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (widgetIdx > -1) {
|
||||
this.widgets[widgetIdx].onRemove?.();
|
||||
this.widgets.splice(widgetIdx, 1);
|
||||
}
|
||||
|
||||
const canvas = app.graph.list_of_graphcanvas[0];
|
||||
const mouse = canvas.graph_mouse;
|
||||
if (!canvas.pointer_is_down && this.pointerDown) {
|
||||
if (mouse[0] === this.pointerDown.pos[0] && mouse[1] === this.pointerDown.pos[1]) {
|
||||
@ -531,31 +591,7 @@ export class ComfyApp {
|
||||
}
|
||||
else {
|
||||
cell_padding = 0;
|
||||
let best = 0;
|
||||
let w = this.imgs[0].naturalWidth;
|
||||
let h = this.imgs[0].naturalHeight;
|
||||
|
||||
// compact style
|
||||
for (let c = 1; c <= numImages; c++) {
|
||||
const rows = Math.ceil(numImages / c);
|
||||
const cW = dw / c;
|
||||
const cH = dh / rows;
|
||||
const scaleX = cW / w;
|
||||
const scaleY = cH / h;
|
||||
|
||||
const scale = Math.min(scaleX, scaleY, 1);
|
||||
const imageW = w * scale;
|
||||
const imageH = h * scale;
|
||||
const area = imageW * imageH * numImages;
|
||||
|
||||
if (area > best) {
|
||||
best = area;
|
||||
cellWidth = imageW;
|
||||
cellHeight = imageH;
|
||||
cols = c;
|
||||
shiftX = c * ((cW - imageW) / 2);
|
||||
}
|
||||
}
|
||||
({ cellWidth, cellHeight, cols, shiftX } = calculateImageGrid(this.imgs, dw, dh));
|
||||
}
|
||||
|
||||
let anyHovered = false;
|
||||
@ -747,7 +783,7 @@ export class ComfyApp {
|
||||
* Adds a handler on paste that extracts and loads images or workflows from pasted JSON data
|
||||
*/
|
||||
#addPasteHandler() {
|
||||
document.addEventListener("paste", (e) => {
|
||||
document.addEventListener("paste", async (e) => {
|
||||
// ctrl+shift+v is used to paste nodes with connections
|
||||
// this is handled by litegraph
|
||||
if(this.shiftDown) return;
|
||||
@ -795,7 +831,7 @@ export class ComfyApp {
|
||||
}
|
||||
|
||||
if (workflow && workflow.version && workflow.nodes && workflow.extra) {
|
||||
this.loadGraphData(workflow);
|
||||
await this.loadGraphData(workflow);
|
||||
}
|
||||
else {
|
||||
if (e.target.type === "text" || e.target.type === "textarea") {
|
||||
@ -1145,7 +1181,19 @@ export class ComfyApp {
|
||||
});
|
||||
|
||||
api.addEventListener("executed", ({ detail }) => {
|
||||
this.nodeOutputs[detail.node] = detail.output;
|
||||
const output = this.nodeOutputs[detail.node];
|
||||
if (detail.merge && output) {
|
||||
for (const k in detail.output ?? {}) {
|
||||
const v = output[k];
|
||||
if (v instanceof Array) {
|
||||
output[k] = v.concat(detail.output[k]);
|
||||
} else {
|
||||
output[k] = detail.output[k];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
this.nodeOutputs[detail.node] = detail.output;
|
||||
}
|
||||
const node = this.graph.getNodeById(detail.node);
|
||||
if (node) {
|
||||
if (node.onExecuted)
|
||||
@ -1256,9 +1304,11 @@ export class ComfyApp {
|
||||
canvasEl.tabIndex = "1";
|
||||
document.body.prepend(canvasEl);
|
||||
|
||||
addDomClippingSetting();
|
||||
this.#addProcessMouseHandler();
|
||||
this.#addProcessKeyHandler();
|
||||
this.#addConfigureHandler();
|
||||
this.#addApiUpdateHandlers();
|
||||
|
||||
this.graph = new LGraph();
|
||||
|
||||
@ -1295,7 +1345,7 @@ export class ComfyApp {
|
||||
const json = localStorage.getItem("workflow");
|
||||
if (json) {
|
||||
const workflow = JSON.parse(json);
|
||||
this.loadGraphData(workflow);
|
||||
await this.loadGraphData(workflow);
|
||||
restored = true;
|
||||
}
|
||||
} catch (err) {
|
||||
@ -1304,7 +1354,7 @@ export class ComfyApp {
|
||||
|
||||
// We failed to restore a workflow so load the default
|
||||
if (!restored) {
|
||||
this.loadGraphData();
|
||||
await this.loadGraphData();
|
||||
}
|
||||
|
||||
// Save current workflow automatically
|
||||
@ -1312,7 +1362,6 @@ export class ComfyApp {
|
||||
|
||||
this.#addDrawNodeHandler();
|
||||
this.#addDrawGroupsHandler();
|
||||
this.#addApiUpdateHandlers();
|
||||
this.#addDropHandler();
|
||||
this.#addCopyHandler();
|
||||
this.#addPasteHandler();
|
||||
@ -1332,11 +1381,95 @@ export class ComfyApp {
|
||||
await this.#invokeExtensionsAsync("registerCustomNodes");
|
||||
}
|
||||
|
||||
getWidgetType(inputData, inputName) {
|
||||
const type = inputData[0];
|
||||
|
||||
if (Array.isArray(type)) {
|
||||
return "COMBO";
|
||||
} else if (`${type}:${inputName}` in this.widgets) {
|
||||
return `${type}:${inputName}`;
|
||||
} else if (type in this.widgets) {
|
||||
return type;
|
||||
} else {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
async registerNodeDef(nodeId, nodeData) {
|
||||
const self = this;
|
||||
const node = Object.assign(
|
||||
function ComfyNode() {
|
||||
var inputs = nodeData["input"]["required"];
|
||||
if (nodeData["input"]["optional"] != undefined) {
|
||||
inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"]);
|
||||
}
|
||||
const config = { minWidth: 1, minHeight: 1 };
|
||||
for (const inputName in inputs) {
|
||||
const inputData = inputs[inputName];
|
||||
const type = inputData[0];
|
||||
|
||||
let widgetCreated = true;
|
||||
const widgetType = self.getWidgetType(inputData, inputName);
|
||||
if(widgetType) {
|
||||
if(widgetType === "COMBO") {
|
||||
Object.assign(config, self.widgets.COMBO(this, inputName, inputData, app) || {});
|
||||
} else {
|
||||
Object.assign(config, self.widgets[widgetType](this, inputName, inputData, app) || {});
|
||||
}
|
||||
} else {
|
||||
// Node connection inputs
|
||||
this.addInput(inputName, type);
|
||||
widgetCreated = false;
|
||||
}
|
||||
|
||||
if(widgetCreated && inputData[1]?.forceInput && config?.widget) {
|
||||
if (!config.widget.options) config.widget.options = {};
|
||||
config.widget.options.forceInput = inputData[1].forceInput;
|
||||
}
|
||||
if(widgetCreated && inputData[1]?.defaultInput && config?.widget) {
|
||||
if (!config.widget.options) config.widget.options = {};
|
||||
config.widget.options.defaultInput = inputData[1].defaultInput;
|
||||
}
|
||||
}
|
||||
|
||||
for (const o in nodeData["output"]) {
|
||||
let output = nodeData["output"][o];
|
||||
if(output instanceof Array) output = "COMBO";
|
||||
const outputName = nodeData["output_name"][o] || output;
|
||||
const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ;
|
||||
this.addOutput(outputName, output, { shape: outputShape });
|
||||
}
|
||||
|
||||
const s = this.computeSize();
|
||||
s[0] = Math.max(config.minWidth, s[0] * 1.5);
|
||||
s[1] = Math.max(config.minHeight, s[1]);
|
||||
this.size = s;
|
||||
this.serialize_widgets = true;
|
||||
|
||||
app.#invokeExtensionsAsync("nodeCreated", this);
|
||||
},
|
||||
{
|
||||
title: nodeData.display_name || nodeData.name,
|
||||
comfyClass: nodeData.name,
|
||||
nodeData
|
||||
}
|
||||
);
|
||||
node.prototype.comfyClass = nodeData.name;
|
||||
|
||||
this.#addNodeContextMenuHandler(node);
|
||||
this.#addDrawBackgroundHandler(node, app);
|
||||
this.#addNodeKeyHandler(node);
|
||||
|
||||
await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData);
|
||||
LiteGraph.registerNodeType(nodeId, node);
|
||||
node.category = nodeData.category;
|
||||
}
|
||||
|
||||
async registerNodesFromDefs(defs) {
|
||||
await this.#invokeExtensionsAsync("addCustomNodeDefs", defs);
|
||||
|
||||
// Generate list of known widgets
|
||||
const widgets = Object.assign(
|
||||
this.widgets = Object.assign(
|
||||
{},
|
||||
ComfyWidgets,
|
||||
...(await this.#invokeExtensionsAsync("getCustomWidgets")).filter(Boolean)
|
||||
@ -1344,106 +1477,118 @@ export class ComfyApp {
|
||||
|
||||
// Register a node for each definition
|
||||
for (const nodeId in defs) {
|
||||
const nodeData = defs[nodeId];
|
||||
const node = Object.assign(
|
||||
function ComfyNode() {
|
||||
var inputs = nodeData["input"]["required"];
|
||||
if (nodeData["input"]["optional"] != undefined){
|
||||
inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"])
|
||||
}
|
||||
const config = { minWidth: 1, minHeight: 1 };
|
||||
for (const inputName in inputs) {
|
||||
const inputData = inputs[inputName];
|
||||
const type = inputData[0];
|
||||
|
||||
let widgetCreated = true;
|
||||
if (Array.isArray(type)) {
|
||||
// Enums
|
||||
Object.assign(config, widgets.COMBO(this, inputName, inputData, app) || {});
|
||||
} else if (`${type}:${inputName}` in widgets) {
|
||||
// Support custom widgets by Type:Name
|
||||
Object.assign(config, widgets[`${type}:${inputName}`](this, inputName, inputData, app) || {});
|
||||
} else if (type in widgets) {
|
||||
// Standard type widgets
|
||||
Object.assign(config, widgets[type](this, inputName, inputData, app) || {});
|
||||
} else {
|
||||
// Node connection inputs
|
||||
this.addInput(inputName, type);
|
||||
widgetCreated = false;
|
||||
}
|
||||
|
||||
if(widgetCreated && inputData[1]?.forceInput && config?.widget) {
|
||||
if (!config.widget.options) config.widget.options = {};
|
||||
config.widget.options.forceInput = inputData[1].forceInput;
|
||||
}
|
||||
if(widgetCreated && inputData[1]?.defaultInput && config?.widget) {
|
||||
if (!config.widget.options) config.widget.options = {};
|
||||
config.widget.options.defaultInput = inputData[1].defaultInput;
|
||||
}
|
||||
}
|
||||
|
||||
for (const o in nodeData["output"]) {
|
||||
let output = nodeData["output"][o];
|
||||
if(output instanceof Array) output = "COMBO";
|
||||
const outputName = nodeData["output_name"][o] || output;
|
||||
const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ;
|
||||
this.addOutput(outputName, output, { shape: outputShape });
|
||||
}
|
||||
|
||||
const s = this.computeSize();
|
||||
s[0] = Math.max(config.minWidth, s[0] * 1.5);
|
||||
s[1] = Math.max(config.minHeight, s[1]);
|
||||
this.size = s;
|
||||
this.serialize_widgets = true;
|
||||
|
||||
app.#invokeExtensionsAsync("nodeCreated", this);
|
||||
},
|
||||
{
|
||||
title: nodeData.display_name || nodeData.name,
|
||||
comfyClass: nodeData.name,
|
||||
nodeData
|
||||
}
|
||||
);
|
||||
node.prototype.comfyClass = nodeData.name;
|
||||
|
||||
this.#addNodeContextMenuHandler(node);
|
||||
this.#addDrawBackgroundHandler(node, app);
|
||||
this.#addNodeKeyHandler(node);
|
||||
|
||||
await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData);
|
||||
LiteGraph.registerNodeType(nodeId, node);
|
||||
node.category = nodeData.category;
|
||||
this.registerNodeDef(nodeId, defs[nodeId]);
|
||||
}
|
||||
}
|
||||
|
||||
loadTemplateData(templateData) {
|
||||
if (!templateData?.templates) {
|
||||
return;
|
||||
}
|
||||
|
||||
const old = localStorage.getItem("litegrapheditor_clipboard");
|
||||
|
||||
var maxY, nodeBottom, node;
|
||||
|
||||
for (const template of templateData.templates) {
|
||||
if (!template?.data) {
|
||||
continue;
|
||||
}
|
||||
|
||||
localStorage.setItem("litegrapheditor_clipboard", template.data);
|
||||
app.canvas.pasteFromClipboard();
|
||||
|
||||
// Move mouse position down to paste the next template below
|
||||
|
||||
maxY = false;
|
||||
|
||||
for (const i in app.canvas.selected_nodes) {
|
||||
node = app.canvas.selected_nodes[i];
|
||||
|
||||
nodeBottom = node.pos[1] + node.size[1];
|
||||
|
||||
if (maxY === false || nodeBottom > maxY) {
|
||||
maxY = nodeBottom;
|
||||
}
|
||||
}
|
||||
|
||||
app.canvas.graph_mouse[1] = maxY + 50;
|
||||
}
|
||||
|
||||
localStorage.setItem("litegrapheditor_clipboard", old);
|
||||
}
|
||||
|
||||
showMissingNodesError(missingNodeTypes, hasAddedNodes = true) {
|
||||
let seenTypes = new Set();
|
||||
|
||||
this.ui.dialog.show(
|
||||
$el("div.comfy-missing-nodes", [
|
||||
$el("span", { textContent: "When loading the graph, the following node types were not found: " }),
|
||||
$el(
|
||||
"ul",
|
||||
Array.from(new Set(missingNodeTypes)).map((t) => {
|
||||
let children = [];
|
||||
if (typeof t === "object") {
|
||||
if(seenTypes.has(t.type)) return null;
|
||||
seenTypes.add(t.type);
|
||||
children.push($el("span", { textContent: t.type }));
|
||||
if (t.hint) {
|
||||
children.push($el("span", { textContent: t.hint }));
|
||||
}
|
||||
if (t.action) {
|
||||
children.push($el("button", { onclick: t.action.callback, textContent: t.action.text }));
|
||||
}
|
||||
} else {
|
||||
if(seenTypes.has(t)) return null;
|
||||
seenTypes.add(t);
|
||||
children.push($el("span", { textContent: t }));
|
||||
}
|
||||
return $el("li", children);
|
||||
}).filter(Boolean)
|
||||
),
|
||||
...(hasAddedNodes
|
||||
? [$el("span", { textContent: "Nodes that have failed to load will show as red on the graph." })]
|
||||
: []),
|
||||
])
|
||||
);
|
||||
this.logging.addEntry("Comfy.App", "warn", {
|
||||
MissingNodes: missingNodeTypes,
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Populates the graph with the specified workflow data
|
||||
* @param {*} graphData A serialized graph object
|
||||
*/
|
||||
loadGraphData(graphData) {
|
||||
async loadGraphData(graphData) {
|
||||
this.clean();
|
||||
|
||||
let reset_invalid_values = false;
|
||||
if (!graphData) {
|
||||
if (typeof structuredClone === "undefined")
|
||||
{
|
||||
graphData = JSON.parse(JSON.stringify(defaultGraph));
|
||||
}else
|
||||
{
|
||||
graphData = structuredClone(defaultGraph);
|
||||
}
|
||||
graphData = defaultGraph;
|
||||
reset_invalid_values = true;
|
||||
}
|
||||
|
||||
if (typeof structuredClone === "undefined")
|
||||
{
|
||||
graphData = JSON.parse(JSON.stringify(graphData));
|
||||
}else
|
||||
{
|
||||
graphData = structuredClone(graphData);
|
||||
}
|
||||
|
||||
const missingNodeTypes = [];
|
||||
await this.#invokeExtensionsAsync("beforeConfigureGraph", graphData, missingNodeTypes);
|
||||
for (let n of graphData.nodes) {
|
||||
// Patch T2IAdapterLoader to ControlNetLoader since they are the same node now
|
||||
if (n.type == "T2IAdapterLoader") n.type = "ControlNetLoader";
|
||||
if (n.type == "ConditioningAverage ") n.type = "ConditioningAverage"; //typo fix
|
||||
if (n.type == "SDV_img2vid_Conditioning") n.type = "SVD_img2vid_Conditioning"; //typo fix
|
||||
|
||||
// Find missing node types
|
||||
if (!(n.type in LiteGraph.registered_node_types)) {
|
||||
missingNodeTypes.push(n.type);
|
||||
n.type = sanitizeNodeName(n.type);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1533,15 +1678,9 @@ export class ComfyApp {
|
||||
}
|
||||
|
||||
if (missingNodeTypes.length) {
|
||||
this.ui.dialog.show(
|
||||
`When loading the graph, the following node types were not found: <ul>${Array.from(new Set(missingNodeTypes)).map(
|
||||
(t) => `<li>${t}</li>`
|
||||
).join("")}</ul>Nodes that have failed to load will show as red on the graph.`
|
||||
);
|
||||
this.logging.addEntry("Comfy.App", "warn", {
|
||||
MissingNodes: missingNodeTypes,
|
||||
});
|
||||
this.showMissingNodesError(missingNodeTypes);
|
||||
}
|
||||
await this.#invokeExtensionsAsync("afterConfigureGraph", missingNodeTypes);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1549,86 +1688,99 @@ export class ComfyApp {
|
||||
* @returns The workflow and node links
|
||||
*/
|
||||
async graphToPrompt() {
|
||||
for (const outerNode of this.graph.computeExecutionOrder(false)) {
|
||||
const innerNodes = outerNode.getInnerNodes ? outerNode.getInnerNodes() : [outerNode];
|
||||
for (const node of innerNodes) {
|
||||
if (node.isVirtualNode) {
|
||||
// Don't serialize frontend only nodes but let them make changes
|
||||
if (node.applyToGraph) {
|
||||
node.applyToGraph();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const workflow = this.graph.serialize();
|
||||
const output = {};
|
||||
// Process nodes in order of execution
|
||||
for (const node of this.graph.computeExecutionOrder(false)) {
|
||||
const n = workflow.nodes.find((n) => n.id === node.id);
|
||||
|
||||
if (node.isVirtualNode) {
|
||||
// Don't serialize frontend only nodes but let them make changes
|
||||
if (node.applyToGraph) {
|
||||
node.applyToGraph(workflow);
|
||||
for (const outerNode of this.graph.computeExecutionOrder(false)) {
|
||||
const skipNode = outerNode.mode === 2 || outerNode.mode === 4;
|
||||
const innerNodes = (!skipNode && outerNode.getInnerNodes) ? outerNode.getInnerNodes() : [outerNode];
|
||||
for (const node of innerNodes) {
|
||||
if (node.isVirtualNode) {
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node.mode === 2 || node.mode === 4) {
|
||||
// Don't serialize muted nodes
|
||||
continue;
|
||||
}
|
||||
if (node.mode === 2 || node.mode === 4) {
|
||||
// Don't serialize muted nodes
|
||||
continue;
|
||||
}
|
||||
|
||||
const inputs = {};
|
||||
const widgets = node.widgets;
|
||||
const inputs = {};
|
||||
const widgets = node.widgets;
|
||||
|
||||
// Store all widget values
|
||||
if (widgets) {
|
||||
for (const i in widgets) {
|
||||
const widget = widgets[i];
|
||||
if (!widget.options || widget.options.serialize !== false) {
|
||||
inputs[widget.name] = widget.serializeValue ? await widget.serializeValue(n, i) : widget.value;
|
||||
// Store all widget values
|
||||
if (widgets) {
|
||||
for (const i in widgets) {
|
||||
const widget = widgets[i];
|
||||
if (!widget.options || widget.options.serialize !== false) {
|
||||
inputs[widget.name] = widget.serializeValue ? await widget.serializeValue(node, i) : widget.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store all node links
|
||||
for (let i in node.inputs) {
|
||||
let parent = node.getInputNode(i);
|
||||
if (parent) {
|
||||
let link = node.getInputLink(i);
|
||||
while (parent.mode === 4 || parent.isVirtualNode) {
|
||||
let found = false;
|
||||
if (parent.isVirtualNode) {
|
||||
link = parent.getInputLink(link.origin_slot);
|
||||
if (link) {
|
||||
parent = parent.getInputNode(link.target_slot);
|
||||
if (parent) {
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
} else if (link && parent.mode === 4) {
|
||||
let all_inputs = [link.origin_slot];
|
||||
if (parent.inputs) {
|
||||
all_inputs = all_inputs.concat(Object.keys(parent.inputs))
|
||||
for (let parent_input in all_inputs) {
|
||||
parent_input = all_inputs[parent_input];
|
||||
if (parent.inputs[parent_input]?.type === node.inputs[i].type) {
|
||||
link = parent.getInputLink(parent_input);
|
||||
if (link) {
|
||||
parent = parent.getInputNode(parent_input);
|
||||
}
|
||||
// Store all node links
|
||||
for (let i in node.inputs) {
|
||||
let parent = node.getInputNode(i);
|
||||
if (parent) {
|
||||
let link = node.getInputLink(i);
|
||||
while (parent.mode === 4 || parent.isVirtualNode) {
|
||||
let found = false;
|
||||
if (parent.isVirtualNode) {
|
||||
link = parent.getInputLink(link.origin_slot);
|
||||
if (link) {
|
||||
parent = parent.getInputNode(link.target_slot);
|
||||
if (parent) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (link && parent.mode === 4) {
|
||||
let all_inputs = [link.origin_slot];
|
||||
if (parent.inputs) {
|
||||
all_inputs = all_inputs.concat(Object.keys(parent.inputs))
|
||||
for (let parent_input in all_inputs) {
|
||||
parent_input = all_inputs[parent_input];
|
||||
if (parent.inputs[parent_input]?.type === node.inputs[i].type) {
|
||||
link = parent.getInputLink(parent_input);
|
||||
if (link) {
|
||||
parent = parent.getInputNode(parent_input);
|
||||
}
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
break;
|
||||
if (link) {
|
||||
if (parent?.updateLink) {
|
||||
link = parent.updateLink(link);
|
||||
}
|
||||
inputs[node.inputs[i].name] = [String(link.origin_id), parseInt(link.origin_slot)];
|
||||
}
|
||||
}
|
||||
|
||||
if (link) {
|
||||
inputs[node.inputs[i].name] = [String(link.origin_id), parseInt(link.origin_slot)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
output[String(node.id)] = {
|
||||
inputs,
|
||||
class_type: node.comfyClass,
|
||||
};
|
||||
output[String(node.id)] = {
|
||||
inputs,
|
||||
class_type: node.comfyClass,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// Remove inputs connected to removed nodes
|
||||
@ -1748,25 +1900,92 @@ export class ComfyApp {
|
||||
const pngInfo = await getPngMetadata(file);
|
||||
if (pngInfo) {
|
||||
if (pngInfo.workflow) {
|
||||
this.loadGraphData(JSON.parse(pngInfo.workflow));
|
||||
await this.loadGraphData(JSON.parse(pngInfo.workflow));
|
||||
} else if (pngInfo.prompt) {
|
||||
this.loadApiJson(JSON.parse(pngInfo.prompt));
|
||||
} else if (pngInfo.parameters) {
|
||||
importA1111(this.graph, pngInfo.parameters);
|
||||
}
|
||||
}
|
||||
} else if (file.type === "image/webp") {
|
||||
const pngInfo = await getWebpMetadata(file);
|
||||
if (pngInfo) {
|
||||
if (pngInfo.workflow) {
|
||||
this.loadGraphData(JSON.parse(pngInfo.workflow));
|
||||
} else if (pngInfo.Workflow) {
|
||||
this.loadGraphData(JSON.parse(pngInfo.Workflow)); // Support loading workflows from that webp custom node.
|
||||
} else if (pngInfo.prompt) {
|
||||
this.loadApiJson(JSON.parse(pngInfo.prompt));
|
||||
}
|
||||
}
|
||||
} else if (file.type === "application/json" || file.name?.endsWith(".json")) {
|
||||
const reader = new FileReader();
|
||||
reader.onload = () => {
|
||||
this.loadGraphData(JSON.parse(reader.result));
|
||||
reader.onload = async () => {
|
||||
const jsonContent = JSON.parse(reader.result);
|
||||
if (jsonContent?.templates) {
|
||||
this.loadTemplateData(jsonContent);
|
||||
} else if(this.isApiJson(jsonContent)) {
|
||||
this.loadApiJson(jsonContent);
|
||||
} else {
|
||||
await this.loadGraphData(jsonContent);
|
||||
}
|
||||
};
|
||||
reader.readAsText(file);
|
||||
} else if (file.name?.endsWith(".latent") || file.name?.endsWith(".safetensors")) {
|
||||
const info = await getLatentMetadata(file);
|
||||
if (info.workflow) {
|
||||
this.loadGraphData(JSON.parse(info.workflow));
|
||||
await this.loadGraphData(JSON.parse(info.workflow));
|
||||
} else if (info.prompt) {
|
||||
this.loadApiJson(JSON.parse(info.prompt));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
isApiJson(data) {
|
||||
return Object.values(data).every((v) => v.class_type);
|
||||
}
|
||||
|
||||
loadApiJson(apiData) {
|
||||
const missingNodeTypes = Object.values(apiData).filter((n) => !LiteGraph.registered_node_types[n.class_type]);
|
||||
if (missingNodeTypes.length) {
|
||||
this.showMissingNodesError(missingNodeTypes.map(t => t.class_type), false);
|
||||
return;
|
||||
}
|
||||
|
||||
const ids = Object.keys(apiData);
|
||||
app.graph.clear();
|
||||
for (const id of ids) {
|
||||
const data = apiData[id];
|
||||
const node = LiteGraph.createNode(data.class_type);
|
||||
node.id = isNaN(+id) ? id : +id;
|
||||
graph.add(node);
|
||||
}
|
||||
|
||||
for (const id of ids) {
|
||||
const data = apiData[id];
|
||||
const node = app.graph.getNodeById(id);
|
||||
for (const input in data.inputs ?? {}) {
|
||||
const value = data.inputs[input];
|
||||
if (value instanceof Array) {
|
||||
const [fromId, fromSlot] = value;
|
||||
const fromNode = app.graph.getNodeById(fromId);
|
||||
const toSlot = node.inputs?.findIndex((inp) => inp.name === input);
|
||||
if (toSlot !== -1) {
|
||||
fromNode.connect(fromSlot, node, toSlot);
|
||||
}
|
||||
} else {
|
||||
const widget = node.widgets?.find((w) => w.name === input);
|
||||
if (widget) {
|
||||
widget.value = value;
|
||||
widget.callback?.(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
app.graph.arrange();
|
||||
}
|
||||
|
||||
/**
|
||||
* Registers a Comfy web extension with the app
|
||||
* @param {ComfyExtension} extension
|
||||
|
||||
324
web/scripts/domWidget.js
Normal file
324
web/scripts/domWidget.js
Normal file
@ -0,0 +1,324 @@
|
||||
import { app, ANIM_PREVIEW_WIDGET } from "./app.js";
|
||||
|
||||
const SIZE = Symbol();
|
||||
|
||||
function intersect(a, b) {
|
||||
const x = Math.max(a.x, b.x);
|
||||
const num1 = Math.min(a.x + a.width, b.x + b.width);
|
||||
const y = Math.max(a.y, b.y);
|
||||
const num2 = Math.min(a.y + a.height, b.y + b.height);
|
||||
if (num1 >= x && num2 >= y) return [x, y, num1 - x, num2 - y];
|
||||
else return null;
|
||||
}
|
||||
|
||||
function getClipPath(node, element, elRect) {
|
||||
const selectedNode = Object.values(app.canvas.selected_nodes)[0];
|
||||
if (selectedNode && selectedNode !== node) {
|
||||
const MARGIN = 7;
|
||||
const scale = app.canvas.ds.scale;
|
||||
|
||||
const bounding = selectedNode.getBounding();
|
||||
const intersection = intersect(
|
||||
{ x: elRect.x / scale, y: elRect.y / scale, width: elRect.width / scale, height: elRect.height / scale },
|
||||
{
|
||||
x: selectedNode.pos[0] + app.canvas.ds.offset[0] - MARGIN,
|
||||
y: selectedNode.pos[1] + app.canvas.ds.offset[1] - LiteGraph.NODE_TITLE_HEIGHT - MARGIN,
|
||||
width: bounding[2] + MARGIN + MARGIN,
|
||||
height: bounding[3] + MARGIN + MARGIN,
|
||||
}
|
||||
);
|
||||
|
||||
if (!intersection) {
|
||||
return "";
|
||||
}
|
||||
|
||||
const widgetRect = element.getBoundingClientRect();
|
||||
const clipX = intersection[0] - widgetRect.x / scale + "px";
|
||||
const clipY = intersection[1] - widgetRect.y / scale + "px";
|
||||
const clipWidth = intersection[2] + "px";
|
||||
const clipHeight = intersection[3] + "px";
|
||||
const path = `polygon(0% 0%, 0% 100%, ${clipX} 100%, ${clipX} ${clipY}, calc(${clipX} + ${clipWidth}) ${clipY}, calc(${clipX} + ${clipWidth}) calc(${clipY} + ${clipHeight}), ${clipX} calc(${clipY} + ${clipHeight}), ${clipX} 100%, 100% 100%, 100% 0%)`;
|
||||
return path;
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
function computeSize(size) {
|
||||
if (this.widgets?.[0]?.last_y == null) return;
|
||||
|
||||
let y = this.widgets[0].last_y;
|
||||
let freeSpace = size[1] - y;
|
||||
|
||||
let widgetHeight = 0;
|
||||
let dom = [];
|
||||
for (const w of this.widgets) {
|
||||
if (w.type === "converted-widget") {
|
||||
// Ignore
|
||||
delete w.computedHeight;
|
||||
} else if (w.computeSize) {
|
||||
widgetHeight += w.computeSize()[1] + 4;
|
||||
} else if (w.element) {
|
||||
// Extract DOM widget size info
|
||||
const styles = getComputedStyle(w.element);
|
||||
let minHeight = w.options.getMinHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-min-height"));
|
||||
let maxHeight = w.options.getMaxHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-max-height"));
|
||||
|
||||
let prefHeight = w.options.getHeight?.() ?? styles.getPropertyValue("--comfy-widget-height");
|
||||
if (prefHeight.endsWith?.("%")) {
|
||||
prefHeight = size[1] * (parseFloat(prefHeight.substring(0, prefHeight.length - 1)) / 100);
|
||||
} else {
|
||||
prefHeight = parseInt(prefHeight);
|
||||
if (isNaN(minHeight)) {
|
||||
minHeight = prefHeight;
|
||||
}
|
||||
}
|
||||
if (isNaN(minHeight)) {
|
||||
minHeight = 50;
|
||||
}
|
||||
if (!isNaN(maxHeight)) {
|
||||
if (!isNaN(prefHeight)) {
|
||||
prefHeight = Math.min(prefHeight, maxHeight);
|
||||
} else {
|
||||
prefHeight = maxHeight;
|
||||
}
|
||||
}
|
||||
dom.push({
|
||||
minHeight,
|
||||
prefHeight,
|
||||
w,
|
||||
});
|
||||
} else {
|
||||
widgetHeight += LiteGraph.NODE_WIDGET_HEIGHT + 4;
|
||||
}
|
||||
}
|
||||
|
||||
freeSpace -= widgetHeight;
|
||||
|
||||
// Calculate sizes with all widgets at their min height
|
||||
const prefGrow = []; // Nodes that want to grow to their prefd size
|
||||
const canGrow = []; // Nodes that can grow to auto size
|
||||
let growBy = 0;
|
||||
for (const d of dom) {
|
||||
freeSpace -= d.minHeight;
|
||||
if (isNaN(d.prefHeight)) {
|
||||
canGrow.push(d);
|
||||
d.w.computedHeight = d.minHeight;
|
||||
} else {
|
||||
const diff = d.prefHeight - d.minHeight;
|
||||
if (diff > 0) {
|
||||
prefGrow.push(d);
|
||||
growBy += diff;
|
||||
d.diff = diff;
|
||||
} else {
|
||||
d.w.computedHeight = d.minHeight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (this.imgs && !this.widgets.find((w) => w.name === ANIM_PREVIEW_WIDGET)) {
|
||||
// Allocate space for image
|
||||
freeSpace -= 220;
|
||||
}
|
||||
|
||||
this.freeWidgetSpace = freeSpace;
|
||||
|
||||
if (freeSpace < 0) {
|
||||
// Not enough space for all widgets so we need to grow
|
||||
size[1] -= freeSpace;
|
||||
this.graph.setDirtyCanvas(true);
|
||||
} else {
|
||||
// Share the space between each
|
||||
const growDiff = freeSpace - growBy;
|
||||
if (growDiff > 0) {
|
||||
// All pref sizes can be fulfilled
|
||||
freeSpace = growDiff;
|
||||
for (const d of prefGrow) {
|
||||
d.w.computedHeight = d.prefHeight;
|
||||
}
|
||||
} else {
|
||||
// We need to grow evenly
|
||||
const shared = -growDiff / prefGrow.length;
|
||||
for (const d of prefGrow) {
|
||||
d.w.computedHeight = d.prefHeight - shared;
|
||||
}
|
||||
freeSpace = 0;
|
||||
}
|
||||
|
||||
if (freeSpace > 0 && canGrow.length) {
|
||||
// Grow any that are auto height
|
||||
const shared = freeSpace / canGrow.length;
|
||||
for (const d of canGrow) {
|
||||
d.w.computedHeight += shared;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Position each of the widgets
|
||||
for (const w of this.widgets) {
|
||||
w.y = y;
|
||||
if (w.computedHeight) {
|
||||
y += w.computedHeight;
|
||||
} else if (w.computeSize) {
|
||||
y += w.computeSize()[1] + 4;
|
||||
} else {
|
||||
y += LiteGraph.NODE_WIDGET_HEIGHT + 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Override the compute visible nodes function to allow us to hide/show DOM elements when the node goes offscreen
|
||||
const elementWidgets = new Set();
|
||||
const computeVisibleNodes = LGraphCanvas.prototype.computeVisibleNodes;
|
||||
LGraphCanvas.prototype.computeVisibleNodes = function () {
|
||||
const visibleNodes = computeVisibleNodes.apply(this, arguments);
|
||||
for (const node of app.graph._nodes) {
|
||||
if (elementWidgets.has(node)) {
|
||||
const hidden = visibleNodes.indexOf(node) === -1;
|
||||
for (const w of node.widgets) {
|
||||
if (w.element) {
|
||||
w.element.hidden = hidden;
|
||||
if (hidden) {
|
||||
w.options.onHide?.(w);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return visibleNodes;
|
||||
};
|
||||
|
||||
let enableDomClipping = true;
|
||||
|
||||
export function addDomClippingSetting() {
|
||||
app.ui.settings.addSetting({
|
||||
id: "Comfy.DOMClippingEnabled",
|
||||
name: "Enable DOM element clipping (enabling may reduce performance)",
|
||||
type: "boolean",
|
||||
defaultValue: enableDomClipping,
|
||||
onChange(value) {
|
||||
enableDomClipping = !!value;
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
LGraphNode.prototype.addDOMWidget = function (name, type, element, options) {
|
||||
options = { hideOnZoom: true, selectOn: ["focus", "click"], ...options };
|
||||
|
||||
if (!element.parentElement) {
|
||||
document.body.append(element);
|
||||
}
|
||||
|
||||
let mouseDownHandler;
|
||||
if (element.blur) {
|
||||
mouseDownHandler = (event) => {
|
||||
if (!element.contains(event.target)) {
|
||||
element.blur();
|
||||
}
|
||||
};
|
||||
document.addEventListener("mousedown", mouseDownHandler);
|
||||
}
|
||||
|
||||
const widget = {
|
||||
type,
|
||||
name,
|
||||
get value() {
|
||||
return options.getValue?.() ?? undefined;
|
||||
},
|
||||
set value(v) {
|
||||
options.setValue?.(v);
|
||||
widget.callback?.(widget.value);
|
||||
},
|
||||
draw: function (ctx, node, widgetWidth, y, widgetHeight) {
|
||||
if (widget.computedHeight == null) {
|
||||
computeSize.call(node, node.size);
|
||||
}
|
||||
|
||||
const hidden =
|
||||
node.flags?.collapsed ||
|
||||
(!!options.hideOnZoom && app.canvas.ds.scale < 0.5) ||
|
||||
widget.computedHeight <= 0 ||
|
||||
widget.type === "converted-widget";
|
||||
element.hidden = hidden;
|
||||
element.style.display = hidden ? "none" : null;
|
||||
if (hidden) {
|
||||
widget.options.onHide?.(widget);
|
||||
return;
|
||||
}
|
||||
|
||||
const margin = 10;
|
||||
const elRect = ctx.canvas.getBoundingClientRect();
|
||||
const transform = new DOMMatrix()
|
||||
.scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height)
|
||||
.multiplySelf(ctx.getTransform())
|
||||
.translateSelf(margin, margin + y);
|
||||
|
||||
const scale = new DOMMatrix().scaleSelf(transform.a, transform.d);
|
||||
|
||||
Object.assign(element.style, {
|
||||
transformOrigin: "0 0",
|
||||
transform: scale,
|
||||
left: `${transform.a + transform.e}px`,
|
||||
top: `${transform.d + transform.f}px`,
|
||||
width: `${widgetWidth - margin * 2}px`,
|
||||
height: `${(widget.computedHeight ?? 50) - margin * 2}px`,
|
||||
position: "absolute",
|
||||
zIndex: app.graph._nodes.indexOf(node),
|
||||
});
|
||||
|
||||
if (enableDomClipping) {
|
||||
element.style.clipPath = getClipPath(node, element, elRect);
|
||||
element.style.willChange = "clip-path";
|
||||
}
|
||||
|
||||
this.options.onDraw?.(widget);
|
||||
},
|
||||
element,
|
||||
options,
|
||||
onRemove() {
|
||||
if (mouseDownHandler) {
|
||||
document.removeEventListener("mousedown", mouseDownHandler);
|
||||
}
|
||||
element.remove();
|
||||
},
|
||||
};
|
||||
|
||||
for (const evt of options.selectOn) {
|
||||
element.addEventListener(evt, () => {
|
||||
app.canvas.selectNode(this);
|
||||
app.canvas.bringToFront(this);
|
||||
});
|
||||
}
|
||||
|
||||
this.addCustomWidget(widget);
|
||||
elementWidgets.add(this);
|
||||
|
||||
const collapse = this.collapse;
|
||||
this.collapse = function() {
|
||||
collapse.apply(this, arguments);
|
||||
if(this.flags?.collapsed) {
|
||||
element.hidden = true;
|
||||
element.style.display = "none";
|
||||
}
|
||||
}
|
||||
|
||||
const onRemoved = this.onRemoved;
|
||||
this.onRemoved = function () {
|
||||
element.remove();
|
||||
elementWidgets.delete(this);
|
||||
onRemoved?.apply(this, arguments);
|
||||
};
|
||||
|
||||
if (!this[SIZE]) {
|
||||
this[SIZE] = true;
|
||||
const onResize = this.onResize;
|
||||
this.onResize = function (size) {
|
||||
options.beforeResize?.call(widget, this);
|
||||
computeSize.call(this, size);
|
||||
onResize?.apply(this, arguments);
|
||||
options.afterResize?.call(widget, this);
|
||||
};
|
||||
}
|
||||
|
||||
return widget;
|
||||
};
|
||||
@ -24,7 +24,7 @@ export function getPngMetadata(file) {
|
||||
const length = dataView.getUint32(offset);
|
||||
// Get the chunk type
|
||||
const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8));
|
||||
if (type === "tEXt") {
|
||||
if (type === "tEXt" || type == "comf") {
|
||||
// Get the keyword
|
||||
let keyword_end = offset + 8;
|
||||
while (pngData[keyword_end] !== 0) {
|
||||
@ -47,6 +47,105 @@ export function getPngMetadata(file) {
|
||||
});
|
||||
}
|
||||
|
||||
function parseExifData(exifData) {
|
||||
// Check for the correct TIFF header (0x4949 for little-endian or 0x4D4D for big-endian)
|
||||
const isLittleEndian = new Uint16Array(exifData.slice(0, 2))[0] === 0x4949;
|
||||
|
||||
// Function to read 16-bit and 32-bit integers from binary data
|
||||
function readInt(offset, isLittleEndian, length) {
|
||||
let arr = exifData.slice(offset, offset + length)
|
||||
if (length === 2) {
|
||||
return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint16(0, isLittleEndian);
|
||||
} else if (length === 4) {
|
||||
return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint32(0, isLittleEndian);
|
||||
}
|
||||
}
|
||||
|
||||
// Read the offset to the first IFD (Image File Directory)
|
||||
const ifdOffset = readInt(4, isLittleEndian, 4);
|
||||
|
||||
function parseIFD(offset) {
|
||||
const numEntries = readInt(offset, isLittleEndian, 2);
|
||||
const result = {};
|
||||
|
||||
for (let i = 0; i < numEntries; i++) {
|
||||
const entryOffset = offset + 2 + i * 12;
|
||||
const tag = readInt(entryOffset, isLittleEndian, 2);
|
||||
const type = readInt(entryOffset + 2, isLittleEndian, 2);
|
||||
const numValues = readInt(entryOffset + 4, isLittleEndian, 4);
|
||||
const valueOffset = readInt(entryOffset + 8, isLittleEndian, 4);
|
||||
|
||||
// Read the value(s) based on the data type
|
||||
let value;
|
||||
if (type === 2) {
|
||||
// ASCII string
|
||||
value = String.fromCharCode(...exifData.slice(valueOffset, valueOffset + numValues - 1));
|
||||
}
|
||||
|
||||
result[tag] = value;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Parse the first IFD
|
||||
const ifdData = parseIFD(ifdOffset);
|
||||
return ifdData;
|
||||
}
|
||||
|
||||
function splitValues(input) {
|
||||
var output = {};
|
||||
for (var key in input) {
|
||||
var value = input[key];
|
||||
var splitValues = value.split(':', 2);
|
||||
output[splitValues[0]] = splitValues[1];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
export function getWebpMetadata(file) {
|
||||
return new Promise((r) => {
|
||||
const reader = new FileReader();
|
||||
reader.onload = (event) => {
|
||||
const webp = new Uint8Array(event.target.result);
|
||||
const dataView = new DataView(webp.buffer);
|
||||
|
||||
// Check that the WEBP signature is present
|
||||
if (dataView.getUint32(0) !== 0x52494646 || dataView.getUint32(8) !== 0x57454250) {
|
||||
console.error("Not a valid WEBP file");
|
||||
r();
|
||||
return;
|
||||
}
|
||||
|
||||
// Start searching for chunks after the WEBP signature
|
||||
let offset = 12;
|
||||
let txt_chunks = {};
|
||||
// Loop through the chunks in the WEBP file
|
||||
while (offset < webp.length) {
|
||||
const chunk_length = dataView.getUint32(offset + 4, true);
|
||||
const chunk_type = String.fromCharCode(...webp.slice(offset, offset + 4));
|
||||
if (chunk_type === "EXIF") {
|
||||
if (String.fromCharCode(...webp.slice(offset + 8, offset + 8 + 6)) == "Exif\0\0") {
|
||||
offset += 6;
|
||||
}
|
||||
let data = parseExifData(webp.slice(offset + 8, offset + 8 + chunk_length));
|
||||
for (var key in data) {
|
||||
var value = data[key];
|
||||
let index = value.indexOf(':');
|
||||
txt_chunks[value.slice(0, index)] = value.slice(index + 1);
|
||||
}
|
||||
}
|
||||
|
||||
offset += 8 + chunk_length;
|
||||
}
|
||||
|
||||
r(txt_chunks);
|
||||
};
|
||||
|
||||
reader.readAsArrayBuffer(file);
|
||||
});
|
||||
}
|
||||
|
||||
export function getLatentMetadata(file) {
|
||||
return new Promise((r) => {
|
||||
const reader = new FileReader();
|
||||
|
||||
@ -462,8 +462,8 @@ class ComfyList {
|
||||
return $el("div", {textContent: item.prompt[0] + ": "}, [
|
||||
$el("button", {
|
||||
textContent: "Load",
|
||||
onclick: () => {
|
||||
app.loadGraphData(item.prompt[3].extra_pnginfo.workflow);
|
||||
onclick: async () => {
|
||||
await app.loadGraphData(item.prompt[3].extra_pnginfo.workflow);
|
||||
if (item.outputs) {
|
||||
app.nodeOutputs = item.outputs;
|
||||
}
|
||||
@ -599,7 +599,7 @@ export class ComfyUI {
|
||||
const fileInput = $el("input", {
|
||||
id: "comfy-file-input",
|
||||
type: "file",
|
||||
accept: ".json,image/png,.latent,.safetensors",
|
||||
accept: ".json,image/png,.latent,.safetensors,image/webp",
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
onchange: () => {
|
||||
@ -719,20 +719,22 @@ export class ComfyUI {
|
||||
filename += ".json";
|
||||
}
|
||||
}
|
||||
const json = JSON.stringify(app.graph.serialize(), null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], {type: "application/json"});
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: filename,
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
app.graphToPrompt().then(p=>{
|
||||
const json = JSON.stringify(p.workflow, null, 2); // convert the data to a JSON string
|
||||
const blob = new Blob([json], {type: "application/json"});
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = $el("a", {
|
||||
href: url,
|
||||
download: filename,
|
||||
style: {display: "none"},
|
||||
parent: document.body,
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function () {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
});
|
||||
a.click();
|
||||
setTimeout(function () {
|
||||
a.remove();
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 0);
|
||||
},
|
||||
}),
|
||||
$el("button", {
|
||||
@ -782,9 +784,9 @@ export class ComfyUI {
|
||||
}
|
||||
}),
|
||||
$el("button", {
|
||||
id: "comfy-load-default-button", textContent: "Load Default", onclick: () => {
|
||||
id: "comfy-load-default-button", textContent: "Load Default", onclick: async () => {
|
||||
if (!confirmClear.value || confirm("Load default workflow?")) {
|
||||
app.loadGraphData()
|
||||
await app.loadGraphData()
|
||||
}
|
||||
}
|
||||
}),
|
||||
|
||||
97
web/scripts/ui/imagePreview.js
Normal file
97
web/scripts/ui/imagePreview.js
Normal file
@ -0,0 +1,97 @@
|
||||
import { $el } from "../ui.js";
|
||||
|
||||
export function calculateImageGrid(imgs, dw, dh) {
|
||||
let best = 0;
|
||||
let w = imgs[0].naturalWidth;
|
||||
let h = imgs[0].naturalHeight;
|
||||
const numImages = imgs.length;
|
||||
|
||||
let cellWidth, cellHeight, cols, rows, shiftX;
|
||||
// compact style
|
||||
for (let c = 1; c <= numImages; c++) {
|
||||
const r = Math.ceil(numImages / c);
|
||||
const cW = dw / c;
|
||||
const cH = dh / r;
|
||||
const scaleX = cW / w;
|
||||
const scaleY = cH / h;
|
||||
|
||||
const scale = Math.min(scaleX, scaleY, 1);
|
||||
const imageW = w * scale;
|
||||
const imageH = h * scale;
|
||||
const area = imageW * imageH * numImages;
|
||||
|
||||
if (area > best) {
|
||||
best = area;
|
||||
cellWidth = imageW;
|
||||
cellHeight = imageH;
|
||||
cols = c;
|
||||
rows = r;
|
||||
shiftX = c * ((cW - imageW) / 2);
|
||||
}
|
||||
}
|
||||
|
||||
return { cellWidth, cellHeight, cols, rows, shiftX };
|
||||
}
|
||||
|
||||
export function createImageHost(node) {
|
||||
const el = $el("div.comfy-img-preview");
|
||||
let currentImgs;
|
||||
let first = true;
|
||||
|
||||
function updateSize() {
|
||||
let w = null;
|
||||
let h = null;
|
||||
|
||||
if (currentImgs) {
|
||||
let elH = el.clientHeight;
|
||||
if (first) {
|
||||
first = false;
|
||||
// On first run, if we are small then grow a bit
|
||||
if (elH < 190) {
|
||||
elH = 190;
|
||||
}
|
||||
el.style.setProperty("--comfy-widget-min-height", elH);
|
||||
} else {
|
||||
el.style.setProperty("--comfy-widget-min-height", null);
|
||||
}
|
||||
|
||||
const nw = node.size[0];
|
||||
({ cellWidth: w, cellHeight: h } = calculateImageGrid(currentImgs, nw - 20, elH));
|
||||
w += "px";
|
||||
h += "px";
|
||||
|
||||
el.style.setProperty("--comfy-img-preview-width", w);
|
||||
el.style.setProperty("--comfy-img-preview-height", h);
|
||||
}
|
||||
}
|
||||
return {
|
||||
el,
|
||||
updateImages(imgs) {
|
||||
if (imgs !== currentImgs) {
|
||||
if (currentImgs == null) {
|
||||
requestAnimationFrame(() => {
|
||||
updateSize();
|
||||
});
|
||||
}
|
||||
el.replaceChildren(...imgs);
|
||||
currentImgs = imgs;
|
||||
node.onResize(node.size);
|
||||
node.graph.setDirtyCanvas(true, true);
|
||||
}
|
||||
},
|
||||
getHeight() {
|
||||
updateSize();
|
||||
},
|
||||
onDraw() {
|
||||
// Element from point uses a hittest find elements so we need to toggle pointer events
|
||||
el.style.pointerEvents = "all";
|
||||
const over = document.elementFromPoint(app.canvas.mouse[0], app.canvas.mouse[1]);
|
||||
el.style.pointerEvents = "none";
|
||||
|
||||
if(!over) return;
|
||||
// Set the overIndex so Open Image etc work
|
||||
const idx = currentImgs.indexOf(over);
|
||||
node.overIndex = idx;
|
||||
},
|
||||
};
|
||||
}
|
||||
@ -1,4 +1,5 @@
|
||||
import { api } from "./api.js"
|
||||
import "./domWidget.js";
|
||||
|
||||
function getNumberDefaults(inputData, defaultStep, precision, enable_rounding) {
|
||||
let defaultVal = inputData[1]["default"];
|
||||
@ -22,18 +23,89 @@ function getNumberDefaults(inputData, defaultStep, precision, enable_rounding) {
|
||||
return { val: defaultVal, config: { min, max, step: 10.0 * step, round, precision } };
|
||||
}
|
||||
|
||||
export function addValueControlWidget(node, targetWidget, defaultValue = "randomize", values) {
|
||||
const valueControl = node.addWidget("combo", "control_after_generate", defaultValue, function (v) { }, {
|
||||
values: ["fixed", "increment", "decrement", "randomize"],
|
||||
serialize: false, // Don't include this in prompt.
|
||||
});
|
||||
valueControl.afterQueued = () => {
|
||||
export function addValueControlWidget(node, targetWidget, defaultValue = "randomize", values, widgetName, inputData) {
|
||||
let name = inputData[1]?.control_after_generate;
|
||||
if(typeof name !== "string") {
|
||||
name = widgetName;
|
||||
}
|
||||
const widgets = addValueControlWidgets(node, targetWidget, defaultValue, {
|
||||
addFilterList: false,
|
||||
controlAfterGenerateName: name
|
||||
}, inputData);
|
||||
return widgets[0];
|
||||
}
|
||||
|
||||
export function addValueControlWidgets(node, targetWidget, defaultValue = "randomize", options, inputData) {
|
||||
if (!defaultValue) defaultValue = "randomize";
|
||||
if (!options) options = {};
|
||||
|
||||
const getName = (defaultName, optionName) => {
|
||||
let name = defaultName;
|
||||
if (options[optionName]) {
|
||||
name = options[optionName];
|
||||
} else if (typeof inputData?.[1]?.[defaultName] === "string") {
|
||||
name = inputData?.[1]?.[defaultName];
|
||||
} else if (inputData?.[1]?.control_prefix) {
|
||||
name = inputData?.[1]?.control_prefix + " " + name
|
||||
}
|
||||
return name;
|
||||
}
|
||||
|
||||
const widgets = [];
|
||||
const valueControl = node.addWidget(
|
||||
"combo",
|
||||
getName("control_after_generate", "controlAfterGenerateName"),
|
||||
defaultValue,
|
||||
function () {},
|
||||
{
|
||||
values: ["fixed", "increment", "decrement", "randomize"],
|
||||
serialize: false, // Don't include this in prompt.
|
||||
}
|
||||
);
|
||||
widgets.push(valueControl);
|
||||
|
||||
const isCombo = targetWidget.type === "combo";
|
||||
let comboFilter;
|
||||
if (isCombo && options.addFilterList !== false) {
|
||||
comboFilter = node.addWidget(
|
||||
"string",
|
||||
getName("control_filter_list", "controlFilterListName"),
|
||||
"",
|
||||
function () {},
|
||||
{
|
||||
serialize: false, // Don't include this in prompt.
|
||||
}
|
||||
);
|
||||
widgets.push(comboFilter);
|
||||
}
|
||||
|
||||
valueControl.afterQueued = () => {
|
||||
var v = valueControl.value;
|
||||
|
||||
if (targetWidget.type == "combo" && v !== "fixed") {
|
||||
let current_index = targetWidget.options.values.indexOf(targetWidget.value);
|
||||
let current_length = targetWidget.options.values.length;
|
||||
if (isCombo && v !== "fixed") {
|
||||
let values = targetWidget.options.values;
|
||||
const filter = comboFilter?.value;
|
||||
if (filter) {
|
||||
let check;
|
||||
if (filter.startsWith("/") && filter.endsWith("/")) {
|
||||
try {
|
||||
const regex = new RegExp(filter.substring(1, filter.length - 1));
|
||||
check = (item) => regex.test(item);
|
||||
} catch (error) {
|
||||
console.error("Error constructing RegExp filter for node " + node.id, filter, error);
|
||||
}
|
||||
}
|
||||
if (!check) {
|
||||
const lower = filter.toLocaleLowerCase();
|
||||
check = (item) => item.toLocaleLowerCase().includes(lower);
|
||||
}
|
||||
values = values.filter(item => check(item));
|
||||
if (!values.length && targetWidget.options.values.length) {
|
||||
console.warn("Filter for node " + node.id + " has filtered out all items", filter);
|
||||
}
|
||||
}
|
||||
let current_index = values.indexOf(targetWidget.value);
|
||||
let current_length = values.length;
|
||||
|
||||
switch (v) {
|
||||
case "increment":
|
||||
@ -50,11 +122,12 @@ export function addValueControlWidget(node, targetWidget, defaultValue = "random
|
||||
current_index = Math.max(0, current_index);
|
||||
current_index = Math.min(current_length - 1, current_index);
|
||||
if (current_index >= 0) {
|
||||
let value = targetWidget.options.values[current_index];
|
||||
let value = values[current_index];
|
||||
targetWidget.value = value;
|
||||
targetWidget.callback(value);
|
||||
}
|
||||
} else { //number
|
||||
} else {
|
||||
//number
|
||||
let min = targetWidget.options.min;
|
||||
let max = targetWidget.options.max;
|
||||
// limit to something that javascript can handle
|
||||
@ -77,185 +150,68 @@ export function addValueControlWidget(node, targetWidget, defaultValue = "random
|
||||
default:
|
||||
break;
|
||||
}
|
||||
/*check if values are over or under their respective
|
||||
* ranges and set them to min or max.*/
|
||||
if (targetWidget.value < min)
|
||||
targetWidget.value = min;
|
||||
/*check if values are over or under their respective
|
||||
* ranges and set them to min or max.*/
|
||||
if (targetWidget.value < min) targetWidget.value = min;
|
||||
|
||||
if (targetWidget.value > max)
|
||||
targetWidget.value = max;
|
||||
targetWidget.callback(targetWidget.value);
|
||||
}
|
||||
}
|
||||
return valueControl;
|
||||
};
|
||||
return widgets;
|
||||
};
|
||||
|
||||
function seedWidget(node, inputName, inputData, app) {
|
||||
const seed = ComfyWidgets.INT(node, inputName, inputData, app);
|
||||
const seedControl = addValueControlWidget(node, seed.widget, "randomize");
|
||||
function seedWidget(node, inputName, inputData, app, widgetName) {
|
||||
const seed = createIntWidget(node, inputName, inputData, app, true);
|
||||
const seedControl = addValueControlWidget(node, seed.widget, "randomize", undefined, widgetName, inputData);
|
||||
|
||||
seed.widget.linkedWidgets = [seedControl];
|
||||
return seed;
|
||||
}
|
||||
|
||||
const MultilineSymbol = Symbol();
|
||||
const MultilineResizeSymbol = Symbol();
|
||||
function createIntWidget(node, inputName, inputData, app, isSeedInput) {
|
||||
const control = inputData[1]?.control_after_generate;
|
||||
if (!isSeedInput && control) {
|
||||
return seedWidget(node, inputName, inputData, app, typeof control === "string" ? control : undefined);
|
||||
}
|
||||
|
||||
let widgetType = isSlider(inputData[1]["display"], app);
|
||||
const { val, config } = getNumberDefaults(inputData, 1, 0, true);
|
||||
Object.assign(config, { precision: 0 });
|
||||
return {
|
||||
widget: node.addWidget(
|
||||
widgetType,
|
||||
inputName,
|
||||
val,
|
||||
function (v) {
|
||||
const s = this.options.step / 10;
|
||||
this.value = Math.round(v / s) * s;
|
||||
},
|
||||
config
|
||||
),
|
||||
};
|
||||
}
|
||||
|
||||
function addMultilineWidget(node, name, opts, app) {
|
||||
const MIN_SIZE = 50;
|
||||
const inputEl = document.createElement("textarea");
|
||||
inputEl.className = "comfy-multiline-input";
|
||||
inputEl.value = opts.defaultVal;
|
||||
inputEl.placeholder = opts.placeholder || name;
|
||||
|
||||
function computeSize(size) {
|
||||
if (node.widgets[0].last_y == null) return;
|
||||
|
||||
let y = node.widgets[0].last_y;
|
||||
let freeSpace = size[1] - y;
|
||||
|
||||
// Compute the height of all non customtext widgets
|
||||
let widgetHeight = 0;
|
||||
const multi = [];
|
||||
for (let i = 0; i < node.widgets.length; i++) {
|
||||
const w = node.widgets[i];
|
||||
if (w.type === "customtext") {
|
||||
multi.push(w);
|
||||
} else {
|
||||
if (w.computeSize) {
|
||||
widgetHeight += w.computeSize()[1] + 4;
|
||||
} else {
|
||||
widgetHeight += LiteGraph.NODE_WIDGET_HEIGHT + 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See how large each text input can be
|
||||
freeSpace -= widgetHeight;
|
||||
freeSpace /= multi.length + (!!node.imgs?.length);
|
||||
|
||||
if (freeSpace < MIN_SIZE) {
|
||||
// There isnt enough space for all the widgets, increase the size of the node
|
||||
freeSpace = MIN_SIZE;
|
||||
node.size[1] = y + widgetHeight + freeSpace * (multi.length + (!!node.imgs?.length));
|
||||
node.graph.setDirtyCanvas(true);
|
||||
}
|
||||
|
||||
// Position each of the widgets
|
||||
for (const w of node.widgets) {
|
||||
w.y = y;
|
||||
if (w.type === "customtext") {
|
||||
y += freeSpace;
|
||||
w.computedHeight = freeSpace - multi.length*4;
|
||||
} else if (w.computeSize) {
|
||||
y += w.computeSize()[1] + 4;
|
||||
} else {
|
||||
y += LiteGraph.NODE_WIDGET_HEIGHT + 4;
|
||||
}
|
||||
}
|
||||
|
||||
node.inputHeight = freeSpace;
|
||||
}
|
||||
|
||||
const widget = {
|
||||
type: "customtext",
|
||||
name,
|
||||
get value() {
|
||||
return this.inputEl.value;
|
||||
const widget = node.addDOMWidget(name, "customtext", inputEl, {
|
||||
getValue() {
|
||||
return inputEl.value;
|
||||
},
|
||||
set value(x) {
|
||||
this.inputEl.value = x;
|
||||
setValue(v) {
|
||||
inputEl.value = v;
|
||||
},
|
||||
draw: function (ctx, _, widgetWidth, y, widgetHeight) {
|
||||
if (!this.parent.inputHeight) {
|
||||
// If we are initially offscreen when created we wont have received a resize event
|
||||
// Calculate it here instead
|
||||
computeSize(node.size);
|
||||
}
|
||||
const visible = app.canvas.ds.scale > 0.5 && this.type === "customtext";
|
||||
const margin = 10;
|
||||
const elRect = ctx.canvas.getBoundingClientRect();
|
||||
const transform = new DOMMatrix()
|
||||
.scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height)
|
||||
.multiplySelf(ctx.getTransform())
|
||||
.translateSelf(margin, margin + y);
|
||||
|
||||
const scale = new DOMMatrix().scaleSelf(transform.a, transform.d)
|
||||
Object.assign(this.inputEl.style, {
|
||||
transformOrigin: "0 0",
|
||||
transform: scale,
|
||||
left: `${transform.a + transform.e}px`,
|
||||
top: `${transform.d + transform.f}px`,
|
||||
width: `${widgetWidth - (margin * 2)}px`,
|
||||
height: `${this.parent.inputHeight - (margin * 2)}px`,
|
||||
position: "absolute",
|
||||
background: (!node.color)?'':node.color,
|
||||
color: (!node.color)?'':'white',
|
||||
zIndex: app.graph._nodes.indexOf(node),
|
||||
});
|
||||
this.inputEl.hidden = !visible;
|
||||
},
|
||||
};
|
||||
widget.inputEl = document.createElement("textarea");
|
||||
widget.inputEl.className = "comfy-multiline-input";
|
||||
widget.inputEl.value = opts.defaultVal;
|
||||
widget.inputEl.placeholder = opts.placeholder || "";
|
||||
document.addEventListener("mousedown", function (event) {
|
||||
if (!widget.inputEl.contains(event.target)) {
|
||||
widget.inputEl.blur();
|
||||
}
|
||||
});
|
||||
widget.parent = node;
|
||||
document.body.appendChild(widget.inputEl);
|
||||
widget.inputEl = inputEl;
|
||||
|
||||
node.addCustomWidget(widget);
|
||||
|
||||
app.canvas.onDrawBackground = function () {
|
||||
// Draw node isnt fired once the node is off the screen
|
||||
// if it goes off screen quickly, the input may not be removed
|
||||
// this shifts it off screen so it can be moved back if the node is visible.
|
||||
for (let n in app.graph._nodes) {
|
||||
n = graph._nodes[n];
|
||||
for (let w in n.widgets) {
|
||||
let wid = n.widgets[w];
|
||||
if (Object.hasOwn(wid, "inputEl")) {
|
||||
wid.inputEl.style.left = -8000 + "px";
|
||||
wid.inputEl.style.position = "absolute";
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
node.onRemoved = function () {
|
||||
// When removing this node we need to remove the input from the DOM
|
||||
for (let y in this.widgets) {
|
||||
if (this.widgets[y].inputEl) {
|
||||
this.widgets[y].inputEl.remove();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
widget.onRemove = () => {
|
||||
widget.inputEl?.remove();
|
||||
|
||||
// Restore original size handler if we are the last
|
||||
if (!--node[MultilineSymbol]) {
|
||||
node.onResize = node[MultilineResizeSymbol];
|
||||
delete node[MultilineSymbol];
|
||||
delete node[MultilineResizeSymbol];
|
||||
}
|
||||
};
|
||||
|
||||
if (node[MultilineSymbol]) {
|
||||
node[MultilineSymbol]++;
|
||||
} else {
|
||||
node[MultilineSymbol] = 1;
|
||||
const onResize = (node[MultilineResizeSymbol] = node.onResize);
|
||||
|
||||
node.onResize = function (size) {
|
||||
computeSize(size);
|
||||
|
||||
// Call original resizer handler
|
||||
if (onResize) {
|
||||
onResize.apply(this, arguments);
|
||||
}
|
||||
};
|
||||
}
|
||||
inputEl.addEventListener("input", () => {
|
||||
widget.callback?.(widget.value);
|
||||
});
|
||||
|
||||
return { minWidth: 400, minHeight: 200, widget };
|
||||
}
|
||||
@ -287,31 +243,26 @@ export const ComfyWidgets = {
|
||||
}, config) };
|
||||
},
|
||||
INT(node, inputName, inputData, app) {
|
||||
let widgetType = isSlider(inputData[1]["display"], app);
|
||||
const { val, config } = getNumberDefaults(inputData, 1, 0, true);
|
||||
Object.assign(config, { precision: 0 });
|
||||
return {
|
||||
widget: node.addWidget(
|
||||
widgetType,
|
||||
inputName,
|
||||
val,
|
||||
function (v) {
|
||||
const s = this.options.step / 10;
|
||||
this.value = Math.round(v / s) * s;
|
||||
},
|
||||
config
|
||||
),
|
||||
};
|
||||
return createIntWidget(node, inputName, inputData, app);
|
||||
},
|
||||
BOOLEAN(node, inputName, inputData) {
|
||||
let defaultVal = inputData[1]["default"];
|
||||
let defaultVal = false;
|
||||
let options = {};
|
||||
if (inputData[1]) {
|
||||
if (inputData[1].default)
|
||||
defaultVal = inputData[1].default;
|
||||
if (inputData[1].label_on)
|
||||
options["on"] = inputData[1].label_on;
|
||||
if (inputData[1].label_off)
|
||||
options["off"] = inputData[1].label_off;
|
||||
}
|
||||
return {
|
||||
widget: node.addWidget(
|
||||
"toggle",
|
||||
inputName,
|
||||
defaultVal,
|
||||
() => {},
|
||||
{"on": inputData[1].label_on, "off": inputData[1].label_off}
|
||||
options,
|
||||
)
|
||||
};
|
||||
},
|
||||
@ -337,10 +288,14 @@ export const ComfyWidgets = {
|
||||
if (inputData[1] && inputData[1].default) {
|
||||
defaultValue = inputData[1].default;
|
||||
}
|
||||
return { widget: node.addWidget("combo", inputName, defaultValue, () => {}, { values: type }) };
|
||||
const res = { widget: node.addWidget("combo", inputName, defaultValue, () => {}, { values: type }) };
|
||||
if (inputData[1]?.control_after_generate) {
|
||||
res.widget.linkedWidgets = addValueControlWidgets(node, res.widget, undefined, undefined, inputData);
|
||||
}
|
||||
return res;
|
||||
},
|
||||
IMAGEUPLOAD(node, inputName, inputData, app) {
|
||||
const imageWidget = node.widgets.find((w) => w.name === "image");
|
||||
const imageWidget = node.widgets.find((w) => w.name === (inputData[1]?.widget ?? "image"));
|
||||
let uploadWidget;
|
||||
|
||||
function showImage(name) {
|
||||
@ -355,7 +310,7 @@ export const ComfyWidgets = {
|
||||
subfolder = name.substring(0, folder_separator);
|
||||
name = name.substring(folder_separator + 1);
|
||||
}
|
||||
img.src = api.apiURL(`/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}${app.getPreviewFormatParam()}`);
|
||||
img.src = api.apiURL(`/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}${app.getPreviewFormatParam()}${app.getRandParam()}`);
|
||||
node.setSizeForImage?.();
|
||||
}
|
||||
|
||||
@ -454,9 +409,10 @@ export const ComfyWidgets = {
|
||||
document.body.append(fileInput);
|
||||
|
||||
// Create the button widget for selecting the files
|
||||
uploadWidget = node.addWidget("button", "choose file to upload", "image", () => {
|
||||
uploadWidget = node.addWidget("button", inputName, "image", () => {
|
||||
fileInput.click();
|
||||
});
|
||||
uploadWidget.label = "choose file to upload";
|
||||
uploadWidget.serialize = false;
|
||||
|
||||
// Add handler to check if an image is being dragged over our node
|
||||
|
||||
@ -409,6 +409,26 @@ dialog::backdrop {
|
||||
width: calc(100% - 10px);
|
||||
}
|
||||
|
||||
.comfy-img-preview {
|
||||
pointer-events: none;
|
||||
overflow: hidden;
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
align-content: flex-start;
|
||||
justify-content: center;
|
||||
}
|
||||
|
||||
.comfy-img-preview img {
|
||||
object-fit: contain;
|
||||
width: var(--comfy-img-preview-width);
|
||||
height: var(--comfy-img-preview-height);
|
||||
}
|
||||
|
||||
.comfy-missing-nodes li button {
|
||||
font-size: 12px;
|
||||
margin-left: 5px;
|
||||
}
|
||||
|
||||
/* Search box */
|
||||
|
||||
.litegraph.litesearchbox {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user