This commit is contained in:
drhead 2025-11-22 15:08:09 +01:00 committed by GitHub
commit 0219e5be6e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 37 additions and 14 deletions

View File

@ -101,6 +101,8 @@ parser.add_argument("--preview-method", type=LatentPreviewMethod, default=Latent
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
parser.add_argument("--preview-stream", action="store_true", help="Use a CUDA Stream to reduce performance cost of previews.")
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")

View File

@ -6,18 +6,28 @@ import comfy.model_management
import folder_paths
import comfy.utils
import logging
from contextlib import nullcontext
import threading
MAX_PREVIEW_RESOLUTION = args.preview_size
def preview_to_image(latent_image):
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
)
if comfy.model_management.directml_enabled:
latents_ubyte = latents_ubyte.to(dtype=torch.uint8)
latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device))
if args.preview_stream:
preview_stream = torch.cuda.Stream()
preview_context = torch.cuda.stream(preview_stream)
else:
preview_context = nullcontext()
return Image.fromarray(latents_ubyte.numpy())
def preview_to_image(preview_image: torch.Tensor):
# no reason why any of this has to happen on GPU, also non-blocking transfers to cpu aren't safe ever
# but we don't care about it blocking because the main stream is fine
preview_image = preview_image.cpu()
preview_image.clamp_(-1.0, 1.0)
preview_image.add_(1.0)
preview_image.mul_(127.5)
preview_image.round_() # default behavior when casting is truncate which is wrong for image processing
return Image.fromarray(preview_image.to(dtype=torch.uint8).numpy())
class LatentPreviewer:
def decode_latent_to_preview(self, x0):
@ -97,12 +107,23 @@ def prepare_callback(model, steps, x0_output_dict=None):
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
if x0_output_dict is not None:
x0_output_dict["x0"] = x0
@torch.inference_mode
def worker():
if x0_output_dict is not None:
x0_output_dict["x0"] = x0
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
preview_bytes = None
if previewer:
with preview_context:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
if args.preview_stream:
# must wait for default stream to catch up else we will decode a garbage tensor
# the default stream will not, under any circumstances, stop because of this
preview_stream.wait_stream(torch.cuda.default_stream())
threading.Thread(target=worker, daemon=True).start()
else: worker() # no point in threading this off if there's no separate stream
return callback