Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2024-12-07 00:34:25 +03:00 committed by GitHub
commit 025d9ed896
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 28 additions and 8 deletions

View File

@ -379,6 +379,7 @@ class LTXVModel(torch.nn.Module):
positional_embedding_max_pos=[20, 2048, 2048], positional_embedding_max_pos=[20, 2048, 2048],
dtype=None, device=None, operations=None, **kwargs): dtype=None, device=None, operations=None, **kwargs):
super().__init__() super().__init__()
self.generator = None
self.dtype = dtype self.dtype = dtype
self.out_channels = in_channels self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim self.inner_dim = num_attention_heads * attention_head_dim
@ -415,7 +416,7 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1) self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, transformer_options={}, **kwargs): def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {}) patches_replace = transformer_options.get("patches_replace", {})
indices_grid = self.patchifier.get_grid( indices_grid = self.patchifier.get_grid(
@ -431,10 +432,22 @@ class LTXVModel(torch.nn.Module):
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype) ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1)) input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts ts *= input_ts
ts[:, :, 0] = 0.0 ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
timestep = self.patchifier.patchify(ts) timestep = self.patchifier.patchify(ts)
input_x = x.clone() input_x = x.clone()
x[:, :, 0] = guiding_latent[:, :, 0] x[:, :, 0] = guiding_latent[:, :, 0]
if guiding_latent_noise_scale > 0:
if self.generator is None:
self.generator = torch.Generator(device=x.device).manual_seed(42)
elif self.generator.device != x.device:
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
scale = guiding_latent_noise_scale * (input_ts ** 2)
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
orig_shape = list(x.shape) orig_shape = list(x.shape)

View File

@ -804,5 +804,9 @@ class LTXV(BaseModel):
if guiding_latent is not None: if guiding_latent is not None:
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent) out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent)
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None)
if guiding_latent_noise_scale is not None:
out["guiding_latent_noise_scale"] = comfy.conds.CONDConstant(guiding_latent_noise_scale)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
return out return out

View File

@ -243,7 +243,7 @@ class ModelSamplingDiscreteFlow(torch.nn.Module):
return 1.0 return 1.0
if percent >= 1.0: if percent >= 1.0:
return 0.0 return 0.0
return 1.0 - percent return time_snr_shift(self.shift, 1.0 - percent)
class StableCascadeSampling(ModelSamplingDiscrete): class StableCascadeSampling(ModelSamplingDiscrete):
def __init__(self, model_config=None): def __init__(self, model_config=None):
@ -336,4 +336,4 @@ class ModelSamplingFlux(torch.nn.Module):
return 1.0 return 1.0
if percent >= 1.0: if percent >= 1.0:
return 0.0 return 0.0
return 1.0 - percent return flux_time_shift(self.shift, 1.0, 1.0 - percent)

View File

@ -32,7 +32,9 @@ class LTXVImgToVideo:
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), "length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"image_noise_scale": ("FLOAT", {"default": 0.15, "min": 0, "max": 1.0, "step": 0.01, "tooltip": "Amount of noise to apply on conditioning image latent."})
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent") RETURN_NAMES = ("positive", "negative", "latent")
@ -40,12 +42,12 @@ class LTXVImgToVideo:
CATEGORY = "conditioning/video_models" CATEGORY = "conditioning/video_models"
FUNCTION = "generate" FUNCTION = "generate"
def generate(self, positive, negative, image, vae, width, height, length, batch_size): def generate(self, positive, negative, image, vae, width, height, length, batch_size, image_noise_scale):
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3] encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels) t = vae.encode(encode_pixels)
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t}) positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t}) negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
latent[:, :, :t.shape[2]] = t latent[:, :, :t.shape[2]] = t
@ -109,6 +111,7 @@ class ModelSamplingLTXV:
model_sampling = ModelSamplingAdvanced(model.model.model_config) model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift) model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling) m.add_object_patch("model_sampling", model_sampling)
return (m, ) return (m, )