From 8490eedadfc0ab00cb131bab681059163c2ebbcd Mon Sep 17 00:00:00 2001 From: Terry Jia Date: Thu, 22 Jan 2026 12:46:56 -0500 Subject: [PATCH 01/13] add ply & 3dgs format in 3d node (#11474) --- comfy_extras/nodes_load_3d.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index 545588ef8..a16b8c8f3 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -24,7 +24,7 @@ class Load3D(IO.ComfyNode): files = [ normalize_path(str(file_path.relative_to(base_path))) for file_path in input_path.rglob("*") - if file_path.suffix.lower() in {'.gltf', '.glb', '.obj', '.fbx', '.stl'} + if file_path.suffix.lower() in {'.gltf', '.glb', '.obj', '.fbx', '.stl', '.spz', '.splat', '.ply', '.ksplat'} ] return IO.Schema( node_id="Load3D", From 0fd1b787360a70dd37aa14089ccb5fc1820f9e17 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 22 Jan 2026 13:54:18 -0800 Subject: [PATCH 02/13] Reduce LTX2 VAE VRAM consumption (#12028) * causal_video_ae: Remove attention ResNet This attention_head_dim argument does not exist on this constructor so this is dead code. Remove as generic attention mid VAE conflicts with temporal roll. * ltx-vae: consoldate causal/non-causal code paths * ltx-vae: add cache rolling adder * ltx-vae: use cached adder for resnet * ltx-vae: Implement rolling VAE Implement a temporal rolling VAE for the LTX2 VAE. Usually when doing temporal rolling VAEs you can just chunk on time relying on causality and cache behind you as you go. The LTX VAE is however non-causal. So go whole hog and implement per layer run ahead and backpressure between the decoder layers using recursive state beween the layers. Operations are ammended with temporal_cache_state{} which they can use to hold any state then need for partial execution. Convolutions cache their inputs behind the up to N-1 frames, and skip connections need to cache the mismatch between convolution input and output that happens due to missing future (non-causal) input. Each call to run_up() processes a layer accross a range on input that may or may not be complete. It goes depth first to process as much as possible to try and digest frames to the final output ASAP. If layers run out of input due to convolution losses, they simply return without action effectively applying back-pressure to the earlier layers. As the earlier layers do more work and caller deeper, the partial states are reconciled and output continues to digest depth first as much as possible. Chunking is done using a size quota rather than a fixed frame length and any layer can initiate chunking, and multiple layers can chunk at different granulatiries. This remove the old limitation of always having to process 1 latent frame to entirety and having to hold 8 full decoded frames as the VRAM peak. --- comfy/ldm/lightricks/vae/causal_conv3d.py | 43 +++-- .../vae/causal_video_autoencoder.py | 176 +++++++++++++----- comfy/ldm/modules/diffusionmodules/model.py | 5 +- 3 files changed, 160 insertions(+), 64 deletions(-) diff --git a/comfy/ldm/lightricks/vae/causal_conv3d.py b/comfy/ldm/lightricks/vae/causal_conv3d.py index 70d612e86..b8341edbc 100644 --- a/comfy/ldm/lightricks/vae/causal_conv3d.py +++ b/comfy/ldm/lightricks/vae/causal_conv3d.py @@ -1,11 +1,11 @@ from typing import Tuple, Union +import threading import torch import torch.nn as nn import comfy.ops ops = comfy.ops.disable_weight_init - class CausalConv3d(nn.Module): def __init__( self, @@ -42,23 +42,34 @@ class CausalConv3d(nn.Module): padding_mode=spatial_padding_mode, groups=groups, ) + self.temporal_cache_state={} def forward(self, x, causal: bool = True): - if causal: - first_frame_pad = x[:, :, :1, :, :].repeat( - (1, 1, self.time_kernel_size - 1, 1, 1) - ) - x = torch.concatenate((first_frame_pad, x), dim=2) - else: - first_frame_pad = x[:, :, :1, :, :].repeat( - (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) - ) - last_frame_pad = x[:, :, -1:, :, :].repeat( - (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) - ) - x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2) - x = self.conv(x) - return x + tid = threading.get_ident() + + cached, is_end = self.temporal_cache_state.get(tid, (None, False)) + if cached is None: + padding_length = self.time_kernel_size - 1 + if not causal: + padding_length = padding_length // 2 + if x.shape[2] == 0: + return x + cached = x[:, :, :1, :, :].repeat((1, 1, padding_length, 1, 1)) + pieces = [ cached, x ] + if is_end and not causal: + pieces.append(x[:, :, -1:, :, :].repeat((1, 1, (self.time_kernel_size - 1) // 2, 1, 1))) + + needs_caching = not is_end + if needs_caching and x.shape[2] >= self.time_kernel_size - 1: + needs_caching = False + self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False) + + x = torch.cat(pieces, dim=2) + + if needs_caching: + self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False) + + return self.conv(x) if x.shape[2] >= self.time_kernel_size else x[:, :, :0, :, :] @property def weight(self): diff --git a/comfy/ldm/lightricks/vae/causal_video_autoencoder.py b/comfy/ldm/lightricks/vae/causal_video_autoencoder.py index 75ed069ad..cbfdf412d 100644 --- a/comfy/ldm/lightricks/vae/causal_video_autoencoder.py +++ b/comfy/ldm/lightricks/vae/causal_video_autoencoder.py @@ -1,4 +1,5 @@ from __future__ import annotations +import threading import torch from torch import nn from functools import partial @@ -6,12 +7,35 @@ import math from einops import rearrange from typing import List, Optional, Tuple, Union from .conv_nd_factory import make_conv_nd, make_linear_nd +from .causal_conv3d import CausalConv3d from .pixel_norm import PixelNorm from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings import comfy.ops +from comfy.ldm.modules.diffusionmodules.model import torch_cat_if_needed ops = comfy.ops.disable_weight_init +def mark_conv3d_ended(module): + tid = threading.get_ident() + for _, m in module.named_modules(): + if isinstance(m, CausalConv3d): + current = m.temporal_cache_state.get(tid, (None, False)) + m.temporal_cache_state[tid] = (current[0], True) + +def split2(tensor, split_point, dim=2): + return torch.split(tensor, [split_point, tensor.shape[dim] - split_point], dim=dim) + +def add_exchange_cache(dest, cache_in, new_input, dim=2): + if dest is not None: + if cache_in is not None: + cache_to_dest = min(dest.shape[dim], cache_in.shape[dim]) + lead_in_dest, dest = split2(dest, cache_to_dest, dim=dim) + lead_in_source, cache_in = split2(cache_in, cache_to_dest, dim=dim) + lead_in_dest.add_(lead_in_source) + body, new_input = split2(new_input, dest.shape[dim], dim) + dest.add_(body) + return torch_cat_if_needed([cache_in, new_input], dim=dim) + class Encoder(nn.Module): r""" The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. @@ -205,7 +229,7 @@ class Encoder(nn.Module): self.gradient_checkpointing = False - def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: + def forward_orig(self, sample: torch.FloatTensor) -> torch.FloatTensor: r"""The forward method of the `Encoder` class.""" sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) @@ -254,6 +278,22 @@ class Encoder(nn.Module): return sample + def forward(self, *args, **kwargs): + #No encoder support so just flag the end so it doesnt use the cache. + mark_conv3d_ended(self) + try: + return self.forward_orig(*args, **kwargs) + finally: + tid = threading.get_ident() + for _, module in self.named_modules(): + # ComfyUI doesn't thread this kind of stuff today, but just in case + # we key on the thread to make it thread safe. + tid = threading.get_ident() + if hasattr(module, "temporal_cache_state"): + module.temporal_cache_state.pop(tid, None) + + +MAX_CHUNK_SIZE=(128 * 1024 ** 2) class Decoder(nn.Module): r""" @@ -341,18 +381,6 @@ class Decoder(nn.Module): timestep_conditioning=timestep_conditioning, spatial_padding_mode=spatial_padding_mode, ) - elif block_name == "attn_res_x": - block = UNetMidBlock3D( - dims=dims, - in_channels=input_channel, - num_layers=block_params["num_layers"], - resnet_groups=norm_num_groups, - norm_layer=norm_layer, - inject_noise=block_params.get("inject_noise", False), - timestep_conditioning=timestep_conditioning, - attention_head_dim=block_params["attention_head_dim"], - spatial_padding_mode=spatial_padding_mode, - ) elif block_name == "res_x_y": output_channel = output_channel // block_params.get("multiplier", 2) block = ResnetBlock3D( @@ -428,8 +456,9 @@ class Decoder(nn.Module): ) self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel)) + # def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor: - def forward( + def forward_orig( self, sample: torch.FloatTensor, timestep: Optional[torch.Tensor] = None, @@ -437,6 +466,7 @@ class Decoder(nn.Module): r"""The forward method of the `Decoder` class.""" batch_size = sample.shape[0] + mark_conv3d_ended(self.conv_in) sample = self.conv_in(sample, causal=self.causal) checkpoint_fn = ( @@ -445,24 +475,12 @@ class Decoder(nn.Module): else lambda x: x ) - scaled_timestep = None + timestep_shift_scale = None if self.timestep_conditioning: assert ( timestep is not None ), "should pass timestep with timestep_conditioning=True" scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device) - - for up_block in self.up_blocks: - if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D): - sample = checkpoint_fn(up_block)( - sample, causal=self.causal, timestep=scaled_timestep - ) - else: - sample = checkpoint_fn(up_block)(sample, causal=self.causal) - - sample = self.conv_norm_out(sample) - - if self.timestep_conditioning: embedded_timestep = self.last_time_embedder( timestep=scaled_timestep.flatten(), resolution=None, @@ -483,16 +501,62 @@ class Decoder(nn.Module): embedded_timestep.shape[-2], embedded_timestep.shape[-1], ) - shift, scale = ada_values.unbind(dim=1) - sample = sample * (1 + scale) + shift + timestep_shift_scale = ada_values.unbind(dim=1) - sample = self.conv_act(sample) - sample = self.conv_out(sample, causal=self.causal) + output = [] + + def run_up(idx, sample, ended): + if idx >= len(self.up_blocks): + sample = self.conv_norm_out(sample) + if timestep_shift_scale is not None: + shift, scale = timestep_shift_scale + sample = sample * (1 + scale) + shift + sample = self.conv_act(sample) + if ended: + mark_conv3d_ended(self.conv_out) + sample = self.conv_out(sample, causal=self.causal) + if sample is not None and sample.shape[2] > 0: + output.append(sample) + return + + up_block = self.up_blocks[idx] + if (ended): + mark_conv3d_ended(up_block) + if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D): + sample = checkpoint_fn(up_block)( + sample, causal=self.causal, timestep=scaled_timestep + ) + else: + sample = checkpoint_fn(up_block)(sample, causal=self.causal) + + if sample is None or sample.shape[2] == 0: + return + + total_bytes = sample.numel() * sample.element_size() + num_chunks = (total_bytes + MAX_CHUNK_SIZE - 1) // MAX_CHUNK_SIZE + samples = torch.chunk(sample, chunks=num_chunks, dim=2) + + for chunk_idx, sample1 in enumerate(samples): + run_up(idx + 1, sample1, ended and chunk_idx == len(samples) - 1) + + run_up(0, sample, True) + sample = torch.cat(output, dim=2) sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) return sample + def forward(self, *args, **kwargs): + try: + return self.forward_orig(*args, **kwargs) + finally: + for _, module in self.named_modules(): + #ComfyUI doesn't thread this kind of stuff today, but just incase + #we key on the thread to make it thread safe. + tid = threading.get_ident() + if hasattr(module, "temporal_cache_state"): + module.temporal_cache_state.pop(tid, None) + class UNetMidBlock3D(nn.Module): """ @@ -663,8 +727,22 @@ class DepthToSpaceUpsample(nn.Module): ) self.residual = residual self.out_channels_reduction_factor = out_channels_reduction_factor + self.temporal_cache_state = {} def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None): + tid = threading.get_ident() + cached, drop_first_conv, drop_first_res = self.temporal_cache_state.get(tid, (None, True, True)) + y = self.conv(x, causal=causal) + y = rearrange( + y, + "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", + p1=self.stride[0], + p2=self.stride[1], + p3=self.stride[2], + ) + if self.stride[0] == 2 and y.shape[2] > 0 and drop_first_conv: + y = y[:, :, 1:, :, :] + drop_first_conv = False if self.residual: # Reshape and duplicate the input to match the output shape x_in = rearrange( @@ -676,21 +754,20 @@ class DepthToSpaceUpsample(nn.Module): ) num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor x_in = x_in.repeat(1, num_repeat, 1, 1, 1) - if self.stride[0] == 2: + if self.stride[0] == 2 and x_in.shape[2] > 0 and drop_first_res: x_in = x_in[:, :, 1:, :, :] - x = self.conv(x, causal=causal) - x = rearrange( - x, - "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", - p1=self.stride[0], - p2=self.stride[1], - p3=self.stride[2], - ) - if self.stride[0] == 2: - x = x[:, :, 1:, :, :] - if self.residual: - x = x + x_in - return x + drop_first_res = False + + if y.shape[2] == 0: + y = None + + cached = add_exchange_cache(y, cached, x_in, dim=2) + self.temporal_cache_state[tid] = (cached, drop_first_conv, drop_first_res) + + else: + self.temporal_cache_state[tid] = (None, drop_first_conv, False) + + return y class LayerNorm(nn.Module): def __init__(self, dim, eps, elementwise_affine=True) -> None: @@ -807,6 +884,8 @@ class ResnetBlock3D(nn.Module): torch.randn(4, in_channels) / in_channels**0.5 ) + self.temporal_cache_state={} + def _feed_spatial_noise( self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor ) -> torch.FloatTensor: @@ -880,9 +959,12 @@ class ResnetBlock3D(nn.Module): input_tensor = self.conv_shortcut(input_tensor) - output_tensor = input_tensor + hidden_states + tid = threading.get_ident() + cached = self.temporal_cache_state.get(tid, None) + cached = add_exchange_cache(hidden_states, cached, input_tensor, dim=2) + self.temporal_cache_state[tid] = cached - return output_tensor + return hidden_states def patchify(x, patch_size_hw, patch_size_t=1): diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 1ae3ef034..5a22ef030 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -14,10 +14,13 @@ if model_management.xformers_enabled_vae(): import xformers.ops def torch_cat_if_needed(xl, dim): + xl = [x for x in xl if x is not None and x.shape[dim] > 0] if len(xl) > 1: return torch.cat(xl, dim) - else: + elif len(xl) == 1: return xl[0] + else: + return None def get_timestep_embedding(timesteps, embedding_dim): """ From 09a2e67151c6753a0038f6e01f3c3d93fcc3ec98 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 22 Jan 2026 15:20:48 -0800 Subject: [PATCH 03/13] Support loading flux 2 klein checkpoints saved with SaveCheckpoint. (#12033) --- comfy/supported_models.py | 20 +++++++++++++++++--- comfy/text_encoders/hunyuan_video.py | 8 +++++--- 2 files changed, 22 insertions(+), 6 deletions(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 70abebf46..45d913fa6 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -771,10 +771,24 @@ class Flux2(Flux): return out def clip_target(self, state_dict={}): - return None # TODO pref = self.text_encoder_key_prefix[0] - t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) - return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect)) + detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref)) + if len(detect) > 0: + detect["model_type"] = "qwen3_4b" + return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer, comfy.text_encoders.flux.klein_te(**detect)) + + detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_8b.transformer.".format(pref)) + if len(detect) > 0: + detect["model_type"] = "qwen3_8b" + return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer8B, comfy.text_encoders.flux.klein_te(**detect)) + + detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}mistral3_24b.transformer.".format(pref)) + if len(detect) > 0: + if "{}mistral3_24b.transformer.model.layers.39.post_attention_layernorm.weight".format(pref) not in state_dict: + detect["pruned"] = True + return supported_models_base.ClipTarget(comfy.text_encoders.flux.Flux2Tokenizer, comfy.text_encoders.flux.flux2_te(**detect)) + + return None class GenmoMochi(supported_models_base.BASE): unet_config = { diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index a9a6c525e..2ddb4da60 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -10,9 +10,11 @@ import comfy.utils def llama_detect(state_dict, prefix=""): out = {} - t5_key = "{}model.norm.weight".format(prefix) - if t5_key in state_dict: - out["dtype_llama"] = state_dict[t5_key].dtype + norm_keys = ["{}model.norm.weight".format(prefix), "{}model.layers.0.input_layernorm.weight".format(prefix)] + for norm_key in norm_keys: + if norm_key in state_dict: + out["dtype_llama"] = state_dict[norm_key].dtype + break quant = comfy.utils.detect_layer_quantization(state_dict, prefix) if quant is not None: From d7f3241bf6b11f67ada34c51097fbaad0c01124a Mon Sep 17 00:00:00 2001 From: Omri Marom <110098005+maromri@users.noreply.github.com> Date: Fri, 23 Jan 2026 03:02:31 +0200 Subject: [PATCH 04/13] qwen_image: propagate attention mask. (#11966) --- comfy/ldm/qwen_image/model.py | 11 ++++++++++- comfy/model_base.py | 3 +++ 2 files changed, 13 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 00c597535..6eb744286 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -170,8 +170,14 @@ class Attention(nn.Module): joint_query = apply_rope1(joint_query, image_rotary_emb) joint_key = apply_rope1(joint_key, image_rotary_emb) + if encoder_hidden_states_mask is not None: + attn_mask = torch.zeros((batch_size, 1, seq_txt + seq_img), dtype=hidden_states.dtype, device=hidden_states.device) + attn_mask[:, 0, :seq_txt] = encoder_hidden_states_mask + else: + attn_mask = None + joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, - attention_mask, transformer_options=transformer_options, + attn_mask, transformer_options=transformer_options, skip_reshape=True) txt_attn_output = joint_hidden_states[:, :seq_txt, :] @@ -430,6 +436,9 @@ class QwenImageTransformer2DModel(nn.Module): encoder_hidden_states = context encoder_hidden_states_mask = attention_mask + if encoder_hidden_states_mask is not None and not torch.is_floating_point(encoder_hidden_states_mask): + encoder_hidden_states_mask = (encoder_hidden_states_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max + hidden_states, img_ids, orig_shape = self.process_img(x) num_embeds = hidden_states.shape[1] diff --git a/comfy/model_base.py b/comfy/model_base.py index 1d57562cc..66e52864d 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1578,6 +1578,9 @@ class QwenImage(BaseModel): def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) From bbb8864778a93eb0fa60c76201383e2b5a63aa38 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Thu, 22 Jan 2026 18:36:58 -0800 Subject: [PATCH 05/13] add search aliases to all nodes (#12035) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * feat: Add search_aliases field to node schema Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate). Changes: - Add `search_aliases: list[str]` to V3 Schema - Add `SEARCH_ALIASES` support for V1 nodes - Include field in `/object_info` response - Add aliases to high-priority core nodes V1 usage: ```python class MyNode: SEARCH_ALIASES = ["alt name", "synonym"] ``` V3 usage: ```python io.Schema( node_id="MyNode", search_aliases=["alt name", "synonym"], ... ) ``` ## Related PRs - Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this) - Docs: Comfy-Org/docs#XXXX (draft - merge after stable) * Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1 * feat: add SEARCH_ALIASES for core nodes (#12016) Add search aliases to 22 core nodes in nodes.py to improve node discoverability: - Checkpoint/model loaders: CheckpointLoader, DiffusersLoader - Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut - Style nodes: StyleModelApply - Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint - Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch * feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017) Add search aliases to nodes in comfy_extras for better discoverability: - nodes_mask.py: mask manipulation nodes - nodes_images.py: image processing nodes - nodes_post_processing.py: post-processing effect nodes - nodes_string.py: string manipulation nodes - nodes_compositing.py: compositing nodes - nodes_morphology.py: morphological operation nodes - nodes_latent.py: latent space nodes Uses search_aliases parameter in io.Schema() for v3 nodes. * feat: add SEARCH_ALIASES for audio and video nodes (#12018) Add search aliases to audio and video nodes for better discoverability: - nodes_audio.py: audio loading, saving, and processing nodes - nodes_video.py: video loading and processing nodes - nodes_wan.py: WAN model nodes Uses search_aliases parameter in io.Schema() for v3 nodes. * feat: add SEARCH_ALIASES for model and misc nodes (#12019) Add search aliases to model-related and miscellaneous nodes: - Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py - Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py - Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py - Training nodes: nodes_train.py, nodes_dataset.py - Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py - Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py - Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes. --- comfy_extras/nodes_align_your_steps.py | 1 + comfy_extras/nodes_attention_multiply.py | 1 + comfy_extras/nodes_audio.py | 14 +++++++ comfy_extras/nodes_canny.py | 1 + comfy_extras/nodes_compositing.py | 3 ++ comfy_extras/nodes_controlnet.py | 1 + comfy_extras/nodes_custom_sampler.py | 4 ++ comfy_extras/nodes_dataset.py | 6 +-- comfy_extras/nodes_differential_diffusion.py | 1 + comfy_extras/nodes_fresca.py | 1 + comfy_extras/nodes_hidream.py | 1 + comfy_extras/nodes_hooks.py | 5 +++ comfy_extras/nodes_hunyuan3d.py | 1 + comfy_extras/nodes_images.py | 16 +++++--- comfy_extras/nodes_kandinsky5.py | 1 + comfy_extras/nodes_latent.py | 10 +++++ comfy_extras/nodes_load_3d.py | 1 + comfy_extras/nodes_logic.py | 2 + comfy_extras/nodes_lora_extract.py | 1 + comfy_extras/nodes_lumina2.py | 1 + comfy_extras/nodes_mask.py | 12 ++++++ comfy_extras/nodes_model_advanced.py | 1 + comfy_extras/nodes_model_merging.py | 4 ++ comfy_extras/nodes_morphology.py | 3 ++ comfy_extras/nodes_pixart.py | 1 + comfy_extras/nodes_post_processing.py | 5 ++- comfy_extras/nodes_preview_any.py | 2 +- comfy_extras/nodes_sd3.py | 1 + comfy_extras/nodes_string.py | 10 +++++ comfy_extras/nodes_train.py | 2 + comfy_extras/nodes_video.py | 5 +++ comfy_extras/nodes_wan.py | 2 + comfy_extras/nodes_wanmove.py | 1 + comfy_extras/nodes_webcam.py | 1 + nodes.py | 41 ++++++++++++++++++++ 35 files changed, 152 insertions(+), 11 deletions(-) diff --git a/comfy_extras/nodes_align_your_steps.py b/comfy_extras/nodes_align_your_steps.py index edd5dadd4..4fc511d2c 100644 --- a/comfy_extras/nodes_align_your_steps.py +++ b/comfy_extras/nodes_align_your_steps.py @@ -28,6 +28,7 @@ class AlignYourStepsScheduler(io.ComfyNode): def define_schema(cls) -> io.Schema: return io.Schema( node_id="AlignYourStepsScheduler", + search_aliases=["AYS scheduler"], category="sampling/custom_sampling/schedulers", inputs=[ io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]), diff --git a/comfy_extras/nodes_attention_multiply.py b/comfy_extras/nodes_attention_multiply.py index c0e494c2a..67c4e2ed0 100644 --- a/comfy_extras/nodes_attention_multiply.py +++ b/comfy_extras/nodes_attention_multiply.py @@ -71,6 +71,7 @@ class CLIPAttentionMultiply(io.ComfyNode): def define_schema(cls) -> io.Schema: return io.Schema( node_id="CLIPAttentionMultiply", + search_aliases=["clip attention scale", "text encoder attention"], category="_for_testing/attention_experiments", inputs=[ io.Clip.Input("clip"), diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 15b3aa401..271b75fbd 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -69,6 +69,7 @@ class VAEEncodeAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="VAEEncodeAudio", + search_aliases=["audio to latent"], display_name="VAE Encode Audio", category="latent/audio", inputs=[ @@ -97,6 +98,7 @@ class VAEDecodeAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="VAEDecodeAudio", + search_aliases=["latent to audio"], display_name="VAE Decode Audio", category="latent/audio", inputs=[ @@ -122,6 +124,7 @@ class SaveAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="SaveAudio", + search_aliases=["export flac"], display_name="Save Audio (FLAC)", category="audio", inputs=[ @@ -146,6 +149,7 @@ class SaveAudioMP3(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="SaveAudioMP3", + search_aliases=["export mp3"], display_name="Save Audio (MP3)", category="audio", inputs=[ @@ -173,6 +177,7 @@ class SaveAudioOpus(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="SaveAudioOpus", + search_aliases=["export opus"], display_name="Save Audio (Opus)", category="audio", inputs=[ @@ -200,6 +205,7 @@ class PreviewAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="PreviewAudio", + search_aliases=["play audio"], display_name="Preview Audio", category="audio", inputs=[ @@ -259,6 +265,7 @@ class LoadAudio(IO.ComfyNode): files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) return IO.Schema( node_id="LoadAudio", + search_aliases=["import audio", "open audio", "audio file"], display_name="Load Audio", category="audio", inputs=[ @@ -296,6 +303,7 @@ class RecordAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="RecordAudio", + search_aliases=["microphone input", "audio capture", "voice input"], display_name="Record Audio", category="audio", inputs=[ @@ -320,6 +328,7 @@ class TrimAudioDuration(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="TrimAudioDuration", + search_aliases=["cut audio", "audio clip", "shorten audio"], display_name="Trim Audio Duration", description="Trim audio tensor into chosen time range.", category="audio", @@ -372,6 +381,7 @@ class SplitAudioChannels(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="SplitAudioChannels", + search_aliases=["stereo to mono"], display_name="Split Audio Channels", description="Separates the audio into left and right channels.", category="audio", @@ -472,6 +482,7 @@ class AudioConcat(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="AudioConcat", + search_aliases=["join audio", "combine audio", "append audio"], display_name="Audio Concat", description="Concatenates the audio1 to audio2 in the specified direction.", category="audio", @@ -519,6 +530,7 @@ class AudioMerge(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="AudioMerge", + search_aliases=["mix audio", "overlay audio", "layer audio"], display_name="Audio Merge", description="Combine two audio tracks by overlaying their waveforms.", category="audio", @@ -579,6 +591,7 @@ class AudioAdjustVolume(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="AudioAdjustVolume", + search_aliases=["audio gain", "loudness", "audio level"], display_name="Audio Adjust Volume", category="audio", inputs=[ @@ -614,6 +627,7 @@ class EmptyAudio(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="EmptyAudio", + search_aliases=["blank audio"], display_name="Empty Audio", category="audio", inputs=[ diff --git a/comfy_extras/nodes_canny.py b/comfy_extras/nodes_canny.py index 576f3640a..6e0fadca5 100644 --- a/comfy_extras/nodes_canny.py +++ b/comfy_extras/nodes_canny.py @@ -10,6 +10,7 @@ class Canny(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="Canny", + search_aliases=["edge detection", "outline", "contour detection", "line art"], category="image/preprocessors", inputs=[ io.Image.Input("image"), diff --git a/comfy_extras/nodes_compositing.py b/comfy_extras/nodes_compositing.py index e4e4e1cbc..3bc9fccb3 100644 --- a/comfy_extras/nodes_compositing.py +++ b/comfy_extras/nodes_compositing.py @@ -109,6 +109,7 @@ class PorterDuffImageComposite(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="PorterDuffImageComposite", + search_aliases=["alpha composite", "blend modes", "layer blend", "transparency blend"], display_name="Porter-Duff Image Composite", category="mask/compositing", inputs=[ @@ -165,6 +166,7 @@ class SplitImageWithAlpha(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SplitImageWithAlpha", + search_aliases=["extract alpha", "separate transparency", "remove alpha"], display_name="Split Image with Alpha", category="mask/compositing", inputs=[ @@ -188,6 +190,7 @@ class JoinImageWithAlpha(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="JoinImageWithAlpha", + search_aliases=["add transparency", "apply alpha", "composite alpha", "RGBA"], display_name="Join Image with Alpha", category="mask/compositing", inputs=[ diff --git a/comfy_extras/nodes_controlnet.py b/comfy_extras/nodes_controlnet.py index e835feed7..0c1d7f0d4 100644 --- a/comfy_extras/nodes_controlnet.py +++ b/comfy_extras/nodes_controlnet.py @@ -38,6 +38,7 @@ class ControlNetInpaintingAliMamaApply(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ControlNetInpaintingAliMamaApply", + search_aliases=["masked controlnet"], category="conditioning/controlnet", inputs=[ io.Conditioning.Input("positive"), diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index f19adf4b9..3eb40e937 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -297,6 +297,7 @@ class ExtendIntermediateSigmas(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ExtendIntermediateSigmas", + search_aliases=["interpolate sigmas"], category="sampling/custom_sampling/sigmas", inputs=[ io.Sigmas.Input("sigmas"), @@ -856,6 +857,7 @@ class DualCFGGuider(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="DualCFGGuider", + search_aliases=["dual prompt guidance"], category="sampling/custom_sampling/guiders", inputs=[ io.Model.Input("model"), @@ -883,6 +885,7 @@ class DisableNoise(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="DisableNoise", + search_aliases=["zero noise"], category="sampling/custom_sampling/noise", inputs=[], outputs=[io.Noise.Output()] @@ -1019,6 +1022,7 @@ class ManualSigmas(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ManualSigmas", + search_aliases=["custom noise schedule", "define sigmas"], category="_for_testing/custom_sampling", is_experimental=True, inputs=[ diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index 5ef851bd0..fb9409ac3 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -1223,11 +1223,11 @@ class ResolutionBucket(io.ComfyNode): class MakeTrainingDataset(io.ComfyNode): """Encode images with VAE and texts with CLIP to create a training dataset.""" - @classmethod def define_schema(cls): return io.Schema( node_id="MakeTrainingDataset", + search_aliases=["encode dataset"], display_name="Make Training Dataset", category="dataset", is_experimental=True, @@ -1309,11 +1309,11 @@ class MakeTrainingDataset(io.ComfyNode): class SaveTrainingDataset(io.ComfyNode): """Save encoded training dataset (latents + conditioning) to disk.""" - @classmethod def define_schema(cls): return io.Schema( node_id="SaveTrainingDataset", + search_aliases=["export training data"], display_name="Save Training Dataset", category="dataset", is_experimental=True, @@ -1410,11 +1410,11 @@ class SaveTrainingDataset(io.ComfyNode): class LoadTrainingDataset(io.ComfyNode): """Load encoded training dataset from disk.""" - @classmethod def define_schema(cls): return io.Schema( node_id="LoadTrainingDataset", + search_aliases=["import dataset", "training data"], display_name="Load Training Dataset", category="dataset", is_experimental=True, diff --git a/comfy_extras/nodes_differential_diffusion.py b/comfy_extras/nodes_differential_diffusion.py index 6dfdf466c..34ffb9a89 100644 --- a/comfy_extras/nodes_differential_diffusion.py +++ b/comfy_extras/nodes_differential_diffusion.py @@ -11,6 +11,7 @@ class DifferentialDiffusion(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="DifferentialDiffusion", + search_aliases=["inpaint gradient", "variable denoise strength"], display_name="Differential Diffusion", category="_for_testing", inputs=[ diff --git a/comfy_extras/nodes_fresca.py b/comfy_extras/nodes_fresca.py index f308eb0c1..3d590af4b 100644 --- a/comfy_extras/nodes_fresca.py +++ b/comfy_extras/nodes_fresca.py @@ -58,6 +58,7 @@ class FreSca(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="FreSca", + search_aliases=["frequency guidance"], display_name="FreSca", category="_for_testing", description="Applies frequency-dependent scaling to the guidance", diff --git a/comfy_extras/nodes_hidream.py b/comfy_extras/nodes_hidream.py index eee683ee1..e345fe51d 100644 --- a/comfy_extras/nodes_hidream.py +++ b/comfy_extras/nodes_hidream.py @@ -38,6 +38,7 @@ class CLIPTextEncodeHiDream(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CLIPTextEncodeHiDream", + search_aliases=["hidream prompt"], category="advanced/conditioning", inputs=[ io.Clip.Input("clip"), diff --git a/comfy_extras/nodes_hooks.py b/comfy_extras/nodes_hooks.py index 1edc06f3d..58e511ef5 100644 --- a/comfy_extras/nodes_hooks.py +++ b/comfy_extras/nodes_hooks.py @@ -259,6 +259,7 @@ class SetClipHooks: return (clip,) class ConditioningTimestepsRange: + SEARCH_ALIASES = ["prompt scheduling", "timestep segments", "conditioning phases"] NodeId = 'ConditioningTimestepsRange' NodeName = 'Timesteps Range' @classmethod @@ -468,6 +469,7 @@ class SetHookKeyframes: return (hooks,) class CreateHookKeyframe: + SEARCH_ALIASES = ["hook scheduling", "strength animation", "timed hook"] NodeId = 'CreateHookKeyframe' NodeName = 'Create Hook Keyframe' @classmethod @@ -497,6 +499,7 @@ class CreateHookKeyframe: return (prev_hook_kf,) class CreateHookKeyframesInterpolated: + SEARCH_ALIASES = ["ease hook strength", "smooth hook transition", "interpolate keyframes"] NodeId = 'CreateHookKeyframesInterpolated' NodeName = 'Create Hook Keyframes Interp.' @classmethod @@ -544,6 +547,7 @@ class CreateHookKeyframesInterpolated: return (prev_hook_kf,) class CreateHookKeyframesFromFloats: + SEARCH_ALIASES = ["batch keyframes", "strength list to keyframes"] NodeId = 'CreateHookKeyframesFromFloats' NodeName = 'Create Hook Keyframes From Floats' @classmethod @@ -618,6 +622,7 @@ class SetModelHooksOnCond: # Combine Hooks #------------------------------------------ class CombineHooks: + SEARCH_ALIASES = ["merge hooks"] NodeId = 'CombineHooks2' NodeName = 'Combine Hooks [2]' @classmethod diff --git a/comfy_extras/nodes_hunyuan3d.py b/comfy_extras/nodes_hunyuan3d.py index adca14f62..5bb5df48e 100644 --- a/comfy_extras/nodes_hunyuan3d.py +++ b/comfy_extras/nodes_hunyuan3d.py @@ -618,6 +618,7 @@ class SaveGLB(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="SaveGLB", + search_aliases=["export 3d model", "save mesh"], category="3d", is_output_node=True, inputs=[ diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py index ce21caade..cb4fb24a1 100644 --- a/comfy_extras/nodes_images.py +++ b/comfy_extras/nodes_images.py @@ -22,6 +22,7 @@ class ImageCrop(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageCrop", + search_aliases=["trim"], display_name="Image Crop", category="image/transform", inputs=[ @@ -51,6 +52,7 @@ class RepeatImageBatch(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="RepeatImageBatch", + search_aliases=["duplicate image", "clone image"], category="image/batch", inputs=[ IO.Image.Input("image"), @@ -72,6 +74,7 @@ class ImageFromBatch(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageFromBatch", + search_aliases=["select image", "pick from batch", "extract image"], category="image/batch", inputs=[ IO.Image.Input("image"), @@ -97,6 +100,7 @@ class ImageAddNoise(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageAddNoise", + search_aliases=["film grain"], category="image", inputs=[ IO.Image.Input("image"), @@ -194,11 +198,11 @@ class SaveAnimatedPNG(IO.ComfyNode): class ImageStitch(IO.ComfyNode): """Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" - @classmethod def define_schema(cls): return IO.Schema( node_id="ImageStitch", + search_aliases=["combine images", "join images", "concatenate images", "side by side"], display_name="Image Stitch", description="Stitches image2 to image1 in the specified direction.\n" "If image2 is not provided, returns image1 unchanged.\n" @@ -369,11 +373,11 @@ class ImageStitch(IO.ComfyNode): class ResizeAndPadImage(IO.ComfyNode): - @classmethod def define_schema(cls): return IO.Schema( node_id="ResizeAndPadImage", + search_aliases=["fit to size"], category="image/transform", inputs=[ IO.Image.Input("image"), @@ -420,11 +424,11 @@ class ResizeAndPadImage(IO.ComfyNode): class SaveSVGNode(IO.ComfyNode): - @classmethod def define_schema(cls): return IO.Schema( node_id="SaveSVGNode", + search_aliases=["export vector", "save vector graphics"], description="Save SVG files on disk.", category="image/save", inputs=[ @@ -492,11 +496,11 @@ class SaveSVGNode(IO.ComfyNode): class GetImageSize(IO.ComfyNode): - @classmethod def define_schema(cls): return IO.Schema( node_id="GetImageSize", + search_aliases=["dimensions", "resolution", "image info"], display_name="Get Image Size", description="Returns width and height of the image, and passes it through unchanged.", category="image", @@ -527,11 +531,11 @@ class GetImageSize(IO.ComfyNode): class ImageRotate(IO.ComfyNode): - @classmethod def define_schema(cls): return IO.Schema( node_id="ImageRotate", + search_aliases=["turn", "flip orientation"], category="image/transform", inputs=[ IO.Image.Input("image"), @@ -557,11 +561,11 @@ class ImageRotate(IO.ComfyNode): class ImageFlip(IO.ComfyNode): - @classmethod def define_schema(cls): return IO.Schema( node_id="ImageFlip", + search_aliases=["mirror", "reflect"], category="image/transform", inputs=[ IO.Image.Input("image"), diff --git a/comfy_extras/nodes_kandinsky5.py b/comfy_extras/nodes_kandinsky5.py index 9cb234be1..346c50cde 100644 --- a/comfy_extras/nodes_kandinsky5.py +++ b/comfy_extras/nodes_kandinsky5.py @@ -104,6 +104,7 @@ class CLIPTextEncodeKandinsky5(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CLIPTextEncodeKandinsky5", + search_aliases=["kandinsky prompt"], category="advanced/conditioning/kandinsky5", inputs=[ io.Clip.Input("clip"), diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 9ba1c4ba8..6aecf1561 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -21,6 +21,7 @@ class LatentAdd(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentAdd", + search_aliases=["combine latents", "sum latents"], category="latent/advanced", inputs=[ io.Latent.Input("samples1"), @@ -47,6 +48,7 @@ class LatentSubtract(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentSubtract", + search_aliases=["difference latent", "remove features"], category="latent/advanced", inputs=[ io.Latent.Input("samples1"), @@ -73,6 +75,7 @@ class LatentMultiply(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentMultiply", + search_aliases=["scale latent", "amplify latent", "latent gain"], category="latent/advanced", inputs=[ io.Latent.Input("samples"), @@ -96,6 +99,7 @@ class LatentInterpolate(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentInterpolate", + search_aliases=["blend latent", "mix latent", "lerp latent", "transition"], category="latent/advanced", inputs=[ io.Latent.Input("samples1"), @@ -134,6 +138,7 @@ class LatentConcat(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentConcat", + search_aliases=["join latents", "stitch latents"], category="latent/advanced", inputs=[ io.Latent.Input("samples1"), @@ -173,6 +178,7 @@ class LatentCut(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentCut", + search_aliases=["crop latent", "slice latent", "extract region"], category="latent/advanced", inputs=[ io.Latent.Input("samples"), @@ -213,6 +219,7 @@ class LatentCutToBatch(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentCutToBatch", + search_aliases=["slice to batch", "split latent", "tile latent"], category="latent/advanced", inputs=[ io.Latent.Input("samples"), @@ -254,6 +261,7 @@ class LatentBatch(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentBatch", + search_aliases=["combine latents", "merge latents", "join latents"], category="latent/batch", is_deprecated=True, inputs=[ @@ -310,6 +318,7 @@ class LatentApplyOperation(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentApplyOperation", + search_aliases=["transform latent"], category="latent/advanced/operations", is_experimental=True, inputs=[ @@ -365,6 +374,7 @@ class LatentOperationTonemapReinhard(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LatentOperationTonemapReinhard", + search_aliases=["hdr latent"], category="latent/advanced/operations", is_experimental=True, inputs=[ diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index a16b8c8f3..4b8d950ae 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -75,6 +75,7 @@ class Preview3D(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="Preview3D", + search_aliases=["view mesh", "3d viewer"], display_name="Preview 3D & Animation", category="3d", is_experimental=True, diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py index eb888316a..1ed060205 100644 --- a/comfy_extras/nodes_logic.py +++ b/comfy_extras/nodes_logic.py @@ -224,6 +224,7 @@ class ConvertStringToComboNode(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ConvertStringToComboNode", + search_aliases=["string to dropdown", "text to combo"], display_name="Convert String to Combo", category="logic", inputs=[io.String.Input("string")], @@ -239,6 +240,7 @@ class InvertBooleanNode(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="InvertBooleanNode", + search_aliases=["not", "toggle", "negate", "flip boolean"], display_name="Invert Boolean", category="logic", inputs=[io.Boolean.Input("boolean")], diff --git a/comfy_extras/nodes_lora_extract.py b/comfy_extras/nodes_lora_extract.py index a2375cba7..fb89e03f4 100644 --- a/comfy_extras/nodes_lora_extract.py +++ b/comfy_extras/nodes_lora_extract.py @@ -78,6 +78,7 @@ class LoraSave(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LoraSave", + search_aliases=["export lora"], display_name="Extract and Save Lora", category="_for_testing", inputs=[ diff --git a/comfy_extras/nodes_lumina2.py b/comfy_extras/nodes_lumina2.py index 89ff2397a..2550475ae 100644 --- a/comfy_extras/nodes_lumina2.py +++ b/comfy_extras/nodes_lumina2.py @@ -79,6 +79,7 @@ class CLIPTextEncodeLumina2(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CLIPTextEncodeLumina2", + search_aliases=["lumina prompt"], display_name="CLIP Text Encode for Lumina2", category="conditioning", description="Encodes a system prompt and a user prompt using a CLIP model into an embedding " diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py index 290e6f55e..98e8fef8f 100644 --- a/comfy_extras/nodes_mask.py +++ b/comfy_extras/nodes_mask.py @@ -50,6 +50,7 @@ class LatentCompositeMasked(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="LatentCompositeMasked", + search_aliases=["overlay latent", "layer latent", "paste latent", "inpaint latent"], category="latent", inputs=[ IO.Latent.Input("destination"), @@ -78,6 +79,7 @@ class ImageCompositeMasked(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageCompositeMasked", + search_aliases=["paste image", "overlay", "layer"], category="image", inputs=[ IO.Image.Input("destination"), @@ -105,6 +107,7 @@ class MaskToImage(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="MaskToImage", + search_aliases=["convert mask"], display_name="Convert Mask to Image", category="mask", inputs=[ @@ -126,6 +129,7 @@ class ImageToMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageToMask", + search_aliases=["extract channel", "channel to mask"], display_name="Convert Image to Mask", category="mask", inputs=[ @@ -149,6 +153,7 @@ class ImageColorToMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ImageColorToMask", + search_aliases=["color keying", "chroma key"], category="mask", inputs=[ IO.Image.Input("image"), @@ -194,6 +199,7 @@ class InvertMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="InvertMask", + search_aliases=["reverse mask", "flip mask"], category="mask", inputs=[ IO.Mask.Input("mask"), @@ -214,6 +220,7 @@ class CropMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="CropMask", + search_aliases=["cut mask", "extract mask region", "mask slice"], category="mask", inputs=[ IO.Mask.Input("mask"), @@ -239,6 +246,7 @@ class MaskComposite(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="MaskComposite", + search_aliases=["combine masks", "blend masks", "layer masks"], category="mask", inputs=[ IO.Mask.Input("destination"), @@ -287,6 +295,7 @@ class FeatherMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="FeatherMask", + search_aliases=["soft edge mask", "blur mask edges", "gradient mask edge"], category="mask", inputs=[ IO.Mask.Input("mask"), @@ -333,6 +342,7 @@ class GrowMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="GrowMask", + search_aliases=["expand mask", "shrink mask"], display_name="Grow Mask", category="mask", inputs=[ @@ -370,6 +380,7 @@ class ThresholdMask(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ThresholdMask", + search_aliases=["binary mask"], category="mask", inputs=[ IO.Mask.Input("mask"), @@ -394,6 +405,7 @@ class MaskPreview(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="MaskPreview", + search_aliases=["show mask", "view mask", "inspect mask", "debug mask"], display_name="Preview Mask", category="mask", description="Saves the input images to your ComfyUI output directory.", diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py index ae5d2c563..f22b333fc 100644 --- a/comfy_extras/nodes_model_advanced.py +++ b/comfy_extras/nodes_model_advanced.py @@ -299,6 +299,7 @@ class RescaleCFG: return (m, ) class ModelComputeDtype: + SEARCH_ALIASES = ["model precision", "change dtype"] @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), diff --git a/comfy_extras/nodes_model_merging.py b/comfy_extras/nodes_model_merging.py index f20beab7d..5384ed531 100644 --- a/comfy_extras/nodes_model_merging.py +++ b/comfy_extras/nodes_model_merging.py @@ -91,6 +91,7 @@ class CLIPMergeSimple: class CLIPSubtract: + SEARCH_ALIASES = ["clip difference", "text encoder subtract"] @classmethod def INPUT_TYPES(s): return {"required": { "clip1": ("CLIP",), @@ -113,6 +114,7 @@ class CLIPSubtract: class CLIPAdd: + SEARCH_ALIASES = ["combine clip"] @classmethod def INPUT_TYPES(s): return {"required": { "clip1": ("CLIP",), @@ -225,6 +227,7 @@ def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefi comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys) class CheckpointSave: + SEARCH_ALIASES = ["save model", "export checkpoint", "merge save"] def __init__(self): self.output_dir = folder_paths.get_output_directory() @@ -337,6 +340,7 @@ class VAESave: return {} class ModelSave: + SEARCH_ALIASES = ["export model", "checkpoint save"] def __init__(self): self.output_dir = folder_paths.get_output_directory() diff --git a/comfy_extras/nodes_morphology.py b/comfy_extras/nodes_morphology.py index 67377e1bc..4ab2fb7e8 100644 --- a/comfy_extras/nodes_morphology.py +++ b/comfy_extras/nodes_morphology.py @@ -12,6 +12,7 @@ class Morphology(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="Morphology", + search_aliases=["erode", "dilate"], display_name="ImageMorphology", category="image/postprocessing", inputs=[ @@ -57,6 +58,7 @@ class ImageRGBToYUV(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ImageRGBToYUV", + search_aliases=["color space conversion"], category="image/batch", inputs=[ io.Image.Input("image"), @@ -78,6 +80,7 @@ class ImageYUVToRGB(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="ImageYUVToRGB", + search_aliases=["color space conversion"], category="image/batch", inputs=[ io.Image.Input("Y"), diff --git a/comfy_extras/nodes_pixart.py b/comfy_extras/nodes_pixart.py index a23e87b1f..2f1b73e60 100644 --- a/comfy_extras/nodes_pixart.py +++ b/comfy_extras/nodes_pixart.py @@ -7,6 +7,7 @@ class CLIPTextEncodePixArtAlpha(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CLIPTextEncodePixArtAlpha", + search_aliases=["pixart prompt"], category="advanced/conditioning", description="Encodes text and sets the resolution conditioning for PixArt Alpha. Does not apply to PixArt Sigma.", inputs=[ diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 6011275d6..ab002daca 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -402,7 +402,6 @@ def scale_to_multiple_cover(input: torch.Tensor, multiple: int, scale_method: st return input[:, y0:y1, x0:x1] class ResizeImageMaskNode(io.ComfyNode): - scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] crop_methods = ["disabled", "center"] @@ -424,6 +423,7 @@ class ResizeImageMaskNode(io.ComfyNode): crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") return io.Schema( node_id="ResizeImageMaskNode", + search_aliases=["scale image", "scale mask"], display_name="Resize Image/Mask", category="transform", inputs=[ @@ -569,6 +569,7 @@ class BatchMasksNode(io.ComfyNode): autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50) return io.Schema( node_id="BatchMasksNode", + search_aliases=["combine masks", "stack masks", "merge masks"], display_name="Batch Masks", category="mask", inputs=[ @@ -589,6 +590,7 @@ class BatchLatentsNode(io.ComfyNode): autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50) return io.Schema( node_id="BatchLatentsNode", + search_aliases=["combine latents", "stack latents", "merge latents"], display_name="Batch Latents", category="latent", inputs=[ @@ -612,6 +614,7 @@ class BatchImagesMasksLatentsNode(io.ComfyNode): prefix="input", min=1, max=50) return io.Schema( node_id="BatchImagesMasksLatentsNode", + search_aliases=["combine batch", "merge batch", "stack inputs"], display_name="Batch Images/Masks/Latents", category="util", inputs=[ diff --git a/comfy_extras/nodes_preview_any.py b/comfy_extras/nodes_preview_any.py index 91502ebf2..b0a6f279d 100644 --- a/comfy_extras/nodes_preview_any.py +++ b/comfy_extras/nodes_preview_any.py @@ -16,7 +16,7 @@ class PreviewAny(): OUTPUT_NODE = True CATEGORY = "utils" - SEARCH_ALIASES = ["preview", "show", "display", "view", "show text", "display text", "preview text", "show output", "inspect", "debug"] + SEARCH_ALIASES = ["show output", "inspect", "debug", "print value", "show text"] def main(self, source=None): value = 'None' diff --git a/comfy_extras/nodes_sd3.py b/comfy_extras/nodes_sd3.py index 14782cb2b..02e5e7dd8 100644 --- a/comfy_extras/nodes_sd3.py +++ b/comfy_extras/nodes_sd3.py @@ -65,6 +65,7 @@ class CLIPTextEncodeSD3(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CLIPTextEncodeSD3", + search_aliases=["sd3 prompt"], category="advanced/conditioning", inputs=[ io.Clip.Input("clip"), diff --git a/comfy_extras/nodes_string.py b/comfy_extras/nodes_string.py index a2d5f0d94..8d3e65cc5 100644 --- a/comfy_extras/nodes_string.py +++ b/comfy_extras/nodes_string.py @@ -32,6 +32,7 @@ class StringSubstring(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringSubstring", + search_aliases=["extract text", "text portion"], display_name="Substring", category="utils/string", inputs=[ @@ -54,6 +55,7 @@ class StringLength(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringLength", + search_aliases=["character count", "text size"], display_name="Length", category="utils/string", inputs=[ @@ -74,6 +76,7 @@ class CaseConverter(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CaseConverter", + search_aliases=["text case", "uppercase", "lowercase", "capitalize"], display_name="Case Converter", category="utils/string", inputs=[ @@ -106,6 +109,7 @@ class StringTrim(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringTrim", + search_aliases=["clean whitespace", "remove whitespace"], display_name="Trim", category="utils/string", inputs=[ @@ -136,6 +140,7 @@ class StringReplace(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringReplace", + search_aliases=["find and replace", "substitute", "swap text"], display_name="Replace", category="utils/string", inputs=[ @@ -158,6 +163,7 @@ class StringContains(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringContains", + search_aliases=["text includes", "string includes"], display_name="Contains", category="utils/string", inputs=[ @@ -185,6 +191,7 @@ class StringCompare(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="StringCompare", + search_aliases=["text match", "string equals", "starts with", "ends with"], display_name="Compare", category="utils/string", inputs=[ @@ -220,6 +227,7 @@ class RegexMatch(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="RegexMatch", + search_aliases=["pattern match", "text contains", "string match"], display_name="Regex Match", category="utils/string", inputs=[ @@ -260,6 +268,7 @@ class RegexExtract(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="RegexExtract", + search_aliases=["pattern extract", "text parser", "parse text"], display_name="Regex Extract", category="utils/string", inputs=[ @@ -334,6 +343,7 @@ class RegexReplace(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="RegexReplace", + search_aliases=["pattern replace", "find and replace", "substitution"], display_name="Regex Replace", category="utils/string", description="Find and replace text using regex patterns.", diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index 364804205..68a73cf13 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -1101,6 +1101,7 @@ class SaveLoRA(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SaveLoRA", + search_aliases=["export lora"], display_name="Save LoRA Weights", category="loaders", is_experimental=True, @@ -1144,6 +1145,7 @@ class LossGraphNode(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="LossGraphNode", + search_aliases=["training chart", "training visualization", "plot loss"], display_name="Plot Loss Graph", category="training", is_experimental=True, diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index c609e03da..ccf7b63d3 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -16,6 +16,7 @@ class SaveWEBM(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SaveWEBM", + search_aliases=["export webm"], category="image/video", is_experimental=True, inputs=[ @@ -69,6 +70,7 @@ class SaveVideo(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SaveVideo", + search_aliases=["export video"], display_name="Save Video", category="image/video", description="Saves the input images to your ComfyUI output directory.", @@ -116,6 +118,7 @@ class CreateVideo(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="CreateVideo", + search_aliases=["images to video"], display_name="Create Video", category="image/video", description="Create a video from images.", @@ -140,6 +143,7 @@ class GetVideoComponents(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="GetVideoComponents", + search_aliases=["extract frames", "split video", "video to images", "demux"], display_name="Get Video Components", category="image/video", description="Extracts all components from a video: frames, audio, and framerate.", @@ -167,6 +171,7 @@ class LoadVideo(io.ComfyNode): files = folder_paths.filter_files_content_types(files, ["video"]) return io.Schema( node_id="LoadVideo", + search_aliases=["import video", "open video", "video file"], display_name="Load Video", category="image/video", inputs=[ diff --git a/comfy_extras/nodes_wan.py b/comfy_extras/nodes_wan.py index 90deb0077..2ff012134 100644 --- a/comfy_extras/nodes_wan.py +++ b/comfy_extras/nodes_wan.py @@ -287,6 +287,7 @@ class WanVaceToVideo(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="WanVaceToVideo", + search_aliases=["video conditioning", "video control"], category="conditioning/video_models", inputs=[ io.Conditioning.Input("positive"), @@ -705,6 +706,7 @@ class WanTrackToVideo(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="WanTrackToVideo", + search_aliases=["motion tracking", "trajectory video", "point tracking", "keypoint animation"], category="conditioning/video_models", inputs=[ io.Conditioning.Input("positive"), diff --git a/comfy_extras/nodes_wanmove.py b/comfy_extras/nodes_wanmove.py index 5f39afa46..d60baf230 100644 --- a/comfy_extras/nodes_wanmove.py +++ b/comfy_extras/nodes_wanmove.py @@ -324,6 +324,7 @@ class GenerateTracks(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="GenerateTracks", + search_aliases=["motion paths", "camera movement", "trajectory"], category="conditioning/video_models", inputs=[ io.Int.Input("width", default=832, min=16, max=4096, step=16), diff --git a/comfy_extras/nodes_webcam.py b/comfy_extras/nodes_webcam.py index 5bf80b4c6..6349ac017 100644 --- a/comfy_extras/nodes_webcam.py +++ b/comfy_extras/nodes_webcam.py @@ -5,6 +5,7 @@ MAX_RESOLUTION = nodes.MAX_RESOLUTION class WebcamCapture(nodes.LoadImage): + SEARCH_ALIASES = ["camera input", "live capture", "camera feed", "snapshot"] @classmethod def INPUT_TYPES(s): return { diff --git a/nodes.py b/nodes.py index 8864fda60..158106686 100644 --- a/nodes.py +++ b/nodes.py @@ -93,6 +93,8 @@ class ConditioningCombine: return (conditioning_1 + conditioning_2, ) class ConditioningAverage : + SEARCH_ALIASES = ["blend prompts", "interpolate conditioning", "mix prompts", "style fusion", "weighted blend"] + @classmethod def INPUT_TYPES(s): return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ), @@ -159,6 +161,8 @@ class ConditioningConcat: return (out, ) class ConditioningSetArea: + SEARCH_ALIASES = ["regional prompt", "area prompt", "spatial conditioning", "localized prompt"] + @classmethod def INPUT_TYPES(s): return {"required": {"conditioning": ("CONDITIONING", ), @@ -217,6 +221,8 @@ class ConditioningSetAreaStrength: class ConditioningSetMask: + SEARCH_ALIASES = ["masked prompt", "regional inpaint conditioning", "mask conditioning"] + @classmethod def INPUT_TYPES(s): return {"required": {"conditioning": ("CONDITIONING", ), @@ -242,6 +248,8 @@ class ConditioningSetMask: return (c, ) class ConditioningZeroOut: + SEARCH_ALIASES = ["null conditioning", "clear conditioning"] + @classmethod def INPUT_TYPES(s): return {"required": {"conditioning": ("CONDITIONING", )}} @@ -467,6 +475,8 @@ class InpaintModelConditioning: class SaveLatent: + SEARCH_ALIASES = ["export latent"] + def __init__(self): self.output_dir = folder_paths.get_output_directory() @@ -518,6 +528,8 @@ class SaveLatent: class LoadLatent: + SEARCH_ALIASES = ["import latent", "open latent"] + @classmethod def INPUT_TYPES(s): input_dir = folder_paths.get_input_directory() @@ -554,6 +566,8 @@ class LoadLatent: class CheckpointLoader: + SEARCH_ALIASES = ["load model", "model loader"] + @classmethod def INPUT_TYPES(s): return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ), @@ -593,6 +607,8 @@ class CheckpointLoaderSimple: return out[:3] class DiffusersLoader: + SEARCH_ALIASES = ["load diffusers model"] + @classmethod def INPUT_TYPES(cls): paths = [] @@ -1063,6 +1079,8 @@ class StyleModelLoader: class StyleModelApply: + SEARCH_ALIASES = ["style transfer"] + @classmethod def INPUT_TYPES(s): return {"required": {"conditioning": ("CONDITIONING", ), @@ -1216,6 +1234,8 @@ class EmptyLatentImage: class LatentFromBatch: + SEARCH_ALIASES = ["select from batch", "pick latent", "batch subset"] + @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), @@ -1248,6 +1268,8 @@ class LatentFromBatch: return (s,) class RepeatLatentBatch: + SEARCH_ALIASES = ["duplicate latent", "clone latent"] + @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), @@ -1274,6 +1296,8 @@ class RepeatLatentBatch: return (s,) class LatentUpscale: + SEARCH_ALIASES = ["enlarge latent", "resize latent"] + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"] crop_methods = ["disabled", "center"] @@ -1308,6 +1332,8 @@ class LatentUpscale: return (s,) class LatentUpscaleBy: + SEARCH_ALIASES = ["enlarge latent", "resize latent", "scale latent"] + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"] @classmethod @@ -1351,6 +1377,8 @@ class LatentRotate: return (s,) class LatentFlip: + SEARCH_ALIASES = ["mirror latent"] + @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), @@ -1371,6 +1399,8 @@ class LatentFlip: return (s,) class LatentComposite: + SEARCH_ALIASES = ["overlay latent", "layer latent", "paste latent"] + @classmethod def INPUT_TYPES(s): return {"required": { "samples_to": ("LATENT",), @@ -1413,6 +1443,8 @@ class LatentComposite: return (samples_out,) class LatentBlend: + SEARCH_ALIASES = ["mix latents", "interpolate latents"] + @classmethod def INPUT_TYPES(s): return {"required": { @@ -1454,6 +1486,8 @@ class LatentBlend: raise ValueError(f"Unsupported blend mode: {mode}") class LatentCrop: + SEARCH_ALIASES = ["trim latent", "cut latent"] + @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), @@ -1739,6 +1773,8 @@ class LoadImage: return True class LoadImageMask: + SEARCH_ALIASES = ["import mask", "alpha mask", "channel mask"] + _color_channels = ["alpha", "red", "green", "blue"] @classmethod def INPUT_TYPES(s): @@ -1789,6 +1825,8 @@ class LoadImageMask: class LoadImageOutput(LoadImage): + SEARCH_ALIASES = ["output image", "previous generation"] + @classmethod def INPUT_TYPES(s): return { @@ -1862,6 +1900,7 @@ class ImageScaleBy: return (s,) class ImageInvert: + SEARCH_ALIASES = ["reverse colors"] @classmethod def INPUT_TYPES(s): @@ -1877,6 +1916,7 @@ class ImageInvert: return (s,) class ImageBatch: + SEARCH_ALIASES = ["combine images", "merge images", "stack images"] @classmethod def INPUT_TYPES(s): @@ -1922,6 +1962,7 @@ class EmptyImage: return (torch.cat((r, g, b), dim=-1), ) class ImagePadForOutpaint: + SEARCH_ALIASES = ["extend canvas", "expand image"] @classmethod def INPUT_TYPES(s): From 4e3038114a725d15166a726860a29cbab0dda4e3 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Thu, 22 Jan 2026 18:46:55 -0800 Subject: [PATCH 06/13] feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12013) - Add search_aliases for discoverability: resize, scale, dimensions, etc. - Add node description for hover tooltip - Add tooltips to all inputs explaining their behavior - Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last Addresses user feedback that 'resize' search returned nothing useful and options like 'match size' and 'scale to multiple' were not self-explanatory. --- comfy_extras/nodes_post_processing.py | 66 +++++++++++++++++---------- 1 file changed, 41 insertions(+), 25 deletions(-) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index ab002daca..32ab2f70d 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -420,47 +420,63 @@ class ResizeImageMaskNode(io.ComfyNode): @classmethod def define_schema(cls): template = io.MatchType.Template("input_type", [io.Image, io.Mask]) - crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + crop_combo = io.Combo.Input( + "crop", + options=cls.crop_methods, + default="center", + tooltip="How to handle aspect ratio mismatch: 'disabled' stretches to fit, 'center' crops to maintain aspect ratio.", + ) return io.Schema( node_id="ResizeImageMaskNode", search_aliases=["scale image", "scale mask"], display_name="Resize Image/Mask", + description="Resize an image or mask using various scaling methods.", category="transform", + search_aliases=["resize", "resize image", "resize mask", "scale", "scale image", "image resize", "change size", "dimensions", "shrink", "enlarge"], inputs=[ io.MatchType.Input("input", template=template), - io.DynamicCombo.Input("resize_type", options=[ - io.DynamicCombo.Option(ResizeType.SCALE_BY, [ - io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + io.DynamicCombo.Input( + "resize_type", + tooltip="Select how to resize: by exact dimensions, scale factor, matching another image, etc.", + options=[ + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Set to 0 to auto-calculate from height while preserving aspect ratio."), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Set to 0 to auto-calculate from width while preserving aspect ratio."), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), - crop_combo, + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01, tooltip="Scale factor (e.g., 2.0 doubles size, 0.5 halves size)."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ - io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The longer edge will be resized to this value. Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ - io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The shorter edge will be resized to this value. Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Height auto-adjusts to preserve aspect ratio."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Width auto-adjusts to preserve aspect ratio."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ - io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01, tooltip="Target total megapixels (e.g., 1.0 ≈ 1024×1024). Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ - io.MultiType.Input("match", [io.Image, io.Mask]), - crop_combo, + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask], tooltip="Resize input to match the dimensions of this reference image or mask."), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ - io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ + io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1, tooltip="Resize so width and height are divisible by this number. Useful for latent alignment (e.g., 8 or 64)."), ]), - ]), - io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + ), + io.Combo.Input( + "scale_method", + options=cls.scale_methods, + default="area", + tooltip="Interpolation algorithm. 'area' is best for downscaling, 'lanczos' for upscaling, 'nearest-exact' for pixel art.", + ), ], outputs=[io.MatchType.Output(template=template, display_name="resized")] ) From f443b9f2ca3109f7e3ef6c5de3cdd22330fbf34c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 22 Jan 2026 20:02:37 -0800 Subject: [PATCH 07/13] =?UTF-8?q?Revert=20"feat:=20Improve=20ResizeImageMa?= =?UTF-8?q?skNode=20UX=20with=20tooltips=20and=20search=20aliases=E2=80=A6?= =?UTF-8?q?"=20(#12038)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This reverts commit 4e3038114a725d15166a726860a29cbab0dda4e3. --- comfy_extras/nodes_post_processing.py | 66 ++++++++++----------------- 1 file changed, 25 insertions(+), 41 deletions(-) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 32ab2f70d..ab002daca 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -420,63 +420,47 @@ class ResizeImageMaskNode(io.ComfyNode): @classmethod def define_schema(cls): template = io.MatchType.Template("input_type", [io.Image, io.Mask]) - crop_combo = io.Combo.Input( - "crop", - options=cls.crop_methods, - default="center", - tooltip="How to handle aspect ratio mismatch: 'disabled' stretches to fit, 'center' crops to maintain aspect ratio.", - ) + crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") return io.Schema( node_id="ResizeImageMaskNode", search_aliases=["scale image", "scale mask"], display_name="Resize Image/Mask", - description="Resize an image or mask using various scaling methods.", category="transform", - search_aliases=["resize", "resize image", "resize mask", "scale", "scale image", "image resize", "change size", "dimensions", "shrink", "enlarge"], inputs=[ io.MatchType.Input("input", template=template), - io.DynamicCombo.Input( - "resize_type", - tooltip="Select how to resize: by exact dimensions, scale factor, matching another image, etc.", - options=[ - io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Set to 0 to auto-calculate from height while preserving aspect ratio."), - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Set to 0 to auto-calculate from width while preserving aspect ratio."), - crop_combo, + io.DynamicCombo.Input("resize_type", options=[ + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), ]), - io.DynamicCombo.Option(ResizeType.SCALE_BY, [ - io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01, tooltip="Scale factor (e.g., 2.0 doubles size, 0.5 halves size)."), + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ - io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The longer edge will be resized to this value. Aspect ratio is preserved."), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), ]), - io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ - io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The shorter edge will be resized to this value. Aspect ratio is preserved."), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), ]), - io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Height auto-adjusts to preserve aspect ratio."), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), ]), - io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Width auto-adjusts to preserve aspect ratio."), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), ]), - io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ - io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01, tooltip="Target total megapixels (e.g., 1.0 ≈ 1024×1024). Aspect ratio is preserved."), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), ]), - io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ - io.MultiType.Input("match", [io.Image, io.Mask], tooltip="Resize input to match the dimensions of this reference image or mask."), - crop_combo, + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask]), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ - io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1, tooltip="Resize so width and height are divisible by this number. Useful for latent alignment (e.g., 8 or 64)."), + io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ + io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1), ]), - ], - ), - io.Combo.Input( - "scale_method", - options=cls.scale_methods, - default="area", - tooltip="Interpolation algorithm. 'area' is best for downscaling, 'lanczos' for upscaling, 'nearest-exact' for pixel art.", - ), + ]), + io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), ], outputs=[io.MatchType.Output(template=template, display_name="resized")] ) From 79cdbc81cb552b363430d1e88c98c4b4b4b4cf62 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Thu, 22 Jan 2026 22:04:27 -0800 Subject: [PATCH 08/13] feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12040) - Add search_aliases for discoverability: resize, scale, dimensions, etc. - Add node description for hover tooltip - Add tooltips to all inputs explaining their behavior - Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last Addresses user feedback that 'resize' search returned nothing useful and options like 'match size' and 'scale to multiple' were not self-explanatory. --- comfy_extras/nodes_post_processing.py | 67 ++++++++++++++++----------- 1 file changed, 41 insertions(+), 26 deletions(-) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index ab002daca..a52a90e2c 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -420,47 +420,62 @@ class ResizeImageMaskNode(io.ComfyNode): @classmethod def define_schema(cls): template = io.MatchType.Template("input_type", [io.Image, io.Mask]) - crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + crop_combo = io.Combo.Input( + "crop", + options=cls.crop_methods, + default="center", + tooltip="How to handle aspect ratio mismatch: 'disabled' stretches to fit, 'center' crops to maintain aspect ratio.", + ) return io.Schema( node_id="ResizeImageMaskNode", - search_aliases=["scale image", "scale mask"], display_name="Resize Image/Mask", + description="Resize an image or mask using various scaling methods.", category="transform", + search_aliases=["resize", "resize image", "resize mask", "scale", "scale image", "scale mask", "image resize", "change size", "dimensions", "shrink", "enlarge"], inputs=[ io.MatchType.Input("input", template=template), - io.DynamicCombo.Input("resize_type", options=[ - io.DynamicCombo.Option(ResizeType.SCALE_BY, [ - io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + io.DynamicCombo.Input( + "resize_type", + tooltip="Select how to resize: by exact dimensions, scale factor, matching another image, etc.", + options=[ + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Set to 0 to auto-calculate from height while preserving aspect ratio."), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Set to 0 to auto-calculate from width while preserving aspect ratio."), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), - crop_combo, + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01, tooltip="Scale factor (e.g., 2.0 doubles size, 0.5 halves size)."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ - io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The longer edge will be resized to this value. Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ - io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The shorter edge will be resized to this value. Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ - io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Height auto-adjusts to preserve aspect ratio."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ - io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Width auto-adjusts to preserve aspect ratio."), ]), - io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ - io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01, tooltip="Target total megapixels (e.g., 1.0 ≈ 1024×1024). Aspect ratio is preserved."), ]), - io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ - io.MultiType.Input("match", [io.Image, io.Mask]), - crop_combo, + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask], tooltip="Resize input to match the dimensions of this reference image or mask."), + crop_combo, ]), - io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ - io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1), + io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ + io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1, tooltip="Resize so width and height are divisible by this number. Useful for latent alignment (e.g., 8 or 64)."), ]), - ]), - io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + ), + io.Combo.Input( + "scale_method", + options=cls.scale_methods, + default="area", + tooltip="Interpolation algorithm. 'area' is best for downscaling, 'lanczos' for upscaling, 'nearest-exact' for pixel art.", + ), ], outputs=[io.MatchType.Output(template=template, display_name="resized")] ) From 55bd606e92ea0a0ef1cc83a7fa4f6decf0128b12 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 23 Jan 2026 22:26:38 +0200 Subject: [PATCH 09/13] LTX2: Refactor forward function for better VRAM efficiency and fix spatial inpainting (#12046) * Disable timestep embed compression when inpainting Spatial inpainting not compatible with the compression * Reduce crossattn peak VRAM * LTX2: Refactor forward function for better VRAM efficiency --- comfy/ldm/lightricks/av_model.py | 230 +++++++++++++------------------ 1 file changed, 94 insertions(+), 136 deletions(-) diff --git a/comfy/ldm/lightricks/av_model.py b/comfy/ldm/lightricks/av_model.py index c12ace241..2c6954ecd 100644 --- a/comfy/ldm/lightricks/av_model.py +++ b/comfy/ldm/lightricks/av_model.py @@ -18,12 +18,12 @@ class CompressedTimestep: def __init__(self, tensor: torch.Tensor, patches_per_frame: int): """ tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame - patches_per_frame: Number of spatial patches per frame (height * width in latent space) + patches_per_frame: Number of spatial patches per frame (height * width in latent space), or None to disable compression """ self.batch_size, num_tokens, self.feature_dim = tensor.shape # Check if compression is valid (num_tokens must be divisible by patches_per_frame) - if num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame: + if patches_per_frame is not None and num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame: self.patches_per_frame = patches_per_frame self.num_frames = num_tokens // patches_per_frame @@ -215,22 +215,9 @@ class BasicAVTransformerBlock(nn.Module): return (*scale_shift_ada_values, *gate_ada_values) def forward( - self, - x: Tuple[torch.Tensor, torch.Tensor], - v_context=None, - a_context=None, - attention_mask=None, - v_timestep=None, - a_timestep=None, - v_pe=None, - a_pe=None, - v_cross_pe=None, - a_cross_pe=None, - v_cross_scale_shift_timestep=None, - a_cross_scale_shift_timestep=None, - v_cross_gate_timestep=None, - a_cross_gate_timestep=None, - transformer_options=None, + self, x: Tuple[torch.Tensor, torch.Tensor], v_context=None, a_context=None, attention_mask=None, v_timestep=None, a_timestep=None, + v_pe=None, a_pe=None, v_cross_pe=None, a_cross_pe=None, v_cross_scale_shift_timestep=None, a_cross_scale_shift_timestep=None, + v_cross_gate_timestep=None, a_cross_gate_timestep=None, transformer_options=None, ) -> Tuple[torch.Tensor, torch.Tensor]: run_vx = transformer_options.get("run_vx", True) run_ax = transformer_options.get("run_ax", True) @@ -240,144 +227,102 @@ class BasicAVTransformerBlock(nn.Module): run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0 run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True) + # video if run_vx: - vshift_msa, vscale_msa, vgate_msa = ( - self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 3)) - ) - + # video self-attention + vshift_msa, vscale_msa = (self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 2))) norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa - vx += self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) * vgate_msa - vx += self.attn2( - comfy.ldm.common_dit.rms_norm(vx), - context=v_context, - mask=attention_mask, - transformer_options=transformer_options, - ) - - del vshift_msa, vscale_msa, vgate_msa + del vshift_msa, vscale_msa + attn1_out = self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) + del norm_vx + # video cross-attention + vgate_msa = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(2, 3))[0] + vx.addcmul_(attn1_out, vgate_msa) + del vgate_msa, attn1_out + vx.add_(self.attn2(comfy.ldm.common_dit.rms_norm(vx), context=v_context, mask=attention_mask, transformer_options=transformer_options)) + # audio if run_ax: - ashift_msa, ascale_msa, agate_msa = ( - self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 3)) - ) - + # audio self-attention + ashift_msa, ascale_msa = (self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 2))) norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa - ax += ( - self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options) - * agate_msa - ) - ax += self.audio_attn2( - comfy.ldm.common_dit.rms_norm(ax), - context=a_context, - mask=attention_mask, - transformer_options=transformer_options, - ) + del ashift_msa, ascale_msa + attn1_out = self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options) + del norm_ax + # audio cross-attention + agate_msa = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(2, 3))[0] + ax.addcmul_(attn1_out, agate_msa) + del agate_msa, attn1_out + ax.add_(self.audio_attn2(comfy.ldm.common_dit.rms_norm(ax), context=a_context, mask=attention_mask, transformer_options=transformer_options)) - del ashift_msa, ascale_msa, agate_msa - - # Audio - Video cross attention. + # video - audio cross attention. if run_a2v or run_v2a: - # norm3 vx_norm3 = comfy.ldm.common_dit.rms_norm(vx) ax_norm3 = comfy.ldm.common_dit.rms_norm(ax) - ( - scale_ca_audio_hidden_states_a2v, - shift_ca_audio_hidden_states_a2v, - scale_ca_audio_hidden_states_v2a, - shift_ca_audio_hidden_states_v2a, - gate_out_v2a, - ) = self.get_av_ca_ada_values( - self.scale_shift_table_a2v_ca_audio, - ax.shape[0], - a_cross_scale_shift_timestep, - a_cross_gate_timestep, - ) - - ( - scale_ca_video_hidden_states_a2v, - shift_ca_video_hidden_states_a2v, - scale_ca_video_hidden_states_v2a, - shift_ca_video_hidden_states_v2a, - gate_out_a2v, - ) = self.get_av_ca_ada_values( - self.scale_shift_table_a2v_ca_video, - vx.shape[0], - v_cross_scale_shift_timestep, - v_cross_gate_timestep, - ) - + # audio to video cross attention if run_a2v: - vx_scaled = ( - vx_norm3 * (1 + scale_ca_video_hidden_states_a2v) - + shift_ca_video_hidden_states_a2v - ) - ax_scaled = ( - ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) - + shift_ca_audio_hidden_states_a2v - ) - vx += ( - self.audio_to_video_attn( - vx_scaled, - context=ax_scaled, - pe=v_cross_pe, - k_pe=a_cross_pe, - transformer_options=transformer_options, - ) - * gate_out_a2v - ) + scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v = self.get_ada_values( + self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[:2] + scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v = self.get_ada_values( + self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[:2] - del gate_out_a2v - del scale_ca_video_hidden_states_a2v,\ - shift_ca_video_hidden_states_a2v,\ - scale_ca_audio_hidden_states_a2v,\ - shift_ca_audio_hidden_states_a2v,\ + vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_a2v_v) + shift_ca_video_hidden_states_a2v_v + ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + shift_ca_audio_hidden_states_a2v + del scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v, scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v + a2v_out = self.audio_to_video_attn(vx_scaled, context=ax_scaled, pe=v_cross_pe, k_pe=a_cross_pe, transformer_options=transformer_options) + del vx_scaled, ax_scaled + + gate_out_a2v = self.get_ada_values(self.scale_shift_table_a2v_ca_video[4:, :], vx.shape[0], v_cross_gate_timestep)[0] + vx.addcmul_(a2v_out, gate_out_a2v) + del gate_out_a2v, a2v_out + + # video to audio cross attention if run_v2a: - ax_scaled = ( - ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) - + shift_ca_audio_hidden_states_v2a - ) - vx_scaled = ( - vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) - + shift_ca_video_hidden_states_v2a - ) - ax += ( - self.video_to_audio_attn( - ax_scaled, - context=vx_scaled, - pe=a_cross_pe, - k_pe=v_cross_pe, - transformer_options=transformer_options, - ) - * gate_out_v2a - ) + scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a = self.get_ada_values( + self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[2:4] + scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a = self.get_ada_values( + self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[2:4] - del gate_out_v2a - del scale_ca_video_hidden_states_v2a,\ - shift_ca_video_hidden_states_v2a,\ - scale_ca_audio_hidden_states_v2a,\ - shift_ca_audio_hidden_states_v2a + ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + shift_ca_audio_hidden_states_v2a + vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + shift_ca_video_hidden_states_v2a + del scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a, scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a + v2a_out = self.video_to_audio_attn(ax_scaled, context=vx_scaled, pe=a_cross_pe, k_pe=v_cross_pe, transformer_options=transformer_options) + del ax_scaled, vx_scaled + + gate_out_v2a = self.get_ada_values(self.scale_shift_table_a2v_ca_audio[4:, :], ax.shape[0], a_cross_gate_timestep)[0] + ax.addcmul_(v2a_out, gate_out_v2a) + del gate_out_v2a, v2a_out + + del vx_norm3, ax_norm3 + + # video feedforward if run_vx: - vshift_mlp, vscale_mlp, vgate_mlp = ( - self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, None)) - ) - + vshift_mlp, vscale_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, 5)) vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp - vx += self.ff(vx_scaled) * vgate_mlp - del vshift_mlp, vscale_mlp, vgate_mlp + del vshift_mlp, vscale_mlp + ff_out = self.ff(vx_scaled) + del vx_scaled + + vgate_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(5, 6))[0] + vx.addcmul_(ff_out, vgate_mlp) + del vgate_mlp, ff_out + + # audio feedforward if run_ax: - ashift_mlp, ascale_mlp, agate_mlp = ( - self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, None)) - ) - + ashift_mlp, ascale_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, 5)) ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp - ax += self.audio_ff(ax_scaled) * agate_mlp + del ashift_mlp, ascale_mlp - del ashift_mlp, ascale_mlp, agate_mlp + ff_out = self.audio_ff(ax_scaled) + del ax_scaled + agate_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(5, 6))[0] + ax.addcmul_(ff_out, agate_mlp) + del agate_mlp, ff_out return vx, ax @@ -589,9 +534,20 @@ class LTXAVModel(LTXVModel): audio_length = kwargs.get("audio_length", 0) # Separate audio and video latents vx, ax = self.separate_audio_and_video_latents(x, audio_length) + + has_spatial_mask = False + if denoise_mask is not None: + # check if any frame has spatial variation (inpainting) + for frame_idx in range(denoise_mask.shape[2]): + frame_mask = denoise_mask[0, 0, frame_idx] + if frame_mask.numel() > 0 and frame_mask.min() != frame_mask.max(): + has_spatial_mask = True + break + [vx, v_pixel_coords, additional_args] = super()._process_input( vx, keyframe_idxs, denoise_mask, **kwargs ) + additional_args["has_spatial_mask"] = has_spatial_mask ax, a_latent_coords = self.a_patchifier.patchify(ax) ax = self.audio_patchify_proj(ax) @@ -618,8 +574,9 @@ class LTXAVModel(LTXVModel): # Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width] # Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width orig_shape = kwargs.get("orig_shape") + has_spatial_mask = kwargs.get("has_spatial_mask", None) v_patches_per_frame = None - if orig_shape is not None and len(orig_shape) == 5: + if not has_spatial_mask and orig_shape is not None and len(orig_shape) == 5: # orig_shape[3] = height, orig_shape[4] = width (in latent space) v_patches_per_frame = orig_shape[3] * orig_shape[4] @@ -662,10 +619,11 @@ class LTXAVModel(LTXVModel): ) # Compress cross-attention timesteps (only video side, audio is too small to benefit) + # v_patches_per_frame is None for spatial masks, set for temporal masks or no mask cross_av_timestep_ss = [ av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]), - CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed - CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed + CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible + CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]), ] From e89b22993aa2e2b27f4ab1585754cee3a7ca1ff5 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sat, 24 Jan 2026 04:27:49 +0800 Subject: [PATCH 10/13] Support ModelScope-Trainer/DiffSynth LoRA format for Flux.2 Klein models (#12042) --- comfy/lora.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/lora.py b/comfy/lora.py index e8246bd66..7b31d055c 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -260,6 +260,7 @@ def model_lora_keys_unet(model, key_map={}): key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer + key_map[k[:-len(".weight")]] = to #DiffSynth lora format for k in sdk: hidden_size = model.model_config.unet_config.get("hidden_size", 0) if k.endswith(".weight") and ".linear1." in k: From 9cf299a9f9488e4cb9b3f7cef3bc94c185c19f73 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 23 Jan 2026 16:50:48 -0800 Subject: [PATCH 11/13] Make regular empty latent node work properly on flux 2 variants. (#12050) --- comfy/latent_formats.py | 3 +++ comfy/sample.py | 12 +++++++++--- comfy_extras/nodes_custom_sampler.py | 6 ++++-- comfy_extras/nodes_sd3.py | 2 +- nodes.py | 5 +++-- 5 files changed, 20 insertions(+), 8 deletions(-) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index cb4f52ce1..5600825ed 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -8,6 +8,7 @@ class LatentFormat: latent_rgb_factors_bias = None latent_rgb_factors_reshape = None taesd_decoder_name = None + spacial_downscale_ratio = 8 def process_in(self, latent): return latent * self.scale_factor @@ -181,6 +182,7 @@ class Flux(SD3): class Flux2(LatentFormat): latent_channels = 128 + spacial_downscale_ratio = 16 def __init__(self): self.latent_rgb_factors =[ @@ -749,6 +751,7 @@ class ACEAudio(LatentFormat): class ChromaRadiance(LatentFormat): latent_channels = 3 + spacial_downscale_ratio = 1 def __init__(self): self.latent_rgb_factors = [ diff --git a/comfy/sample.py b/comfy/sample.py index 2f8f3a51c..a2a39b527 100644 --- a/comfy/sample.py +++ b/comfy/sample.py @@ -37,12 +37,18 @@ def prepare_noise(latent_image, seed, noise_inds=None): return noises -def fix_empty_latent_channels(model, latent_image): +def fix_empty_latent_channels(model, latent_image, downscale_ratio_spacial=None): if latent_image.is_nested: return latent_image latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels - if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0: - latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1) + if torch.count_nonzero(latent_image) == 0: + if latent_format.latent_channels != latent_image.shape[1]: + latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1) + if downscale_ratio_spacial is not None: + if downscale_ratio_spacial != latent_format.spacial_downscale_ratio: + ratio = downscale_ratio_spacial / latent_format.spacial_downscale_ratio + latent_image = comfy.utils.common_upscale(latent_image, round(latent_image.shape[-1] * ratio), round(latent_image.shape[-2] * ratio), "nearest-exact", crop="disabled") + if latent_format.latent_dimensions == 3 and latent_image.ndim == 4: latent_image = latent_image.unsqueeze(2) return latent_image diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 3eb40e937..a4d84ddf7 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -741,7 +741,7 @@ class SamplerCustom(io.ComfyNode): latent = latent_image latent_image = latent["samples"] latent = latent.copy() - latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) + latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image, latent.get("downscale_ratio_spacial", None)) latent["samples"] = latent_image if not add_noise: @@ -760,6 +760,7 @@ class SamplerCustom(io.ComfyNode): samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed) out = latent.copy() + out.pop("downscale_ratio_spacial", None) out["samples"] = samples if "x0" in x0_output: x0_out = model.model.process_latent_out(x0_output["x0"].cpu()) @@ -939,7 +940,7 @@ class SamplerCustomAdvanced(io.ComfyNode): latent = latent_image latent_image = latent["samples"] latent = latent.copy() - latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image) + latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image, latent.get("downscale_ratio_spacial", None)) latent["samples"] = latent_image noise_mask = None @@ -954,6 +955,7 @@ class SamplerCustomAdvanced(io.ComfyNode): samples = samples.to(comfy.model_management.intermediate_device()) out = latent.copy() + out.pop("downscale_ratio_spacial", None) out["samples"] = samples if "x0" in x0_output: x0_out = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) diff --git a/comfy_extras/nodes_sd3.py b/comfy_extras/nodes_sd3.py index 02e5e7dd8..736213a47 100644 --- a/comfy_extras/nodes_sd3.py +++ b/comfy_extras/nodes_sd3.py @@ -55,7 +55,7 @@ class EmptySD3LatentImage(io.ComfyNode): @classmethod def execute(cls, width, height, batch_size=1) -> io.NodeOutput: latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()) - return io.NodeOutput({"samples":latent}) + return io.NodeOutput({"samples": latent, "downscale_ratio_spacial": 8}) generate = execute # TODO: remove diff --git a/nodes.py b/nodes.py index 158106686..b75247665 100644 --- a/nodes.py +++ b/nodes.py @@ -1230,7 +1230,7 @@ class EmptyLatentImage: def generate(self, width, height, batch_size=1): latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device) - return ({"samples":latent}, ) + return ({"samples": latent, "downscale_ratio_spacial": 8}, ) class LatentFromBatch: @@ -1538,7 +1538,7 @@ class SetLatentNoiseMask: def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): latent_image = latent["samples"] - latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) + latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image, latent.get("downscale_ratio_spacial", None)) if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") @@ -1556,6 +1556,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) out = latent.copy() + out.pop("downscale_ratio_spacial", None) out["samples"] = samples return (out, ) From 4e6a1b66a93ef91848bc4bbf2a84e0ea98efcfc9 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 23 Jan 2026 16:56:14 -0800 Subject: [PATCH 12/13] speed up and reduce VRAM of QWEN VAE and WAN (less so) (#12036) * ops: introduce autopad for conv3d This works around pytorch missing ability to causal pad as part of the kernel and avoids massive weight duplications for padding. * wan-vae: rework causal padding This currently uses F.pad which takes a full deep copy and is liable to be the VRAM peak. Instead, kick spatial padding back to the op and consolidate the temporal padding with the cat for the cache. * wan-vae: implement zero pad fast path The WAN VAE is also QWEN where it is used single-image. These convolutions are however zero padded 3d convolutions, which means the VAE is actually just 2D down the last element of the conv weight in the temporal dimension. Fast path this, to avoid adding zeros that then just evaporate in convoluton math but cost computation. --- comfy/ldm/wan/vae.py | 27 +++++++++++++++++---------- comfy/ops.py | 10 ++++++---- 2 files changed, 23 insertions(+), 14 deletions(-) diff --git a/comfy/ldm/wan/vae.py b/comfy/ldm/wan/vae.py index 08315f1a8..40e767213 100644 --- a/comfy/ldm/wan/vae.py +++ b/comfy/ldm/wan/vae.py @@ -5,7 +5,7 @@ import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange -from comfy.ldm.modules.diffusionmodules.model import vae_attention +from comfy.ldm.modules.diffusionmodules.model import vae_attention, torch_cat_if_needed import comfy.ops ops = comfy.ops.disable_weight_init @@ -20,22 +20,29 @@ class CausalConv3d(ops.Conv3d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - self._padding = (self.padding[2], self.padding[2], self.padding[1], - self.padding[1], 2 * self.padding[0], 0) - self.padding = (0, 0, 0) + self._padding = 2 * self.padding[0] + self.padding = (0, self.padding[1], self.padding[2]) def forward(self, x, cache_x=None, cache_list=None, cache_idx=None): if cache_list is not None: cache_x = cache_list[cache_idx] cache_list[cache_idx] = None - padding = list(self._padding) - if cache_x is not None and self._padding[4] > 0: - cache_x = cache_x.to(x.device) - x = torch.cat([cache_x, x], dim=2) - padding[4] -= cache_x.shape[2] + if cache_x is None and x.shape[2] == 1: + #Fast path - the op will pad for use by truncating the weight + #and save math on a pile of zeros. + return super().forward(x, autopad="causal_zero") + + if self._padding > 0: + padding_needed = self._padding + if cache_x is not None: + cache_x = cache_x.to(x.device) + padding_needed = max(0, padding_needed - cache_x.shape[2]) + padding_shape = list(x.shape) + padding_shape[2] = padding_needed + padding = torch.zeros(padding_shape, device=x.device, dtype=x.dtype) + x = torch_cat_if_needed([padding, cache_x, x], dim=2) del cache_x - x = F.pad(x, padding) return super().forward(x) diff --git a/comfy/ops.py b/comfy/ops.py index 415c39e92..e406ba7ed 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -203,7 +203,9 @@ class disable_weight_init: def reset_parameters(self): return None - def _conv_forward(self, input, weight, bias, *args, **kwargs): + def _conv_forward(self, input, weight, bias, autopad=None, *args, **kwargs): + if autopad == "causal_zero": + weight = weight[:, :, -input.shape[2]:, :, :] if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16): out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True) if bias is not None: @@ -212,15 +214,15 @@ class disable_weight_init: else: return super()._conv_forward(input, weight, bias, *args, **kwargs) - def forward_comfy_cast_weights(self, input): + def forward_comfy_cast_weights(self, input, autopad=None): weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) - x = self._conv_forward(input, weight, bias) + x = self._conv_forward(input, weight, bias, autopad=autopad) uncast_bias_weight(self, weight, bias, offload_stream) return x def forward(self, *args, **kwargs): run_every_op() - if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: + if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0 or "autopad" in kwargs: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) From aef4e135889638812fc1ceab6f323d3441b48f5d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 24 Jan 2026 16:23:20 -0800 Subject: [PATCH 13/13] Make empty latent node work with other models. (#12062) --- comfy/latent_formats.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 5600825ed..38f18a83f 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -594,6 +594,7 @@ class Wan22(Wan21): class HunyuanImage21(LatentFormat): latent_channels = 64 latent_dimensions = 2 + spacial_downscale_ratio = 32 scale_factor = 0.75289 latent_rgb_factors = [ @@ -727,6 +728,7 @@ class HunyuanVideo15(LatentFormat): latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644] latent_channels = 32 latent_dimensions = 3 + spacial_downscale_ratio = 16 scale_factor = 1.03682 taesd_decoder_name = "lighttaehy1_5"