Merge remote-tracking branch 'upstream/master' into addBatchIndex

This commit is contained in:
flyingshutter 2023-07-01 13:05:23 +02:00
commit 076f7eaa4b
21 changed files with 267 additions and 47 deletions

View File

@ -31,7 +31,7 @@ jobs:
echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python311._pth

View File

@ -29,7 +29,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- Latent previews with [TAESD](https://github.com/madebyollin/taesd)
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: will never download anything.
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
@ -69,7 +70,7 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z)
Just download, extract and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
#### How do I share models between another UI and ComfyUI?

View File

@ -53,7 +53,8 @@ class LatentPreviewMethod(enum.Enum):
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")

View File

@ -17,7 +17,7 @@
"num_attention_heads": 20,
"num_hidden_layers": 32,
"pad_token_id": 1,
"projection_dim": 512,
"projection_dim": 1280,
"torch_dtype": "float32",
"vocab_size": 49408
}

View File

@ -202,11 +202,13 @@ textenc_pattern = re.compile("|".join(protected.keys()))
code2idx = {"q": 0, "k": 1, "v": 2}
def convert_text_enc_state_dict_v20(text_enc_dict):
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
new_state_dict = {}
capture_qkv_weight = {}
capture_qkv_bias = {}
for k, v in text_enc_dict.items():
if not k.startswith(prefix):
continue
if (
k.endswith(".self_attn.q_proj.weight")
or k.endswith(".self_attn.k_proj.weight")

View File

@ -4,6 +4,7 @@ from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugme
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
import numpy as np
from . import utils
class BaseModel(torch.nn.Module):
def __init__(self, model_config, v_prediction=False):
@ -11,6 +12,7 @@ class BaseModel(torch.nn.Module):
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
self.diffusion_model = UNetModel(**unet_config)
self.v_prediction = v_prediction
@ -83,6 +85,16 @@ class BaseModel(torch.nn.Module):
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16:
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, v_prediction=True):
@ -144,10 +156,10 @@ class SDXLRefiner(BaseModel):
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
out = []
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
@ -168,11 +180,11 @@ class SDXL(BaseModel):
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
out = []
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([target_width])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

View File

@ -16,13 +16,11 @@ def count_blocks(state_dict_keys, prefix_string):
def detect_unet_config(state_dict, key_prefix, use_fp16):
state_dict_keys = list(state_dict.keys())
num_res_blocks = 2
unet_config = {
"use_checkpoint": False,
"image_size": 32,
"out_channels": 4,
"num_res_blocks": num_res_blocks,
"use_spatial_transformer": True,
"legacy": False
}

View File

@ -139,7 +139,23 @@ else:
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
@ -200,6 +216,11 @@ current_gpu_controlnets = []
model_accelerated = False
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED:
return get_torch_device()
else:
return torch.device("cpu")
def unload_model():
global current_loaded_model
@ -212,10 +233,9 @@ def unload_model():
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
model_accelerated = False
#never unload models from GPU on high vram
if vram_state != VRAMState.HIGH_VRAM:
current_loaded_model.model.cpu()
current_loaded_model.model_patches_to("cpu")
current_loaded_model.model.to(unet_offload_device())
current_loaded_model.model_patches_to(unet_offload_device())
current_loaded_model.unpatch_model()
current_loaded_model = None
@ -347,7 +367,7 @@ def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if torch.version.cuda: #pytorch flash attention only works on Nvidia
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
return False
@ -438,7 +458,7 @@ def soft_empty_cache():
elif xpu_available:
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if torch.version.cuda: #This seems to make things worse on ROCm so I only do it for cuda
if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()

View File

@ -89,8 +89,7 @@ LORA_UNET_MAP_RESNET = {
"skip_connection": "resnets_{}_conv_shortcut"
}
def load_lora(path, to_load):
lora = utils.load_torch_file(path, safe_load=True)
def load_lora(lora, to_load):
patch_dict = {}
loaded_keys = set()
for x in to_load:
@ -223,13 +222,28 @@ def model_lora_keys(model, key_map={}):
counter += 1
counter = 0
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
for b in range(24):
clip_l_present = False
for b in range(32):
for c in LORA_CLIP_MAP:
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
clip_l_present = True
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
if clip_l_present:
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
else:
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k
#Locon stuff
ds_counter = 0
@ -486,10 +500,10 @@ class ModelPatcher:
self.backup = {}
def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
key_map = model_lora_keys(model.model)
key_map = model_lora_keys(clip.cond_stage_model, key_map)
loaded = load_lora(lora_path, key_map)
loaded = load_lora(lora, key_map)
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
new_clip = clip.clone()
@ -545,11 +559,11 @@ class CLIP:
if self.layer_idx is not None:
self.cond_stage_model.clip_layer(self.layer_idx)
try:
self.patcher.patch_model()
self.patch_model()
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
self.patcher.unpatch_model()
self.unpatch_model()
except Exception as e:
self.patcher.unpatch_model()
self.unpatch_model()
raise e
cond_out = cond
@ -564,6 +578,15 @@ class CLIP:
def load_sd(self, sd):
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
return self.cond_stage_model.state_dict()
def patch_model(self):
self.patcher.patch_model()
def unpatch_model(self):
self.patcher.unpatch_model()
class VAE:
def __init__(self, ckpt_path=None, device=None, config=None):
if config is None:
@ -665,6 +688,10 @@ class VAE:
self.first_stage_model = self.first_stage_model.cpu()
return samples
def get_sd(self):
return self.first_stage_model.state_dict()
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
@ -1114,6 +1141,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
model = model_config.get_model(sd)
model = model.to(model_management.unet_offload_device())
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
@ -1135,3 +1163,16 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
print("left over keys:", left_over)
return (ModelPatcher(model), clip, vae, clipvision)
def save_checkpoint(output_path, model, clip, vae, metadata=None):
try:
model.patch_model()
clip.patch_model()
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
utils.save_torch_file(sd, output_path, metadata=metadata)
model.unpatch_model()
clip.unpatch_model()
except Exception as e:
model.unpatch_model()
clip.unpatch_model()
raise e

View File

@ -95,7 +95,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
out_tokens += [tokens_temp]
if len(embedding_weights) > 0:
new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1])
new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1], device=self.device)
new_embedding.weight[:token_dict_size] = current_embeds.weight[:]
n = token_dict_size
for x in embedding_weights:

View File

@ -9,6 +9,8 @@ from . import sdxl_clip
from . import supported_models_base
from . import latent_formats
from . import diffusers_convert
class SD15(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
@ -63,6 +65,13 @@ class SD20(supported_models_base.BASE):
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
replace_prefix[""] = "cond_stage_model.model."
state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
return state_dict
def clip_target(self):
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)
@ -113,6 +122,13 @@ class SDXLRefiner(supported_models_base.BASE):
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
replace_prefix["clip_g"] = "conditioner.embedders.0.model"
state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
return state_dict_g
def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
@ -142,6 +158,19 @@ class SDXL(supported_models_base.BASE):
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
keys_to_replace = {}
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
for k in state_dict:
if k.startswith("clip_l"):
state_dict_g[k] = state_dict[k]
replace_prefix["clip_g"] = "conditioner.embedders.1.model"
replace_prefix["clip_l"] = "conditioner.embedders.0"
state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
return state_dict_g
def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)

View File

@ -64,3 +64,15 @@ class BASE:
def process_clip_state_dict(self, state_dict):
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "cond_stage_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model.diffusion_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)
def process_vae_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "first_stage_model."}
return state_dict_prefix_replace(state_dict, replace_prefix)

View File

@ -2,10 +2,10 @@ import torch
import math
import struct
import comfy.checkpoint_pickle
import safetensors.torch
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
if safe_load:
@ -24,6 +24,12 @@ def load_torch_file(ckpt, safe_load=False):
sd = pl_sd
return sd
def save_torch_file(sd, ckpt, metadata=None):
if metadata is not None:
safetensors.torch.save_file(sd, ckpt, metadata=metadata)
else:
safetensors.torch.save_file(sd, ckpt)
def transformers_convert(sd, prefix_from, prefix_to, number):
keys_to_replace = {
"{}positional_embedding": "{}embeddings.position_embedding.weight",
@ -64,6 +70,12 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd
def convert_sd_to(state_dict, dtype):
keys = list(state_dict.keys())
for k in keys:
state_dict[k] = state_dict[k].to(dtype)
return state_dict
def safetensors_header(safetensors_path, max_size=100*1024*1024):
with open(safetensors_path, "rb") as f:
header = f.read(8)

View File

@ -1,4 +1,8 @@
import comfy.sd
import comfy.utils
import folder_paths
import json
import os
class ModelMergeSimple:
@classmethod
@ -10,7 +14,7 @@ class ModelMergeSimple:
RETURN_TYPES = ("MODEL",)
FUNCTION = "merge"
CATEGORY = "_for_testing/model_merging"
CATEGORY = "advanced/model_merging"
def merge(self, model1, model2, ratio):
m = model1.clone()
@ -31,7 +35,7 @@ class ModelMergeBlocks:
RETURN_TYPES = ("MODEL",)
FUNCTION = "merge"
CATEGORY = "_for_testing/model_merging"
CATEGORY = "advanced/model_merging"
def merge(self, model1, model2, **kwargs):
m = model1.clone()
@ -49,7 +53,43 @@ class ModelMergeBlocks:
m.add_patches({k: (sd[k], )}, 1.0 - ratio, ratio)
return (m, )
class CheckpointSave:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "advanced/model_merging"
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = {"prompt": prompt_info}
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, metadata=metadata)
return {}
NODE_CLASS_MAPPINGS = {
"ModelMergeSimple": ModelMergeSimple,
"ModelMergeBlocks": ModelMergeBlocks
"ModelMergeBlocks": ModelMergeBlocks,
"CheckpointSave": CheckpointSave,
}

View File

@ -110,7 +110,7 @@ def format_value(x):
else:
return str(x)
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui):
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui, object_storage):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
@ -125,7 +125,7 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui)
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui, object_storage)
if result[0] is not True:
# Another node failed further upstream
return result
@ -136,7 +136,11 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute
if server.client_id is not None:
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
obj = class_def()
obj = object_storage.get((unique_id, class_type), None)
if obj is None:
obj = class_def()
object_storage[(unique_id, class_type)] = obj
output_data, output_ui = get_output_data(obj, input_data_all)
outputs[unique_id] = output_data
@ -256,6 +260,7 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
class PromptExecutor:
def __init__(self, server):
self.outputs = {}
self.object_storage = {}
self.outputs_ui = {}
self.old_prompt = {}
self.server = server
@ -322,6 +327,17 @@ class PromptExecutor:
for o in to_delete:
d = self.outputs.pop(o)
del d
to_delete = []
for o in self.object_storage:
if o[0] not in prompt:
to_delete += [o]
else:
p = prompt[o[0]]
if o[1] != p['class_type']:
to_delete += [o]
for o in to_delete:
d = self.object_storage.pop(o)
del d
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
@ -349,7 +365,7 @@ class PromptExecutor:
# This call shouldn't raise anything if there's an error deep in
# the actual SD code, instead it will report the node where the
# error was raised
success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui)
success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui, self.object_storage)
if success is not True:
self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex)
break

View File

@ -8,7 +8,9 @@ a111:
checkpoints: models/Stable-diffusion
configs: models/Stable-diffusion
vae: models/VAE
loras: models/Lora
loras: |
models/Lora
models/LyCORIS
upscale_models: |
models/ESRGAN
models/SwinIR
@ -21,5 +23,3 @@ a111:
# checkpoints: models/checkpoints
# gligen: models/gligen
# custom_nodes: path/custom_nodes

View File

@ -148,6 +148,25 @@ class ConditioningSetMask:
c.append(n)
return (c, )
class ConditioningZeroOut:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "zero_out"
CATEGORY = "advanced/conditioning"
def zero_out(self, conditioning):
c = []
for t in conditioning:
d = t[1].copy()
if "pooled_output" in d:
d["pooled_output"] = torch.zeros_like(d["pooled_output"])
n = [torch.zeros_like(t[0]), d]
c.append(n)
return (c, )
class VAEDecode:
@classmethod
def INPUT_TYPES(s):
@ -286,8 +305,7 @@ class SaveLatent:
output["latent_tensor"] = samples["samples"]
output["latent_format_version_0"] = torch.tensor([])
safetensors.torch.save_file(output, file, metadata=metadata)
comfy.utils.save_torch_file(output, file, metadata=metadata)
return {}
@ -416,6 +434,9 @@ class CLIPSetLastLayer:
return (clip,)
class LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
@ -434,7 +455,18 @@ class LoraLoader:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
del self.loaded_lora
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)
class VAELoader:
@ -1351,6 +1383,8 @@ NODE_CLASS_MAPPINGS = {
"LoadLatent": LoadLatent,
"SaveLatent": SaveLatent,
"ConditioningZeroOut": ConditioningZeroOut,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@ -144,6 +144,7 @@
"\n",
"\n",
"# ESRGAN upscale model\n",
"#!wget -c https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./models/upscale_models/\n",
"#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth -P ./models/upscale_models/\n",
"#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth -P ./models/upscale_models/\n",
"\n",

View File

@ -1484,7 +1484,7 @@ export class ComfyApp {
this.loadGraphData(JSON.parse(reader.result));
};
reader.readAsText(file);
} else if (file.name?.endsWith(".latent")) {
} else if (file.name?.endsWith(".latent") || file.name?.endsWith(".safetensors")) {
const info = await getLatentMetadata(file);
if (info.workflow) {
this.loadGraphData(JSON.parse(info.workflow));

View File

@ -55,11 +55,12 @@ export function getLatentMetadata(file) {
const dataView = new DataView(safetensorsData.buffer);
let header_size = dataView.getUint32(0, true);
let offset = 8;
let header = JSON.parse(String.fromCharCode(...safetensorsData.slice(offset, offset + header_size)));
let header = JSON.parse(new TextDecoder().decode(safetensorsData.slice(offset, offset + header_size)));
r(header.__metadata__);
};
reader.readAsArrayBuffer(file);
var slice = file.slice(0, 1024 * 1024 * 4);
reader.readAsArrayBuffer(slice);
});
}

View File

@ -545,7 +545,7 @@ export class ComfyUI {
const fileInput = $el("input", {
id: "comfy-file-input",
type: "file",
accept: ".json,image/png,.latent",
accept: ".json,image/png,.latent,.safetensors",
style: {display: "none"},
parent: document.body,
onchange: () => {