Merge branch 'master' into dr-support-pip-cm

This commit is contained in:
Dr.Lt.Data 2025-10-16 12:06:19 +09:00
commit 0802f3a635
5 changed files with 110 additions and 14 deletions

View File

@ -255,7 +255,7 @@ This is the command to install the Pytorch xpu nightly which might have some per
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130```
This is the command to install pytorch nightly instead which might have performance improvements.

View File

@ -150,7 +150,7 @@ def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True):
for key, value in dict2.items():
if isinstance(value, dict):
curr_value = merged_dict.setdefault(key, {})
merged_dict[key] = merge_nested_dicts(value, curr_value)
merged_dict[key] = merge_nested_dicts(curr_value, value)
elif isinstance(value, list):
merged_dict.setdefault(key, []).extend(value)
else:

View File

@ -306,17 +306,10 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["patches"] = comfy.patcher_extension.merge_nested_dicts(
transformer_options.get("patches", {}),
patches
)
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]

View File

@ -27,6 +27,13 @@ from comfy_api_nodes.apinode_utils import (
)
AVERAGE_DURATION_VIDEO_GEN = 32
MODELS_MAP = {
"veo-2.0-generate-001": "veo-2.0-generate-001",
"veo-3.1-generate": "veo-3.1-generate-preview",
"veo-3.1-fast-generate": "veo-3.1-fast-generate-preview",
"veo-3.0-generate-001": "veo-3.0-generate-001",
"veo-3.0-fast-generate-001": "veo-3.0-fast-generate-001",
}
def convert_image_to_base64(image: torch.Tensor):
if image is None:
@ -158,6 +165,7 @@ class VeoVideoGenerationNode(IO.ComfyNode):
model="veo-2.0-generate-001",
generate_audio=False,
):
model = MODELS_MAP[model]
# Prepare the instances for the request
instances = []
@ -385,7 +393,7 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
),
IO.Combo.Input(
"model",
options=["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
options=list(MODELS_MAP.keys()),
default="veo-3.0-generate-001",
tooltip="Veo 3 model to use for video generation",
optional=True,

View File

@ -1,5 +1,7 @@
import torch
from typing_extensions import override
from comfy.k_diffusion.sampling import sigma_to_half_log_snr
from comfy_api.latest import ComfyExtension, io
@ -63,12 +65,105 @@ class EpsilonScaling(io.ComfyNode):
return io.NodeOutput(model_clone)
def compute_tsr_rescaling_factor(
snr: torch.Tensor, tsr_k: float, tsr_variance: float
) -> torch.Tensor:
"""Compute the rescaling score ratio in Temporal Score Rescaling.
See equation (6) in https://arxiv.org/pdf/2510.01184v1.
"""
posinf_mask = torch.isposinf(snr)
rescaling_factor = (snr * tsr_variance + 1) / (snr * tsr_variance / tsr_k + 1)
return torch.where(posinf_mask, tsr_k, rescaling_factor) # when snr → inf, r = tsr_k
class TemporalScoreRescaling(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="TemporalScoreRescaling",
display_name="TSR - Temporal Score Rescaling",
category="model_patches/unet",
inputs=[
io.Model.Input("model"),
io.Float.Input(
"tsr_k",
tooltip=(
"Controls the rescaling strength.\n"
"Lower k produces more detailed results; higher k produces smoother results in image generation. Setting k = 1 disables rescaling."
),
default=0.95,
min=0.01,
max=100.0,
step=0.001,
display_mode=io.NumberDisplay.number,
),
io.Float.Input(
"tsr_sigma",
tooltip=(
"Controls how early rescaling takes effect.\n"
"Larger values take effect earlier."
),
default=1.0,
min=0.01,
max=100.0,
step=0.001,
display_mode=io.NumberDisplay.number,
),
],
outputs=[
io.Model.Output(
display_name="patched_model",
),
],
description=(
"[Post-CFG Function]\n"
"TSR - Temporal Score Rescaling (2510.01184)\n\n"
"Rescaling the model's score or noise to steer the sampling diversity.\n"
),
)
@classmethod
def execute(cls, model, tsr_k, tsr_sigma) -> io.NodeOutput:
tsr_variance = tsr_sigma**2
def temporal_score_rescaling(args):
denoised = args["denoised"]
x = args["input"]
sigma = args["sigma"]
curr_model = args["model"]
# No rescaling (r = 1) or no noise
if tsr_k == 1 or sigma == 0:
return denoised
model_sampling = curr_model.current_patcher.get_model_object("model_sampling")
half_log_snr = sigma_to_half_log_snr(sigma, model_sampling)
snr = (2 * half_log_snr).exp()
# No rescaling needed (r = 1)
if snr == 0:
return denoised
rescaling_r = compute_tsr_rescaling_factor(snr, tsr_k, tsr_variance)
# Derived from scaled_denoised = (x - r * sigma * noise) / alpha
alpha = sigma * half_log_snr.exp()
return torch.lerp(x / alpha, denoised, rescaling_r)
m = model.clone()
m.set_model_sampler_post_cfg_function(temporal_score_rescaling)
return io.NodeOutput(m)
class EpsilonScalingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
EpsilonScaling,
TemporalScoreRescaling,
]
async def comfy_entrypoint() -> EpsilonScalingExtension:
return EpsilonScalingExtension()