mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-27 14:50:20 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
0862863bc0
@ -37,7 +37,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
|||||||
mask = conds['mask']
|
mask = conds['mask']
|
||||||
assert(mask.shape[1] == x_in.shape[2])
|
assert(mask.shape[1] == x_in.shape[2])
|
||||||
assert(mask.shape[2] == x_in.shape[3])
|
assert(mask.shape[2] == x_in.shape[3])
|
||||||
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
|
mask = mask[:input_x.shape[0],area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
|
||||||
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
||||||
else:
|
else:
|
||||||
mask = torch.ones_like(input_x)
|
mask = torch.ones_like(input_x)
|
||||||
|
|||||||
@ -25,6 +25,7 @@ class AlignYourStepsScheduler:
|
|||||||
return {"required":
|
return {"required":
|
||||||
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
||||||
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
||||||
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
RETURN_TYPES = ("SIGMAS",)
|
RETURN_TYPES = ("SIGMAS",)
|
||||||
@ -32,11 +33,18 @@ class AlignYourStepsScheduler:
|
|||||||
|
|
||||||
FUNCTION = "get_sigmas"
|
FUNCTION = "get_sigmas"
|
||||||
|
|
||||||
def get_sigmas(self, model_type, steps):
|
def get_sigmas(self, model_type, steps, denoise):
|
||||||
|
total_steps = steps
|
||||||
|
if denoise < 1.0:
|
||||||
|
if denoise <= 0.0:
|
||||||
|
return (torch.FloatTensor([]),)
|
||||||
|
total_steps = round(steps * denoise)
|
||||||
|
|
||||||
sigmas = NOISE_LEVELS[model_type][:]
|
sigmas = NOISE_LEVELS[model_type][:]
|
||||||
if (steps + 1) != len(sigmas):
|
if (steps + 1) != len(sigmas):
|
||||||
sigmas = loglinear_interp(sigmas, steps + 1)
|
sigmas = loglinear_interp(sigmas, steps + 1)
|
||||||
|
|
||||||
|
sigmas = sigmas[-(total_steps + 1):]
|
||||||
sigmas[-1] = 0
|
sigmas[-1] = 0
|
||||||
return (torch.FloatTensor(sigmas), )
|
return (torch.FloatTensor(sigmas), )
|
||||||
|
|
||||||
|
|||||||
120
comfy_extras/nodes/nodes_attention_multiply.py
Normal file
120
comfy_extras/nodes/nodes_attention_multiply.py
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
|
||||||
|
def attention_multiply(attn, model, q, k, v, out):
|
||||||
|
m = model.clone()
|
||||||
|
sd = model.model_state_dict()
|
||||||
|
|
||||||
|
for key in sd:
|
||||||
|
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, q)
|
||||||
|
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, k)
|
||||||
|
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, v)
|
||||||
|
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, out)
|
||||||
|
|
||||||
|
return m
|
||||||
|
|
||||||
|
|
||||||
|
class UNetSelfAttentionMultiply:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "model": ("MODEL",),
|
||||||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
}}
|
||||||
|
RETURN_TYPES = ("MODEL",)
|
||||||
|
FUNCTION = "patch"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/attention_experiments"
|
||||||
|
|
||||||
|
def patch(self, model, q, k, v, out):
|
||||||
|
m = attention_multiply("attn1", model, q, k, v, out)
|
||||||
|
return (m, )
|
||||||
|
|
||||||
|
class UNetCrossAttentionMultiply:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "model": ("MODEL",),
|
||||||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
}}
|
||||||
|
RETURN_TYPES = ("MODEL",)
|
||||||
|
FUNCTION = "patch"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/attention_experiments"
|
||||||
|
|
||||||
|
def patch(self, model, q, k, v, out):
|
||||||
|
m = attention_multiply("attn2", model, q, k, v, out)
|
||||||
|
return (m, )
|
||||||
|
|
||||||
|
class CLIPAttentionMultiply:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "clip": ("CLIP",),
|
||||||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
}}
|
||||||
|
RETURN_TYPES = ("CLIP",)
|
||||||
|
FUNCTION = "patch"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/attention_experiments"
|
||||||
|
|
||||||
|
def patch(self, clip, q, k, v, out):
|
||||||
|
m = clip.clone()
|
||||||
|
sd = m.patcher.model_state_dict()
|
||||||
|
|
||||||
|
for key in sd:
|
||||||
|
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, q)
|
||||||
|
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, k)
|
||||||
|
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, v)
|
||||||
|
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
|
||||||
|
m.add_patches({key: (None,)}, 0.0, out)
|
||||||
|
return (m, )
|
||||||
|
|
||||||
|
class UNetTemporalAttentionMultiply:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "model": ("MODEL",),
|
||||||
|
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
|
}}
|
||||||
|
RETURN_TYPES = ("MODEL",)
|
||||||
|
FUNCTION = "patch"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/attention_experiments"
|
||||||
|
|
||||||
|
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
|
||||||
|
m = model.clone()
|
||||||
|
sd = model.model_state_dict()
|
||||||
|
|
||||||
|
for k in sd:
|
||||||
|
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")):
|
||||||
|
if '.time_stack.' in k:
|
||||||
|
m.add_patches({k: (None,)}, 0.0, self_temporal)
|
||||||
|
else:
|
||||||
|
m.add_patches({k: (None,)}, 0.0, self_structural)
|
||||||
|
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")):
|
||||||
|
if '.time_stack.' in k:
|
||||||
|
m.add_patches({k: (None,)}, 0.0, cross_temporal)
|
||||||
|
else:
|
||||||
|
m.add_patches({k: (None,)}, 0.0, cross_structural)
|
||||||
|
return (m, )
|
||||||
|
|
||||||
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
|
||||||
|
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
|
||||||
|
"CLIPAttentionMultiply": CLIPAttentionMultiply,
|
||||||
|
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
|
||||||
|
}
|
||||||
@ -42,7 +42,7 @@ class ImageUpscaleWithModel:
|
|||||||
device = model_management.get_torch_device()
|
device = model_management.get_torch_device()
|
||||||
|
|
||||||
memory_required = model_management.module_size(upscale_model)
|
memory_required = model_management.module_size(upscale_model)
|
||||||
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 256.0 # The 256.0 is an estimate of how much some of these models take, TODO: make it more accurate
|
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 # The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
|
||||||
memory_required += image.nelement() * image.element_size()
|
memory_required += image.nelement() * image.element_size()
|
||||||
model_management.free_memory(memory_required, device)
|
model_management.free_memory(memory_required, device)
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user