diff --git a/README.md b/README.md index 04cb98f98..6cc601fa0 100644 --- a/README.md +++ b/README.md @@ -22,6 +22,7 @@ A vanilla, up-to-date fork of [ComfyUI](https://github.com/comfyanonymous/comfyu - Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything. - Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/) +- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/) - Asynchronous Queue system - Many optimizations: Only re-executes the parts of the workflow that changes between executions. - Smart memory management: can automatically run models on GPUs with as low as 1GB vram. diff --git a/comfy/clip_config_bigg.json b/comfy/clip_config_bigg.json index 32d82ff39..35261deef 100644 --- a/comfy/clip_config_bigg.json +++ b/comfy/clip_config_bigg.json @@ -5,7 +5,7 @@ "attention_dropout": 0.0, "bos_token_id": 0, "dropout": 0.0, - "eos_token_id": 2, + "eos_token_id": 49407, "hidden_act": "gelu", "hidden_size": 1280, "initializer_factor": 1.0, diff --git a/comfy/clip_model.py b/comfy/clip_model.py index 6dc1aed04..5516d9a2f 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -1,5 +1,6 @@ import torch from .ldm.modules.attention import optimized_attention_for_device +from . import ops class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): @@ -71,13 +72,13 @@ class CLIPEncoder(torch.nn.Module): return x, intermediate class CLIPEmbeddings(torch.nn.Module): - def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): + def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None): super().__init__() - self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) - self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) + self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device) - def forward(self, input_tokens): - return self.token_embedding(input_tokens) + self.position_embedding.weight + def forward(self, input_tokens, dtype=torch.float32): + return self.token_embedding(input_tokens, out_dtype=dtype) + ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device) class CLIPTextModel_(torch.nn.Module): @@ -88,14 +89,15 @@ class CLIPTextModel_(torch.nn.Module): intermediate_size = config_dict["intermediate_size"] intermediate_activation = config_dict["hidden_act"] vocab_size = config_dict["vocab_size"] + self.eos_token_id = config_dict["eos_token_id"] super().__init__() - self.embeddings = CLIPEmbeddings(embed_dim, vocab_size=vocab_size, dtype=torch.float32, device=device) + self.embeddings = CLIPEmbeddings(embed_dim, vocab_size=vocab_size, dtype=dtype, device=device, operations=operations) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) - def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): - x = self.embeddings(input_tokens) + def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32): + x = self.embeddings(input_tokens, dtype=dtype) mask = None if attention_mask is not None: mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) @@ -112,7 +114,7 @@ class CLIPTextModel_(torch.nn.Module): if i is not None and final_layer_norm_intermediate: i = self.final_layer_norm(i) - pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] + pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),] return x, i, pooled_output class CLIPTextModel(torch.nn.Module): @@ -154,11 +156,11 @@ class CLIPVisionEmbeddings(torch.nn.Module): num_patches = (image_size // patch_size) ** 2 num_positions = num_patches + 1 - self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device) def forward(self, pixel_values): embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) - return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) + return torch.cat([ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + ops.cast_to_input(self.position_embedding.weight, embeds) class CLIPVision(torch.nn.Module): @@ -170,7 +172,7 @@ class CLIPVision(torch.nn.Module): intermediate_size = config_dict["intermediate_size"] intermediate_activation = config_dict["hidden_act"] - self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) + self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations) self.pre_layrnorm = operations.LayerNorm(embed_dim) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.post_layernorm = operations.LayerNorm(embed_dim) diff --git a/comfy/cmd/folder_paths.py b/comfy/cmd/folder_paths.py index 207bcf4f1..5ad0e08e6 100644 --- a/comfy/cmd/folder_paths.py +++ b/comfy/cmd/folder_paths.py @@ -10,7 +10,7 @@ from typing import Optional, List, Set, Dict, Any, Iterator, Sequence from ..cli_args import args from ..component_model.files import get_package_as_path -supported_pt_extensions = frozenset(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) +supported_pt_extensions = frozenset(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft']) @dataclasses.dataclass diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 4b4a9eda2..ecb03b010 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -139,3 +139,32 @@ class SD3(LatentFormat): class StableAudio1(LatentFormat): latent_channels = 64 + +class Flux(SD3): + def __init__(self): + self.scale_factor = 0.3611 + self.shift_factor = 0.1159 + self.latent_rgb_factors =[ + [-0.0404, 0.0159, 0.0609], + [ 0.0043, 0.0298, 0.0850], + [ 0.0328, -0.0749, -0.0503], + [-0.0245, 0.0085, 0.0549], + [ 0.0966, 0.0894, 0.0530], + [ 0.0035, 0.0399, 0.0123], + [ 0.0583, 0.1184, 0.1262], + [-0.0191, -0.0206, -0.0306], + [-0.0324, 0.0055, 0.1001], + [ 0.0955, 0.0659, -0.0545], + [-0.0504, 0.0231, -0.0013], + [ 0.0500, -0.0008, -0.0088], + [ 0.0982, 0.0941, 0.0976], + [-0.1233, -0.0280, -0.0897], + [-0.0005, -0.0530, -0.0020], + [-0.1273, -0.0932, -0.0680] + ] + + def process_in(self, latent): + return (latent - self.shift_factor) * self.scale_factor + + def process_out(self, latent): + return (latent / self.scale_factor) + self.shift_factor diff --git a/comfy/ldm/audio/dit.py b/comfy/ldm/audio/dit.py index 89af9a62c..fd16d0a36 100644 --- a/comfy/ldm/audio/dit.py +++ b/comfy/ldm/audio/dit.py @@ -10,6 +10,7 @@ from einops import rearrange from torch import nn from torch.nn import functional as F import math +from ... import ops class FourierFeatures(nn.Module): def __init__(self, in_features, out_features, std=1., dtype=None, device=None): @@ -19,7 +20,7 @@ class FourierFeatures(nn.Module): [out_features // 2, in_features], dtype=dtype, device=device)) def forward(self, input): - f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device) + f = 2 * math.pi * input @ ops.cast_to_input(self.weight.T, input) return torch.cat([f.cos(), f.sin()], dim=-1) # norms @@ -39,9 +40,9 @@ class LayerNorm(nn.Module): def forward(self, x): beta = self.beta - if self.beta is not None: - beta = beta.to(dtype=x.dtype, device=x.device) - return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta) + if beta is not None: + beta = ops.cast_to_input(beta, x) + return F.layer_norm(x, x.shape[-1:], weight=ops.cast_to_input(self.gamma, x), bias=beta) class GLU(nn.Module): def __init__( @@ -124,7 +125,9 @@ class RotaryEmbedding(nn.Module): scale_base = 512, interpolation_factor = 1., base = 10000, - base_rescale_factor = 1. + base_rescale_factor = 1., + dtype=None, + device=None, ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning @@ -132,8 +135,8 @@ class RotaryEmbedding(nn.Module): # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) - inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer('inv_freq', inv_freq) + # inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype)) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor @@ -164,14 +167,14 @@ class RotaryEmbedding(nn.Module): t = t / self.interpolation_factor - freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device)) + freqs = torch.einsum('i , j -> i j', t, ops.cast_to_input(self.inv_freq, t)) freqs = torch.cat((freqs, freqs), dim = -1) if self.scale is None: return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base - scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1') + scale = ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale @@ -568,7 +571,7 @@ class ContinuousTransformer(nn.Module): self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity() if rotary_pos_emb: - self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) + self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype) else: self.rotary_pos_emb = None diff --git a/comfy/ldm/aura/mmdit.py b/comfy/ldm/aura/mmdit.py index c465619bd..be9c25b24 100644 --- a/comfy/ldm/aura/mmdit.py +++ b/comfy/ldm/aura/mmdit.py @@ -7,7 +7,8 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.attention import optimized_attention +from ..modules.attention import optimized_attention +from ... import ops def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) @@ -409,7 +410,7 @@ class MMDiT(nn.Module): pad_h = (self.patch_size - H % self.patch_size) % self.patch_size pad_w = (self.patch_size - W % self.patch_size) % self.patch_size - x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect') + x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='circular') x = x.view( B, C, @@ -427,7 +428,7 @@ class MMDiT(nn.Module): max_dim = max(h, w) cur_dim = self.h_max - pos_encoding = self.positional_encoding.reshape(1, cur_dim, cur_dim, -1).to(device=x.device, dtype=x.dtype) + pos_encoding = ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x) if max_dim > cur_dim: pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1) @@ -455,7 +456,7 @@ class MMDiT(nn.Module): t = timestep c = self.cond_seq_linear(c_seq) # B, T_c, D - c = torch.cat([self.register_tokens.to(device=c.device, dtype=c.dtype).repeat(c.size(0), 1, 1), c], dim=1) + c = torch.cat([ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1) global_cond = self.t_embedder(t, x.dtype) # B, D diff --git a/comfy/ldm/cascade/common.py b/comfy/ldm/cascade/common.py index f7092a7ad..7d93f9237 100644 --- a/comfy/ldm/cascade/common.py +++ b/comfy/ldm/cascade/common.py @@ -19,14 +19,7 @@ import torch import torch.nn as nn from ..modules.attention import optimized_attention - -class Linear(torch.nn.Linear): - def reset_parameters(self): - return None - -class Conv2d(torch.nn.Conv2d): - def reset_parameters(self): - return None +from ... import ops class OptimizedAttention(nn.Module): def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): @@ -78,13 +71,13 @@ class GlobalResponseNorm(nn.Module): "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" def __init__(self, dim, dtype=None, device=None): super().__init__() - self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) - self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) + self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device)) + self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) - return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x + return ops.cast_to_input(self.gamma, x) * (x * Nx) + ops.cast_to_input(self.beta, x) + x class ResBlock(nn.Module): diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py new file mode 100644 index 000000000..2cb466c6d --- /dev/null +++ b/comfy/ldm/flux/layers.py @@ -0,0 +1,256 @@ +import math +from dataclasses import dataclass + +import torch +from einops import rearrange +from torch import Tensor, nn + +from .math import attention, rope +from ... import ops + +class EmbedND(nn.Module): + def __init__(self, dim: int, theta: int, axes_dim: list): + super().__init__() + self.dim = dim + self.theta = theta + self.axes_dim = axes_dim + + def forward(self, ids: Tensor) -> Tensor: + n_axes = ids.shape[-1] + emb = torch.cat( + [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], + dim=-3, + ) + + return emb.unsqueeze(1) + + +def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): + """ + Create sinusoidal timestep embeddings. + :param t: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an (N, D) Tensor of positional embeddings. + """ + t = time_factor * t + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + t.device + ) + + args = t[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + if torch.is_floating_point(t): + embedding = embedding.to(t) + return embedding + + +class MLPEmbedder(nn.Module): + def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.silu = nn.SiLU() + self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x: Tensor) -> Tensor: + return self.out_layer(self.silu(self.in_layer(x))) + + +class RMSNorm(torch.nn.Module): + def __init__(self, dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) + + def forward(self, x: Tensor): + x_dtype = x.dtype + x = x.float() + rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) + return (x * rrms).to(dtype=x_dtype) * ops.cast_to(self.scale, dtype=x_dtype, device=x.device) + + +class QKNorm(torch.nn.Module): + def __init__(self, dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) + self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple: + q = self.query_norm(q) + k = self.key_norm(k) + return q.to(v), k.to(v) + + +class SelfAttention(nn.Module): + def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + + self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) + self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) + self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) + + def forward(self, x: Tensor, pe: Tensor) -> Tensor: + qkv = self.qkv(x) + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + x = attention(q, k, v, pe=pe) + x = self.proj(x) + return x + + +@dataclass +class ModulationOut: + shift: Tensor + scale: Tensor + gate: Tensor + + +class Modulation(nn.Module): + def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): + super().__init__() + self.is_double = double + self.multiplier = 6 if double else 3 + self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) + + def forward(self, vec: Tensor) -> tuple: + out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) + + return ( + ModulationOut(*out[:3]), + ModulationOut(*out[3:]) if self.is_double else None, + ) + + +class DoubleStreamBlock(nn.Module): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None): + super().__init__() + + mlp_hidden_dim = int(hidden_size * mlp_ratio) + self.num_heads = num_heads + self.hidden_size = hidden_size + self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + + self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.img_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) + + self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + + self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.txt_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) + + def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor): + img_mod1, img_mod2 = self.img_mod(vec) + txt_mod1, txt_mod2 = self.txt_mod(vec) + + # prepare image for attention + img_modulated = self.img_norm1(img) + img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift + img_qkv = self.img_attn.qkv(img_modulated) + img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) + + # prepare txt for attention + txt_modulated = self.txt_norm1(txt) + txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift + txt_qkv = self.txt_attn.qkv(txt_modulated) + txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) + + # run actual attention + q = torch.cat((txt_q, img_q), dim=2) + k = torch.cat((txt_k, img_k), dim=2) + v = torch.cat((txt_v, img_v), dim=2) + + attn = attention(q, k, v, pe=pe) + txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] + + # calculate the img bloks + img = img + img_mod1.gate * self.img_attn.proj(img_attn) + img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) + + # calculate the txt bloks + txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) + txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) + return img, txt + + +class SingleStreamBlock(nn.Module): + """ + A DiT block with parallel linear layers as described in + https://arxiv.org/abs/2302.05442 and adapted modulation interface. + """ + + def __init__( + self, + hidden_size: int, + num_heads: int, + mlp_ratio: float = 4.0, + qk_scale: float = None, + dtype=None, + device=None, + operations=None + ): + super().__init__() + self.hidden_dim = hidden_size + self.num_heads = num_heads + head_dim = hidden_size // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.mlp_hidden_dim = int(hidden_size * mlp_ratio) + # qkv and mlp_in + self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) + # proj and mlp_out + self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) + + self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) + + self.hidden_size = hidden_size + self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + + self.mlp_act = nn.GELU(approximate="tanh") + self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) + + def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: + mod, _ = self.modulation(vec) + x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift + qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) + + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + + # compute attention + attn = attention(q, k, v, pe=pe) + # compute activation in mlp stream, cat again and run second linear layer + output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) + return x + mod.gate * output + + +class LastLayer(nn.Module): + def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): + super().__init__() + self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) + self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) + + def forward(self, x: Tensor, vec: Tensor) -> Tensor: + shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) + x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] + x = self.linear(x) + return x diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py new file mode 100644 index 000000000..468a4412b --- /dev/null +++ b/comfy/ldm/flux/math.py @@ -0,0 +1,36 @@ +import torch +from einops import rearrange +from torch import Tensor +from ..modules.attention import optimized_attention +from ... import model_management + + +def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: + q, k = apply_rope(q, k, pe) + + heads = q.shape[1] + x = optimized_attention(q, k, v, heads, skip_reshape=True) + return x + + +def rope(pos: Tensor, dim: int, theta: int) -> Tensor: + assert dim % 2 == 0 + if model_management.is_device_mps(pos.device): + device = torch.device("cpu") + else: + device = pos.device + + scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device) + omega = 1.0 / (theta**scale) + out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega) + out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) + out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) + return out.to(dtype=torch.float32, device=pos.device) + + +def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) + xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) + xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] + xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] + return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py new file mode 100644 index 000000000..21f1a877e --- /dev/null +++ b/comfy/ldm/flux/model.py @@ -0,0 +1,138 @@ +#Original code can be found on: https://github.com/black-forest-labs/flux + +from dataclasses import dataclass + +import torch +from torch import Tensor, nn + +from .layers import ( + DoubleStreamBlock, + EmbedND, + LastLayer, + MLPEmbedder, + SingleStreamBlock, + timestep_embedding, +) + +from einops import rearrange, repeat + +@dataclass +class FluxParams: + in_channels: int + vec_in_dim: int + context_in_dim: int + hidden_size: int + mlp_ratio: float + num_heads: int + depth: int + depth_single_blocks: int + axes_dim: list + theta: int + qkv_bias: bool + guidance_embed: bool + + +class Flux(nn.Module): + """ + Transformer model for flow matching on sequences. + """ + + def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs): + super().__init__() + self.dtype = dtype + params = FluxParams(**kwargs) + self.params = params + self.in_channels = params.in_channels + self.out_channels = self.in_channels + if params.hidden_size % params.num_heads != 0: + raise ValueError( + f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" + ) + pe_dim = params.hidden_size // params.num_heads + if sum(params.axes_dim) != pe_dim: + raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") + self.hidden_size = params.hidden_size + self.num_heads = params.num_heads + self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) + self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) + self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) + self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + self.guidance_in = ( + MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() + ) + self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) + + self.double_blocks = nn.ModuleList( + [ + DoubleStreamBlock( + self.hidden_size, + self.num_heads, + mlp_ratio=params.mlp_ratio, + qkv_bias=params.qkv_bias, + dtype=dtype, device=device, operations=operations + ) + for _ in range(params.depth) + ] + ) + + self.single_blocks = nn.ModuleList( + [ + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) + for _ in range(params.depth_single_blocks) + ] + ) + + self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) + + def forward_orig( + self, + img: Tensor, + img_ids: Tensor, + txt: Tensor, + txt_ids: Tensor, + timesteps: Tensor, + y: Tensor, + guidance: Tensor = None, + ) -> Tensor: + if img.ndim != 3 or txt.ndim != 3: + raise ValueError("Input img and txt tensors must have 3 dimensions.") + + # running on sequences img + img = self.img_in(img) + vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) + if self.params.guidance_embed: + if guidance is None: + raise ValueError("Didn't get guidance strength for guidance distilled model.") + vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) + + vec = vec + self.vector_in(y) + txt = self.txt_in(txt) + + ids = torch.cat((txt_ids, img_ids), dim=1) + pe = self.pe_embedder(ids) + + for block in self.double_blocks: + img, txt = block(img=img, txt=txt, vec=vec, pe=pe) + + img = torch.cat((txt, img), 1) + for block in self.single_blocks: + img = block(img, vec=vec, pe=pe) + img = img[:, txt.shape[1] :, ...] + + img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) + return img + + def forward(self, x, timestep, context, y, guidance, **kwargs): + bs, c, h, w = x.shape + img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) + + h_len = (h // 2) + w_len = (w // 2) + img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) + img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None] + img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :] + img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) + + txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) + out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance) + return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2) diff --git a/comfy/ldm/hydit/models.py b/comfy/ldm/hydit/models.py index bde9687e2..2170f9475 100644 --- a/comfy/ldm/hydit/models.py +++ b/comfy/ldm/hydit/models.py @@ -4,8 +4,9 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm -from comfy.ldm.modules.diffusionmodules.util import timestep_embedding +from .... import ops +from ..modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm +from ..modules.diffusionmodules.util import timestep_embedding from torch.utils import checkpoint from .attn_layers import Attention, CrossAttention @@ -234,7 +235,7 @@ class HunYuanDiT(nn.Module): if self.use_style_cond: # Here we use a default learned embedder layer for future extension. - self.style_embedder = nn.Embedding(1, hidden_size, dtype=dtype, device=device) + self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device) self.extra_in_dim += hidden_size # Text embedding for `add` @@ -321,7 +322,7 @@ class HunYuanDiT(nn.Module): b_t5, l_t5, c_t5 = text_states_t5.shape text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1) - padding = self.text_embedding_padding.to(text_states) + padding = ops.cast_to_input(self.text_embedding_padding, text_states) text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len]) text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:]) @@ -354,7 +355,7 @@ class HunYuanDiT(nn.Module): if self.use_style_cond: if style is None: style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int) - style_embedding = self.style_embedder(style) + style_embedding = self.style_embedder(style, out_dtype=x.dtype) extra_vec = torch.cat([extra_vec, style_embedding], dim=1) # Concatenate all extra vectors diff --git a/comfy/ldm/hydit/poolers.py b/comfy/ldm/hydit/poolers.py index 2c6e46e67..f5e5b406f 100644 --- a/comfy/ldm/hydit/poolers.py +++ b/comfy/ldm/hydit/poolers.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.attention import optimized_attention #TODO - +from comfy.ldm.modules.attention import optimized_attention +import comfy.ops class AttentionPool(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None): @@ -19,7 +19,7 @@ class AttentionPool(nn.Module): x = x[:,:self.positional_embedding.shape[0] - 1] x = x.permute(1, 0, 2) # NLC -> LNC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC - x = x + self.positional_embedding[:, None, :].to(dtype=x.dtype, device=x.device) # (L+1)NC + x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC q = self.q_proj(x[:1]) k = self.k_proj(x) diff --git a/comfy/ldm/modules/diffusionmodules/mmdit.py b/comfy/ldm/modules/diffusionmodules/mmdit.py index ea4dde30a..f52dfac11 100644 --- a/comfy/ldm/modules/diffusionmodules/mmdit.py +++ b/comfy/ldm/modules/diffusionmodules/mmdit.py @@ -9,6 +9,7 @@ import torch.nn as nn from .. import attention from einops import rearrange, repeat from .util import timestep_embedding +from .... import ops def default(x, y): if x is not None: @@ -70,12 +71,14 @@ class PatchEmbed(nn.Module): bias: bool = True, strict_img_size: bool = True, dynamic_img_pad: bool = True, + padding_mode='circular', dtype=None, device=None, operations=None, ): super().__init__() self.patch_size = (patch_size, patch_size) + self.padding_mode = padding_mode if img_size is not None: self.img_size = (img_size, img_size) self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) @@ -111,7 +114,7 @@ class PatchEmbed(nn.Module): if self.dynamic_img_pad: pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] - x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect') + x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode=self.padding_mode) x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC @@ -927,7 +930,7 @@ class MMDiT(nn.Module): context = self.context_processor(context) hw = x.shape[-2:] - x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device) + x = self.x_embedder(x) + ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x) c = self.t_embedder(t, dtype=x.dtype) # (N, D) if y is not None and self.y_embedder is not None: y = self.y_embedder(y) # (N, D) diff --git a/comfy/ldm/modules/diffusionmodules/openaimodel.py b/comfy/ldm/modules/diffusionmodules/openaimodel.py index a333b9275..c5d7ed119 100644 --- a/comfy/ldm/modules/diffusionmodules/openaimodel.py +++ b/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -809,7 +809,7 @@ class UNetModel(nn.Module): self.out = nn.Sequential( operations.GroupNorm(32, ch, dtype=self.dtype, device=device), nn.SiLU(), - zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), + operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device), ) if self.predict_codebook_ids: self.id_predictor = nn.Sequential( diff --git a/comfy/model_base.py b/comfy/model_base.py index bb0c9deb4..fcc82b180 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -19,6 +19,7 @@ from .ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmenta from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from .ldm.aura.mmdit import MMDiT as AuraMMDiT from .ldm.hydit.models import HunYuanDiT +from .ldm.flux import model as flux_model class ModelType(Enum): EPS = 1 @@ -28,9 +29,10 @@ class ModelType(Enum): EDM = 5 FLOW = 6 V_PREDICTION_CONTINUOUS = 7 + FLUX = 8 -from .model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, CONST, ModelSamplingDiscreteFlow, ModelSamplingContinuousV +from .model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, CONST, ModelSamplingDiscreteFlow, ModelSamplingContinuousV, ModelSamplingFlux def model_sampling(model_config, model_type): @@ -56,6 +58,9 @@ def model_sampling(model_config, model_type): elif model_type == ModelType.V_PREDICTION_CONTINUOUS: c = V_PREDICTION s = ModelSamplingContinuousV + elif model_type == ModelType.FLUX: + c = CONST + s = ModelSamplingFlux class ModelSampling(s, c): pass @@ -255,7 +260,7 @@ class BaseModel(torch.nn.Module): else: # TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. area = input_shape[0] * math.prod(input_shape[2:]) - return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) + return (area * 0.3) * (1024 * 1024) def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): @@ -702,3 +707,30 @@ class HunyuanDiT(BaseModel): out['image_meta_size'] = conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]])) return out + +class Flux(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLUX, device=None): + super().__init__(model_config, model_type, device=device, unet_model=flux_model.Flux) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = conds.CONDRegular(cross_attn) + out['guidance'] = conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)])) + return out + + def memory_required(self, input_shape): + if model_management.xformers_enabled() or model_management.pytorch_attention_flash_attention(): + dtype = self.get_dtype() + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + #TODO: this probably needs to be tweaked + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * model_management.dtype_size(dtype) * 0.020) * (1024 * 1024) + else: + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * 0.3) * (1024 * 1024) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 36a0b8134..1676255c6 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -127,6 +127,23 @@ def detect_unet_config(state_dict, key_prefix): unet_config["image_model"] = "hydit1" return unet_config + if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux + dit_config = {} + dit_config["image_model"] = "flux" + dit_config["in_channels"] = 64 + dit_config["vec_in_dim"] = 768 + dit_config["context_in_dim"] = 4096 + dit_config["hidden_size"] = 3072 + dit_config["mlp_ratio"] = 4.0 + dit_config["num_heads"] = 24 + dit_config["depth"] = 19 + dit_config["depth_single_blocks"] = 38 + dit_config["axes_dim"] = [16, 56, 56] + dit_config["theta"] = 10000 + dit_config["qkv_bias"] = True + dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys + return dit_config + if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: return None diff --git a/comfy/model_management.py b/comfy/model_management.py index 39f3f2db6..08f9b471c 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -367,7 +367,7 @@ class LoadedModel: def minimum_inference_memory(): - return (1024 * 1024 * 1024) + return (1024 * 1024 * 1024) * 1.2 def unload_model_clones(model, unload_weights_only=True, force_unload=True) -> bool | Literal[None]: @@ -440,7 +440,7 @@ def free_memory(memory_required, device, keep_loaded=[]) -> List[LoadedModel]: @tracer.start_as_current_span("Load Models GPU") -def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False) -> None: +def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False, minimum_memory_required=None) -> None: global vram_state span = get_current_span() if memory_required != 0: @@ -448,6 +448,10 @@ def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, with model_management_lock: inference_memory = minimum_inference_memory() extra_mem = max(inference_memory, memory_required) + if minimum_memory_required is None: + minimum_memory_required = extra_mem + else: + minimum_memory_required = max(inference_memory, minimum_memory_required) models = set(models) models_to_load = [] @@ -507,8 +511,8 @@ def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): model_size = loaded_model.model_memory_required(torch_dev) current_free_mem = get_free_memory(torch_dev) - lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3)) - if model_size <= (current_free_mem - inference_memory): # only switch to lowvram if really necessary + lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required))) + if model_size <= lowvram_model_memory: # only switch to lowvram if really necessary lowvram_model_memory = 0 @@ -735,12 +739,12 @@ def supports_cast(device, dtype): # TODO return True if dtype == torch.float16: return True - if is_device_mps(device): - return False if directml_device: # TODO: test this return False if dtype == torch.bfloat16: return True + if is_device_mps(device): + return False if dtype == torch.float8_e4m3fn: return True if dtype == torch.float8_e5m2: @@ -748,6 +752,18 @@ def supports_cast(device, dtype): # TODO return False +def pick_weight_dtype(dtype, fallback_dtype, device=None): + if dtype is None: + dtype = fallback_dtype + elif dtype_size(dtype) > dtype_size(fallback_dtype): + dtype = fallback_dtype + + if not supports_cast(device, dtype): + dtype = fallback_dtype + + return dtype + + def device_supports_non_blocking(device): if is_device_mps(device): return False # pytorch bug? mps doesn't support non blocking @@ -982,9 +998,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow return False - if device is not None: # TODO not sure about mps bf16 support + if device is not None: if is_device_mps(device): - return False + return True if FORCE_FP32: return False @@ -992,7 +1008,10 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma if directml_device: return False - if cpu_mode() or mps_mode(): + if mps_mode(): + return True + + if cpu_mode(): return False if is_intel_xpu(): diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py index 4b4c090d8..cf69e10d0 100644 --- a/comfy/model_sampling.py +++ b/comfy/model_sampling.py @@ -274,3 +274,43 @@ class StableCascadeSampling(ModelSamplingDiscrete): percent = 1.0 - percent return self.sigma(torch.tensor(percent)) + + +def flux_time_shift(mu: float, sigma: float, t): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + +class ModelSamplingFlux(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + self.set_parameters(shift=sampling_settings.get("shift", 1.15)) + + def set_parameters(self, shift=1.15, timesteps=10000): + self.shift = shift + ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps)) + self.register_buffer('sigmas', ts) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return sigma + + def sigma(self, timestep): + return flux_time_shift(self.shift, 1.0, timestep) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 1.0 + if percent >= 1.0: + return 0.0 + return 1.0 - percent diff --git a/comfy/nodes/base_nodes.py b/comfy/nodes/base_nodes.py index 3dbed2909..6c02230b1 100644 --- a/comfy/nodes/base_nodes.py +++ b/comfy/nodes/base_nodes.py @@ -815,15 +815,17 @@ class UNETLoader: @classmethod def INPUT_TYPES(s): return {"required": { "unet_name": (get_filename_list_with_downloadable("unet", KNOWN_UNET_MODELS),), + "weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],) }} RETURN_TYPES = ("MODEL",) FUNCTION = "load_unet" CATEGORY = "advanced/loaders" - def load_unet(self, unet_name): + def load_unet(self, unet_name, weight_dtype): + weight_dtype = {"default":None, "fp8_e4m3fn":torch.float8_e4m3fn, "fp8_e5m2":torch.float8_e4m3fn}[weight_dtype] unet_path = get_or_download("unet", unet_name, KNOWN_UNET_MODELS) - model = sd.load_unet(unet_path) + model = sd.load_unet(unet_path, dtype=weight_dtype) return (model,) class CLIPLoader: @@ -857,7 +859,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"),), "clip_name2": ( folder_paths.get_filename_list("clip"),), - "type": (["sdxl", "sd3"], ), + "type": (["sdxl", "sd3", "flux"], ), }} RETURN_TYPES = ("CLIP",) FUNCTION = "load_clip" @@ -871,6 +873,8 @@ class DualCLIPLoader: clip_type = sd.CLIPType.STABLE_DIFFUSION elif type == "sd3": clip_type = sd.CLIPType.SD3 + elif type == "flux": + clip_type = sd.CLIPType.FLUX else: raise ValueError(f"Unknown clip type argument passed: {type} for model {clip_name1} and {clip_name2}") @@ -1856,6 +1860,7 @@ NODE_DISPLAY_NAME_MAPPINGS = { "StyleModelLoader": "Load Style Model", "CLIPVisionLoader": "Load CLIP Vision", "UpscaleModelLoader": "Load Upscale Model", + "UNETLoader": "Load Diffusion Model", # Conditioning "CLIPVisionEncode": "CLIP Vision Encode", "StyleModelApply": "Apply Style Model", diff --git a/comfy/ops.py b/comfy/ops.py index 309d2c14f..cf88f94a5 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -17,25 +17,43 @@ """ import torch + from . import model_management -def cast_bias_weight(s, input): + +def cast_to(weight, dtype=None, device=None, non_blocking=False): + return weight.to(device=device, dtype=dtype, non_blocking=non_blocking) + + +def cast_to_input(weight, input, non_blocking=False): + return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking) + + +def cast_bias_weight(s, input=None, dtype=None, device=None): + if input is not None: + if dtype is None: + dtype = input.dtype + if device is None: + device = input.device + bias = None - non_blocking = model_management.device_should_use_non_blocking(input.device) + non_blocking = model_management.device_should_use_non_blocking(device) if s.bias is not None: - bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + bias = cast_to(s.bias, dtype, device, non_blocking=non_blocking) if s.bias_function is not None: bias = s.bias_function(bias) - weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking) if s.weight_function is not None: weight = s.weight_function(weight) return weight, bias + class CastWeightBiasOp: comfy_cast_weights = False weight_function = None bias_function = None + class disable_weight_init: class Linear(torch.nn.Linear, CastWeightBiasOp): def reset_parameters(self): @@ -107,7 +125,6 @@ class disable_weight_init: else: return super().forward(*args, **kwargs) - class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): def reset_parameters(self): return None @@ -168,6 +185,26 @@ class disable_weight_init: else: return super().forward(*args, **kwargs) + class Embedding(torch.nn.Embedding, CastWeightBiasOp): + def reset_parameters(self): + self.bias = None + return None + + def forward_comfy_cast_weights(self, input, out_dtype=None): + output_dtype = out_dtype + if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16: + out_dtype = None + weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype) + return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + if "out_dtype" in kwargs: + kwargs.pop("out_dtype") + return super().forward(*args, **kwargs) + @classmethod def conv_nd(s, dims, *args, **kwargs): if dims == 2: @@ -202,3 +239,6 @@ class manual_cast(disable_weight_init): class ConvTranspose1d(disable_weight_init.ConvTranspose1d): comfy_cast_weights = True + + class Embedding(disable_weight_init.Embedding): + comfy_cast_weights = True diff --git a/comfy/sampler_helpers.py b/comfy/sampler_helpers.py index 2fedef2f1..3d1a8ac03 100644 --- a/comfy/sampler_helpers.py +++ b/comfy/sampler_helpers.py @@ -1,7 +1,7 @@ import torch -from comfy import model_management -from comfy import utils -from comfy import conds +from . import model_management +from . import utils +from . import conds def prepare_mask(noise_mask, shape, device): """ensures noise mask is of proper dimensions""" @@ -62,7 +62,9 @@ def prepare_sampling(model, noise_shape, conds): device = model.load_device real_model = None models, inference_memory = get_additional_models(conds, model.model_dtype()) - model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) + memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory + minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory + model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required) real_model = model.model return real_model, conds, models diff --git a/comfy/sd.py b/comfy/sd.py index da342ce9f..c37349bf1 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -27,6 +27,7 @@ from .text_encoders import sd3_clip from .text_encoders import hydit from .text_encoders import sa_t5 from .text_encoders import aura_t5 +from .text_encoders import flux from .ldm.audio.autoencoder import AudioOobleckVAE from .ldm.cascade.stage_a import StageA @@ -401,6 +402,7 @@ class CLIPType(Enum): SD3 = 3 STABLE_AUDIO = 4 HUNYUAN_DIT = 5 + FLUX = 6 @dataclasses.dataclass @@ -458,6 +460,15 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI elif clip_type == CLIPType.HUNYUAN_DIT: clip_target.clip = hydit.HyditModel clip_target.tokenizer = hydit.HyditTokenizer + elif clip_type == CLIPType.FLUX: + weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" + weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None)) + dtype_t5 = None + if weight is not None: + dtype_t5 = weight.dtype + + clip_target.clip = flux.flux_clip(dtype_t5=dtype_t5) + clip_target.tokenizer = flux.FluxTokenizer else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer @@ -580,7 +591,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o return (_model_patcher, clip, vae, clipvision) -def load_unet_state_dict(sd): # load unet in diffusers or regular format +def load_unet_state_dict(sd, dtype=None): # load unet in diffusers or regular format # Allow loading unets from checkpoint files diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) @@ -589,7 +600,6 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format sd = temp_sd parameters = utils.calculate_parameters(sd) - unet_dtype = model_management.unet_dtype(model_params=parameters) load_device = model_management.get_torch_device() model_config = model_detection.model_config_from_unet(sd, "") @@ -616,7 +626,11 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format logging.warning("{} {}".format(diffusers_keys[k], k)) offload_device = model_management.unet_offload_device() - unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) + if dtype is None: + unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) + else: + unet_dtype = dtype + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) model = model_config.get_model(new_sd, "") @@ -628,9 +642,9 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) -def load_unet(unet_path): +def load_unet(unet_path, dtype=None): sd = utils.load_torch_file(unet_path) - model = load_unet_state_dict(sd) + model = load_unet_state_dict(sd, dtype=dtype) if model is None: logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path)) raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index f1441a241..2d07f9c61 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -111,7 +111,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): assert layer in self.LAYERS config = get_path_as_dict(textmodel_json_config, "sd1_clip_config.json", package=__package__) - self.transformer = model_class(config, dtype, device, ops.manual_cast) + + + self.operations = ops.manual_cast + self.transformer = model_class(config, dtype, device, self.operations) self.num_layers = self.transformer.num_layers self.max_length = max_length @@ -157,15 +160,13 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): def set_up_textual_embeddings(self, tokens, current_embeds): out_tokens = [] - next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1 + next_new_token = token_dict_size = current_embeds.weight.shape[0] embedding_weights = [] for x in tokens: tokens_temp = [] for y in x: if isinstance(y, numbers.Integral): - if y == token_dict_size: # EOS token - y = -1 tokens_temp += [int(y)] else: if y.shape[0] == current_embeds.weight.shape[1]: @@ -180,12 +181,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): n = token_dict_size if len(embedding_weights) > 0: - new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) - new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1] + new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) + new_embedding.weight[:token_dict_size] = current_embeds.weight for x in embedding_weights: new_embedding.weight[n] = x n += 1 - new_embedding.weight[n] = current_embeds.weight[-1] # EOS embedding self.transformer.set_input_embeddings(new_embedding) processed_tokens = [] @@ -214,7 +214,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): if self.enable_attention_masks: attention_mask_model = attention_mask - outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) + outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32) self.transformer.set_input_embeddings(backup_embeds) if self.layer == "last": diff --git a/comfy/sd1_clip_config.json b/comfy/sd1_clip_config.json index 0158a1fd5..3ba8c6b5b 100644 --- a/comfy/sd1_clip_config.json +++ b/comfy/sd1_clip_config.json @@ -6,7 +6,7 @@ "attention_dropout": 0.0, "bos_token_id": 0, "dropout": 0.0, - "eos_token_id": 2, + "eos_token_id": 49407, "hidden_act": "quick_gelu", "hidden_size": 768, "initializer_factor": 1.0, diff --git a/comfy/supported_models.py b/comfy/supported_models.py index a6364515f..a3b39e5ee 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -9,6 +9,7 @@ from .text_encoders import sd3_clip from .text_encoders import sa_t5 from .text_encoders import aura_t5 from .text_encoders import hydit +from .text_encoders import flux from . import supported_models_base from . import latent_formats @@ -619,7 +620,45 @@ class HunyuanDiT1(HunyuanDiT): "linear_end" : 0.03, } +class Flux(supported_models_base.BASE): + unet_config = { + "image_model": "flux", + "guidance_embed": True, + } -models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1] + sampling_settings = { + } + + unet_extra_config = {} + latent_format = latent_formats.Flux + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux(self, device=device) + return out + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(flux.FluxTokenizer, flux.FluxClipModel) + +class FluxSchnell(Flux): + unet_config = { + "image_model": "flux", + "guidance_embed": False, + } + + sampling_settings = { + "multiplier": 1.0, + "shift": 1.0, + } + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device) + return out + + +models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell] models += [SVD_img2vid] diff --git a/comfy/text_encoders/aura_t5.py b/comfy/text_encoders/aura_t5.py index b6fb6bd6e..a30d533ed 100644 --- a/comfy/text_encoders/aura_t5.py +++ b/comfy/text_encoders/aura_t5.py @@ -1,6 +1,6 @@ from importlib import resources -from comfy import sd1_clip +from .. import sd1_clip from .spiece_tokenizer import SPieceTokenizer from ..text_encoders import t5 from ..component_model.files import get_path_as_dict diff --git a/comfy/text_encoders/bert.py b/comfy/text_encoders/bert.py index b76e76660..e58cffb70 100644 --- a/comfy/text_encoders/bert.py +++ b/comfy/text_encoders/bert.py @@ -1,5 +1,8 @@ import torch -from comfy.ldm.modules.attention import optimized_attention_for_device + +from .. import ops +from ..ldm.modules.attention import optimized_attention_for_device + class BertAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): @@ -86,19 +89,19 @@ class BertEncoder(torch.nn.Module): class BertEmbeddings(torch.nn.Module): def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations): super().__init__() - self.word_embeddings = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device) - self.position_embeddings = torch.nn.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device) - self.token_type_embeddings = torch.nn.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device) + self.word_embeddings = operations.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device) + self.position_embeddings = operations.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device) + self.token_type_embeddings = operations.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device) - def forward(self, input_tokens, token_type_ids=None): - x = self.word_embeddings(input_tokens) - x += self.position_embeddings.weight[:x.shape[1]] + def forward(self, input_tokens, token_type_ids=None, dtype=None): + x = self.word_embeddings(input_tokens, out_dtype=dtype) + x += ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x) if token_type_ids is not None: - x += self.token_type_embeddings(token_type_ids) + x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype) else: - x += self.token_type_embeddings.weight[0] + x += ops.cast_to_input(self.token_type_embeddings.weight[0], x) x = self.LayerNorm(x) return x @@ -112,8 +115,8 @@ class BertModel_(torch.nn.Module): self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations) self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations) - def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): - x = self.embeddings(input_tokens) + def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): + x = self.embeddings(input_tokens, dtype=dtype) mask = None if attention_mask is not None: mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py new file mode 100644 index 000000000..c48620cef --- /dev/null +++ b/comfy/text_encoders/flux.py @@ -0,0 +1,77 @@ +import torch +from transformers import T5TokenizerFast + +from .t5 import T5 +from .. import sd1_clip, model_management +from ..component_model import files + + +class T5XXLModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None): + textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__) + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5) + + +class T5XXLTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data=None): + if tokenizer_data is None: + tokenizer_data = dict() + tokenizer_path = files.get_package_as_path("comfy.text_encoders.t5_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) + + +class FluxTokenizer: + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) + self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) + + def tokenize_with_weights(self, text: str, return_word_ids=False): + out = {} + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return self.clip_g.untokenize(token_weight_pair) + + def state_dict(self): + return {} + + +class FluxClipModel(torch.nn.Module): + def __init__(self, dtype_t5=None, device="cpu", dtype=None): + super().__init__() + dtype_t5 = model_management.pick_weight_dtype(dtype_t5, dtype, device) + self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False) + self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5) + self.dtypes = set([dtype, dtype_t5]) + + def set_clip_options(self, options): + self.clip_l.set_clip_options(options) + self.t5xxl.set_clip_options(options) + + def reset_clip_options(self): + self.clip_l.reset_clip_options() + self.t5xxl.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_l = token_weight_pairs["l"] + token_weight_pars_t5 = token_weight_pairs["t5xxl"] + + t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) + return t5_out, l_pooled + + def load_sd(self, sd): + if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return self.t5xxl.load_sd(sd) + + +def flux_clip(dtype_t5=None): + class FluxClipModel_(FluxClipModel): + def __init__(self, device="cpu", dtype=None): + super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype) + + return FluxClipModel_ diff --git a/comfy/text_encoders/hydit.py b/comfy/text_encoders/hydit.py index 0142f8bb2..af88c6eb2 100644 --- a/comfy/text_encoders/hydit.py +++ b/comfy/text_encoders/hydit.py @@ -1,12 +1,10 @@ -from importlib import resources - import torch from transformers import BertTokenizer -import comfy.text_encoders.t5 -from comfy import sd1_clip from .bert import BertModel from .spiece_tokenizer import SPieceTokenizer +from .t5 import T5 +from .. import sd1_clip from ..component_model.files import get_path_as_dict, get_package_as_path @@ -25,7 +23,7 @@ class HyditBertTokenizer(sd1_clip.SDTokenizer): class MT5XLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None): textmodel_json_config = get_path_as_dict(textmodel_json_config, "mt5_config_xl.json", package=__package__) - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True) + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=True, return_attention_masks=True) class MT5XLTokenizer(sd1_clip.SDTokenizer): @@ -65,8 +63,8 @@ class HyditTokenizer: class HyditModel(torch.nn.Module): def __init__(self, device="cpu", dtype=None): super().__init__() - self.hydit_clip = HyditBertModel() - self.mt5xl = MT5XLModel() + self.hydit_clip = HyditBertModel(dtype=dtype) + self.mt5xl = MT5XLModel(dtype=dtype) self.dtypes = set() if dtype is not None: diff --git a/comfy/text_encoders/sa_t5.py b/comfy/text_encoders/sa_t5.py index 75fafb60d..285df1c2a 100644 --- a/comfy/text_encoders/sa_t5.py +++ b/comfy/text_encoders/sa_t5.py @@ -1,14 +1,14 @@ from transformers import T5TokenizerFast -import comfy.text_encoders.t5 -from comfy import sd1_clip -from comfy.component_model import files +from .t5 import T5 +from .. import sd1_clip +from ..component_model import files class T5BaseModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None): textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_base.json", package=__package__) - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True) + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=True, zero_out_masked=True) class T5BaseTokenizer(sd1_clip.SDTokenizer): diff --git a/comfy/text_encoders/sd2_clip_config.json b/comfy/text_encoders/sd2_clip_config.json index 85cec832b..00893cfdc 100644 --- a/comfy/text_encoders/sd2_clip_config.json +++ b/comfy/text_encoders/sd2_clip_config.json @@ -5,7 +5,7 @@ "attention_dropout": 0.0, "bos_token_id": 0, "dropout": 0.0, - "eos_token_id": 2, + "eos_token_id": 49407, "hidden_act": "gelu", "hidden_size": 1024, "initializer_factor": 1.0, diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index 4de495889..f88b68ae1 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -3,17 +3,16 @@ import logging import torch from transformers import T5TokenizerFast -import comfy.model_management -import comfy.text_encoders.t5 -from comfy import sd1_clip -from comfy import sdxl_clip -from comfy.component_model import files +from .t5 import T5 +from .. import sd1_clip, model_management +from .. import sdxl_clip +from ..component_model import files class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None): textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__) - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5) + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5) class T5XXLTokenizer(sd1_clip.SDTokenizer): @@ -24,8 +23,6 @@ class T5XXLTokenizer(sd1_clip.SDTokenizer): super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) - - class SD3Tokenizer: def __init__(self, embedding_directory=None, tokenizer_data={}): self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) @@ -45,6 +42,7 @@ class SD3Tokenizer: def state_dict(self): return dict() + class SD3ClipModel(torch.nn.Module): def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None): super().__init__() @@ -62,14 +60,7 @@ class SD3ClipModel(torch.nn.Module): self.clip_g = None if t5: - if dtype_t5 is None: - dtype_t5 = dtype - elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype): - dtype_t5 = dtype - - if not comfy.model_management.supports_cast(device, dtype_t5): - dtype_t5 = dtype - + dtype_t5 = model_management.pick_weight_dtype(dtype_t5, dtype, device) self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5) self.dtypes.add(dtype_t5) else: @@ -105,7 +96,7 @@ class SD3ClipModel(torch.nn.Module): if self.clip_l is not None: lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) else: - l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device()) + l_pooled = torch.zeros((1, 768), device=model_management.intermediate_device()) if self.clip_g is not None: g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) @@ -115,7 +106,7 @@ class SD3ClipModel(torch.nn.Module): lg_out = torch.nn.functional.pad(g_out, (768, 0)) else: g_out = None - g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device()) + g_pooled = torch.zeros((1, 1280), device=model_management.intermediate_device()) if lg_out is not None: lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) @@ -130,10 +121,10 @@ class SD3ClipModel(torch.nn.Module): out = t5_out if out is None: - out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device()) + out = torch.zeros((1, 77, 4096), device=model_management.intermediate_device()) if pooled is None: - pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device()) + pooled = torch.zeros((1, 768 + 1280), device=model_management.intermediate_device()) return out, pooled diff --git a/comfy/text_encoders/t5.py b/comfy/text_encoders/t5.py index ba628478d..380684560 100644 --- a/comfy/text_encoders/t5.py +++ b/comfy/text_encoders/t5.py @@ -1,6 +1,10 @@ -import torch import math -from comfy.ldm.modules.attention import optimized_attention_for_device + +import torch + +from .. import ops +from ..ldm.modules.attention import optimized_attention_for_device + class T5LayerNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None): @@ -11,13 +15,15 @@ class T5LayerNorm(torch.nn.Module): def forward(self, x): variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_epsilon) - return self.weight.to(device=x.device, dtype=x.dtype) * x + return ops.cast_to_input(self.weight, x) * x + activations = { "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"), "relu": torch.nn.functional.relu, } + class T5DenseActDense(torch.nn.Module): def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): super().__init__() @@ -32,6 +38,7 @@ class T5DenseActDense(torch.nn.Module): x = self.wo(x) return x + class T5DenseGatedActDense(torch.nn.Module): def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): super().__init__() @@ -49,6 +56,7 @@ class T5DenseGatedActDense(torch.nn.Module): x = self.wo(x) return x + class T5LayerFF(torch.nn.Module): def __init__(self, model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations): super().__init__() @@ -67,6 +75,7 @@ class T5LayerFF(torch.nn.Module): x += forwarded_states return x + class T5Attention(torch.nn.Module): def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations): super().__init__() @@ -82,7 +91,7 @@ class T5Attention(torch.nn.Module): if relative_attention_bias: self.relative_attention_num_buckets = 32 self.relative_attention_max_distance = 128 - self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device) + self.relative_attention_bias = operations.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device, dtype=dtype) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): @@ -121,9 +130,9 @@ class T5Attention(torch.nn.Module): # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( - torch.log(relative_position.float() / max_exact) - / math.log(max_distance / max_exact) - * (num_buckets - max_exact) + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) @@ -132,7 +141,7 @@ class T5Attention(torch.nn.Module): relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets - def compute_bias(self, query_length, key_length, device): + def compute_bias(self, query_length, key_length, device, dtype): """Compute binned relative position bias""" context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] @@ -143,7 +152,7 @@ class T5Attention(torch.nn.Module): num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) - values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values @@ -152,7 +161,7 @@ class T5Attention(torch.nn.Module): k = self.k(x) v = self.v(x) if self.relative_attention_bias is not None: - past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device) + past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype) if past_bias is not None: if mask is not None: @@ -163,6 +172,7 @@ class T5Attention(torch.nn.Module): out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) return self.o(out), past_bias + class T5LayerSelfAttention(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations): super().__init__() @@ -177,6 +187,7 @@ class T5LayerSelfAttention(torch.nn.Module): x += output return x, past_bias + class T5Block(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias, dtype, device, operations): super().__init__() @@ -189,6 +200,7 @@ class T5Block(torch.nn.Module): x = self.layer[-1](x) return x, past_bias + class T5Stack(torch.nn.Module): def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations): super().__init__() @@ -199,7 +211,7 @@ class T5Stack(torch.nn.Module): self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) # self.dropout = nn.Dropout(config.dropout_rate) - def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): + def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): mask = None if attention_mask is not None: mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) @@ -217,6 +229,7 @@ class T5Stack(torch.nn.Module): intermediate = self.final_layer_norm(intermediate) return x, intermediate + class T5(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() @@ -225,7 +238,7 @@ class T5(torch.nn.Module): self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations) self.dtype = dtype - self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device) + self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype) def get_input_embeddings(self): return self.shared @@ -234,5 +247,7 @@ class T5(torch.nn.Module): self.shared = embeddings def forward(self, input_ids, *args, **kwargs): - x = self.shared(input_ids) + x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32)) + if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]: + x = torch.nan_to_num(x) # Fix for fp8 T5 base return self.encoder(x, *args, **kwargs) diff --git a/comfy/utils.py b/comfy/utils.py index 11884b311..010700ad2 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -4,8 +4,6 @@ import contextlib import itertools import logging import math -import os -import os.path import random import struct import sys @@ -45,7 +43,7 @@ def load_torch_file(ckpt, safe_load=False, device=None): device = torch.device("cpu") if ckpt is None: raise FileNotFoundError("the checkpoint was not found") - if ckpt.lower().endswith(".safetensors"): + if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"): sd = safetensors.torch.load_file(ckpt, device=device.type) else: if safe_load: diff --git a/comfy_extras/nodes_flux.py b/comfy_extras/nodes_flux.py new file mode 100644 index 000000000..6c1e8b0e0 --- /dev/null +++ b/comfy_extras/nodes_flux.py @@ -0,0 +1,27 @@ + +class CLIPTextEncodeFlux: + @classmethod + def INPUT_TYPES(s): + return {"required": { + "clip": ("CLIP", ), + "clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), + "t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), + "guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "encode" + + CATEGORY = "advanced/conditioning" + + def encode(self, clip, clip_l, t5xxl, guidance): + tokens = clip.tokenize(clip_l) + tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"] + + output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True) + cond = output.pop("cond") + output["guidance"] = guidance + return ([[cond, output]], ) + +NODE_CLASS_MAPPINGS = { + "CLIPTextEncodeFlux": CLIPTextEncodeFlux, +} diff --git a/folder_paths.py b/folder_paths.py new file mode 100644 index 000000000..e69de29bb