Update combinatorial prompts for latest master

This commit is contained in:
space-nuko 2023-06-08 21:20:59 -05:00
parent 29c50954ea
commit 0ba0a86aa7
2 changed files with 377 additions and 145 deletions

View File

@ -7,26 +7,89 @@ import heapq
import traceback
import gc
import time
import itertools
import torch
import nodes
import comfy.model_management
def get_input_data_batches(input_data_all):
"""Given input data that can contain combinatorial input values, returns all
the possible batches that can be made by combining the different input
values together."""
input_to_index = {}
index_to_values = []
# Sort by input name first so the order which batch inputs are applied can
# be easily calculated (node execution order first, then alphabetical input
# name second)
sorted_input_names = sorted(input_data_all.keys())
i = 0
for input_name in sorted_input_names:
value = input_data_all[input_name]
if isinstance(value, dict) and "combinatorial" in value:
input_to_index[input_name] = i
index_to_values.append(value["values"])
i += 1
if len(index_to_values) == 0:
# No combinatorial options.
return [input_data_all]
batches = []
for combination in list(itertools.product(*index_to_values)):
batch = {}
for input_name, value in input_data_all.items():
if isinstance(value, dict) and "combinatorial" in value:
combination_index = input_to_index[input_name]
batch[input_name] = [combination[combination_index]]
else:
# already made into a list by get_input_data
batch[input_name] = value
batches.append(batch)
return batches
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
"""Given input data from the prompt, returns a list of input data dicts for
each combinatorial batch."""
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {}
for x in inputs:
input_data = inputs[x]
required_or_optional = ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"])
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
return None
obj = outputs[input_unique_id][output_index]
input_data_all[x] = obj
# This is a list of outputs for each batch of combinatorial inputs.
# Without any combinatorial inputs, it's a list of length 1.
outputs_for_all_batches = outputs[input_unique_id]
def flatten(list_of_lists):
return list(itertools.chain.from_iterable(list_of_lists))
if len(outputs_for_all_batches) == 1:
# Single batch, no combinatorial stuff
input_data_all[x] = outputs_for_all_batches[0][output_index]
else:
# Make the outputs into a list for map-over-list use
# (they are themselves lists so flatten them afterwards)
input_values = [batch_output[output_index] for batch_output in outputs_for_all_batches]
input_values = flatten(input_values)
input_data_all[x] = input_values
elif is_combinatorial_input(input_data):
if required_or_optional:
input_data_all[x] = { "combinatorial": True, "values": input_data["values"] }
else:
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
if required_or_optional:
input_data_all[x] = [input_data]
if "hidden" in valid_inputs:
@ -39,7 +102,20 @@ def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_da
input_data_all[x] = [extra_data['extra_pnginfo']]
if h[x] == "UNIQUE_ID":
input_data_all[x] = [unique_id]
return input_data_all
input_data_all_batches = get_input_data_batches(input_data_all)
return input_data_all_batches
def slice_lists_into_dict(d, i):
"""
get a slice of inputs, repeat last input when list isn't long enough
d={ "seed": [ 1, 2, 3 ], "steps": [ 4, 8 ] }, i=2 -> { "seed": 3, "steps": 8 }
"""
d_new = {}
for k, v in d.items():
d_new[k] = v[i if len(v) > i else -1]
return d_new
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
# check if node wants the lists
@ -49,13 +125,23 @@ def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
max_len_input = max([len(x) for x in input_data_all.values()])
# get a slice of inputs, repeat last input when list isn't long enough
def slice_dict(d, i):
d_new = dict()
def format_dict(d):
s = []
for k,v in d.items():
d_new[k] = v[i if len(v) > i else -1]
return d_new
st = f"{k}: "
if isinstance(v, list):
st += f"list[len: {len(v)}]["
i = []
for v2 in v:
i.append(v2.__class__.__name__)
st += ",".join(i) + "]"
else:
st += str(type(v))
s.append(st)
return "( " + ", ".join(s) + " )"
max_len_input = max(len(x) for x in input_data_all.values())
results = []
if intput_is_list:
if allow_interrupt:
@ -65,42 +151,66 @@ def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
for i in range(max_len_input):
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
results.append(getattr(obj, func)(**slice_lists_into_dict(input_data_all, i)))
return results
def get_output_data(obj, input_data_all):
results = []
uis = []
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
def get_output_data(obj, input_data_all_batches, server, unique_id, prompt_id):
all_outputs = []
all_outputs_ui = []
total_batches = len(input_data_all_batches)
for r in return_values:
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'result' in r:
results.append(r['result'])
else:
results.append(r)
output = []
if len(results) > 0:
# check which outputs need concatenating
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
for batch_num, batch in enumerate(input_data_all_batches):
return_values = map_node_over_list(obj, batch, obj.FUNCTION, allow_interrupt=True)
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
uis = []
results = []
for r in return_values:
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'result' in r:
results.append(r['result'])
else:
output.append([o[i] for o in results])
results.append(r)
ui = dict()
if len(uis) > 0:
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
return output, ui
output = []
if len(results) > 0:
# check which outputs need concatenating
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
else:
output.append([o[i] for o in results])
output_ui = None
if len(uis) > 0:
output_ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
all_outputs.append(output)
all_outputs_ui.append(output_ui)
outputs_ui_to_send = None
if any(all_outputs_ui):
outputs_ui_to_send = all_outputs_ui
# update the UI after each batch finishes
if server.client_id is not None:
message = {
"node": unique_id,
"output": outputs_ui_to_send,
"prompt_id": prompt_id,
"batch_num": batch_num,
"total_batches": total_batches
}
server.send_sync("executed", message, server.client_id)
return all_outputs, all_outputs_ui
def format_value(x):
if x is None:
@ -132,18 +242,18 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute
input_data_all = None
try:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
input_data_all_batches = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id, "total_batches": len(input_data_all_batches) }, server.client_id)
obj = class_def()
output_data, output_ui = get_output_data(obj, input_data_all)
outputs[unique_id] = output_data
if len(output_ui) > 0:
outputs_ui[unique_id] = output_ui
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
output_data_from_batches, output_ui_from_batches = get_output_data(obj, input_data_all_batches, server, unique_id, prompt_id)
outputs[unique_id] = output_data_from_batches
if any(output_ui_from_batches):
outputs_ui[unique_id] = output_ui_from_batches
elif unique_id in outputs_ui:
outputs_ui.pop(unique_id)
except comfy.model_management.InterruptProcessingException as iex:
print("Processing interrupted")
@ -213,13 +323,16 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
if 'is_changed' not in prompt[unique_id]:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all is not None:
try:
input_data_all_batches = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all_batches is not None:
try:
#is_changed = class_def.IS_CHANGED(**input_data_all)
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
for batch in input_data_all_batches:
if map_node_over_list(class_def, batch, "IS_CHANGED"):
is_changed = True
break
prompt[unique_id]['is_changed'] = is_changed
except:
except:
to_delete = True
else:
is_changed = prompt[unique_id]['is_changed']
@ -366,6 +479,94 @@ class PromptExecutor:
comfy.model_management.soft_empty_cache()
def is_combinatorial_input(val):
return isinstance(val, dict) and "__inputType__" in val
def get_raw_inputs(raw_val):
if isinstance(raw_val, list):
# link to another node
return [raw_val]
elif is_combinatorial_input(raw_val):
return raw_val["values"]
return [raw_val]
def clamp_input(val, info, class_type, obj_class, x):
errors = []
if is_combinatorial_input(val):
if len(val["values"]) == 0:
error = {
"type": "combinatorial_input_missing_values",
"message": f"Combinatorial input has no values in its list.",
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
return (False, None, error)
for i, val_choice in enumerate(val["values"]):
r = clamp_input(val_choice, info, class_type, obj_class, x)
if r[0] == False:
return r
val["values"][i] = r[1]
return (True, val, None)
type_input = info[0]
try:
if type_input == "INT":
val = int(val)
if type_input == "FLOAT":
val = float(val)
if type_input == "STRING":
val = str(val)
except Exception as ex:
error = {
"type": "invalid_input_type",
"message": f"Failed to convert an input value to a {type_input} value",
"details": f"{x}, {val}, {ex}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
"exception_message": str(ex)
}
}
return (False, None, error)
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
error = {
"type": "value_smaller_than_min",
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
return (False, None, error)
if "max" in info[1] and val > info[1]["max"]:
error = {
"type": "value_bigger_than_max",
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
return (False, None, error)
return (True, val, None)
def validate_inputs(prompt, item, validated):
unique_id = item
if unique_id in validated:
@ -457,107 +658,66 @@ def validate_inputs(prompt, item, validated):
validated[o_id] = (False, reasons, o_id)
continue
else:
try:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
except Exception as ex:
error = {
"type": "invalid_input_type",
"message": f"Failed to convert an input value to a {type_input} value",
"details": f"{x}, {val}, {ex}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
"exception_message": str(ex)
}
}
errors.append(error)
r = clamp_input(val, info, class_type, obj_class, x)
if r[0] == False:
errors.append(r[2])
continue
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
error = {
"type": "value_smaller_than_min",
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
if "max" in info[1] and val > info[1]["max"]:
error = {
"type": "value_bigger_than_max",
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]),
"details": f"{x}",
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
else:
inputs[x] = r[1]
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
input_data_all_batches = get_input_data(inputs, obj_class, unique_id)
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
for i, r in enumerate(ret):
if r is not True:
details = f"{x}"
if r is not False:
details += f" - {str(r)}"
for batch in input_data_all_batches:
ret = map_node_over_list(obj_class, batch, "VALIDATE_INPUTS")
for r in ret:
if r != True:
details = f"{x}"
if r is not False:
details += f" - {str(r)}"
error = {
"type": "custom_validation_failed",
"message": "Custom validation failed for node",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
error = {
"type": "custom_validation_failed",
"message": "Custom validation failed for node",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
}
errors.append(error)
continue
errors.append(error)
continue
else:
if isinstance(type_input, list):
if val not in type_input:
input_config = info
list_info = ""
# Account for more than one combinatorial value
raw_vals = get_raw_inputs(val)
for raw_val in raw_vals:
if raw_val not in type_input:
input_config = info
list_info = ""
# Don't send back gigantic lists like if they're lots of
# scanned model filepaths
if len(type_input) > 20:
list_info = f"(list of length {len(type_input)})"
input_config = None
else:
list_info = str(type_input)
# Don't send back gigantic lists like if they're lots of
# scanned model filepaths
if len(type_input) > 20:
list_info = f"(list of length {len(type_input)})"
input_config = None
else:
list_info = str(type_input)
error = {
"type": "value_not_in_list",
"message": "Value not in list",
"details": f"{x}: '{val}' not in {list_info}",
"extra_info": {
"input_name": x,
"input_config": input_config,
"received_value": val,
error = {
"type": "value_not_in_list",
"message": "Value not in list",
"details": f"{x}: '{raw_val}' not in {list_info}",
"extra_info": {
"input_name": x,
"input_config": input_config,
"received_value": raw_val,
}
}
}
errors.append(error)
continue
errors.append(error)
continue
if len(errors) > 0 or valid is not True:
ret = (False, errors, unique_id)

View File

@ -195,6 +195,19 @@ app.registerExtension({
this.addOutput("connect to widget input", "*");
this.serialize_widgets = true;
this.isVirtualNode = true;
this.properties ||= {}
this.properties.valuesType = "single";
this.properties.listValue = "";
this.properties.rangeStepBy = 64;
this.properties.rangeSteps = 2;
}
getRange(min, stepBy, steps) {
let result = [];
for (let i = 0; i < steps; i++) {
result.push(min + i * stepBy);
}
return result;
}
applyToGraph() {
@ -209,15 +222,55 @@ app.registerExtension({
if (widgetName) {
const widget = node.widgets.find((w) => w.name === widgetName);
if (widget) {
widget.value = this.widgets[0].value;
widget.value = this.mainWidget.value;
if (widget.callback) {
widget.callback(widget.value, app.canvas, node, app.canvas.graph_mouse, {});
}
let values;
switch (this.properties.valuesType) {
case "list":
values = this.listWidget.value.split(",");
const inputType = this.outputs[0].widget.config[0]
if (inputType === "INT") {
values = values.map(v => parseInt(v))
}
else if (inputType === "FLOAT") {
values = values.map(v => parseFloat(v))
}
widget.value = { __inputType__: "combinatorial", values: values }
break;
case "range":
const isNumberWidget = widget.type === "number" || widget.origType === "number";
if (isNumberWidget) {
values = this.getRange(widget.value, this.properties.rangeStepBy, this.properties.rangeSteps);
widget.value = { __inputType__: "combinatorial", values: values }
break;
}
case "single":
default:
break;
}
}
}
}
}
onPropertyChanged(property, value) {
if (property === "valuesType") {
const isList = value === "list"
if (this.listWidget)
this.listWidget.disabled = !isList
const isRange = value === "range"
if (this.stepByWidget)
this.stepByWidget.disabled = !isRange
if (this.stepsWidget)
this.stepsWidget.disabled = !isRange
}
}
onConnectionsChange(_, index, connected) {
if (connected) {
if (this.outputs[0].links?.length) {
@ -227,7 +280,7 @@ app.registerExtension({
if (!this.widgets?.length && this.outputs[0].widget) {
// On first load it often cant recreate the widget as the other node doesnt exist yet
// Manually recreate it from the output info
this.#createWidget(this.outputs[0].widget.config);
this.mainWidget = this.#createWidget(this.outputs[0].widget.config);
}
}
} else if (!this.outputs[0].links?.length) {
@ -276,7 +329,7 @@ app.registerExtension({
this.outputs[0].name = type;
this.outputs[0].widget = widget;
this.#createWidget(widget.config, theirNode, widget.name);
this.mainWidget = this.#createWidget(widget.config, theirNode, widget.name);
}
#createWidget(inputData, node, widgetName) {
@ -304,6 +357,23 @@ app.registerExtension({
addValueControlWidget(this, widget, "fixed");
}
const valuesTypeChoices = ["single", "list"];
if (widget.type === "number") {
valuesTypeChoices.push("range");
}
this.valuesTypeWidget = this.addWidget("combo", "Values type", this.properties.valuesType, "valuesType", { values: valuesTypeChoices });
this.listWidget = this.addWidget("text", "Choices", this.properties.listValue, "listValue");
this.listWidget.disabled = this.properties.valuesType !== "list";
if (widget.type === "number") {
this.stepByWidget = this.addWidget("number", "Range Step By", this.properties.rangeStepBy, "rangeStepBy");
this.stepByWidget.disabled = this.properties.valuesType !== "range";
this.stepsWidget = this.addWidget("number", "Range Steps", this.properties.rangeSteps, "rangeSteps", { min: 1, max: 128, step: 10 });
this.stepsWidget.disabled = this.properties.valuesType !== "range";
}
// When our value changes, update other widgets to reflect our changes
// e.g. so LoadImage shows correct image
const callback = widget.callback;
@ -328,6 +398,8 @@ app.registerExtension({
this.onResize(this.size);
}
});
return widget;
}
#isValidConnection(input) {