V3 Improvements + DynamicCombo + Autogrow exposed in public API (#11345)

* Support Combo outputs in a more sane way

* Remove test validate_inputs function on test node

* Make curr_prefix be a list of strings instead of string for easier parsing as keys get added to dynamic types

* Start to account for id prefixes from frontend, need to fix bug with nested dynamics

* Ensure inputs/outputs/hidden are lists in schema finalize function, remove no longer needed 'is not None' checks

* Add raw_link and extra_dict to all relevant Inputs

* Make nested DynamicCombos work properly with prefixed keys on latest frontend; breaks old Autogrow, but is pretty much ready for upcoming Autogrow keys

* Replace ... usage with a MISSING sentinel for clarity in nodes_logic.py

* Added CustomCombo node in backend to reflect frontend node

* Prepare Autogrow's expand_schema_for_dynamic to work with upcoming frontend changes

* Prepare for look up table for dynamic input stuff

* More progress towards dynamic input lookup function stuff

* Finished converting _expand_schema_for_dynamic to be done via lookup instead of OOP to guarantee working with process isolation, did refactoring to remove old implementation + cleaning INPUT_TYPES definition including v3 hidden definition

* Change order of functions

* Removed some unneeded functions after dynamic refactor

* Make MatchType's output default displayname "MATCHTYPE"

* Fix DynamicSlot get_all

* Removed redundant code - dynamic stuff no longer happens in OOP way

* Natively support AnyType (*) without __ne__ hacks

* Remove stray code that made it in

* Remove expand_schema_for_dynamic left over on DynamicInput class

* get_dynamic() on DynamicInput/Output was not doing anything anymore, so removed it

* Make validate_inputs validate combo input correctly

* Temporarily comment out conversion to 'new' (9 month old) COMBO format in get_input_info

* Remove refrences to resources feature scrapped from V3

* Expose DynamicCombo in public API

* satisfy ruff after some code got commented out

* Make missing input error prettier for dynamic types

* Created a Switch2 node as a side-by-side test, will likely go with Switch2 as the initial switch node

* Figured out Switch situation

* Pass in v3_data in IsChangedCache.get function's fingerprint_inputs, add a from_v3_data helper method to HiddenHolder

* Switch order of Switch and Soft Switch nodes in file

* Temp test node for MatchType

* Fix missing v3_data for v1 nodes in validation

* For now, remove chacking duplicate id's for dynamic types

* Add Resize Image/Mask node that thanks to MatchType+DynamicCombo is 16-nodes-in-1

* Made DynamicCombo references in DCTestNode use public interface

* Add an AnyTypeTestNode

* Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned

* Comment out test logic nodes

* Make primitive float's step make more sense

* Add (and leave commented out) some potential logic nodes

* Change default crop option to "center" on Resize Image/Mask node

* Changed copy.copy(d) to d.copy()

* Autogrow is available in stable  frontend, so exposing it in public API

* Use outputs id as display_name if no display_name present, remove v3 outputs id restriction that made them have to have unique IDs from the inputs

* Enable Custom Combo node as stable frontend now supports it

* Make id properly act like display_name on outputs

* Add Batch Images/Masks/Latents node

* Comment out Batch Images/Masks/Latents node for now, as Autogrow has a bug with MatchType where top connection is disconnected upon refresh

* Removed code for a couple test nodes in nodes_logic.py

* Add Batch Images, Batch Masks, and Batch Latents nodes with Autogrow, deprecate old Batch Images + LatentBatch nodes
This commit is contained in:
Jedrzej Kosinski 2025-12-30 20:09:55 -08:00 committed by GitHub
parent 0357ed7ec4
commit 0be8a76c93
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 742 additions and 274 deletions

View File

@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io_public as io from . import _io_public as io
from . import _ui_public as ui from . import _ui_public as ui
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
from comfy_execution.utils import get_executing_context from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple from comfy_execution.progress import get_progress_state, PreviewImageTuple
from PIL import Image from PIL import Image

View File

@ -26,7 +26,6 @@ if TYPE_CHECKING:
from comfy_api.input import VideoInput from comfy_api.input import VideoInput
from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class,
prune_dict, shallow_clone_class) prune_dict, shallow_clone_class)
from ._resources import Resources, ResourcesLocal
from comfy_execution.graph_utils import ExecutionBlocker from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL, SVG as _SVG from ._util import MESH, VOXEL, SVG as _SVG
@ -76,16 +75,6 @@ class NumberDisplay(str, Enum):
slider = "slider" slider = "slider"
class _StringIOType(str):
def __ne__(self, value: object) -> bool:
if self == "*" or value == "*":
return False
if not isinstance(value, str):
return True
a = frozenset(self.split(","))
b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b))
class _ComfyType(ABC): class _ComfyType(ABC):
Type = Any Type = Any
io_type: str = None io_type: str = None
@ -125,8 +114,7 @@ def comfytype(io_type: str, **kwargs):
new_cls.__module__ = cls.__module__ new_cls.__module__ = cls.__module__
new_cls.__doc__ = cls.__doc__ new_cls.__doc__ = cls.__doc__
# assign ComfyType attributes, if needed # assign ComfyType attributes, if needed
# NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details) new_cls.io_type = io_type
new_cls.io_type = _StringIOType(io_type)
if hasattr(new_cls, "Input") and new_cls.Input is not None: if hasattr(new_cls, "Input") and new_cls.Input is not None:
new_cls.Input.Parent = new_cls new_cls.Input.Parent = new_cls
if hasattr(new_cls, "Output") and new_cls.Output is not None: if hasattr(new_cls, "Output") and new_cls.Output is not None:
@ -165,7 +153,7 @@ class Input(_IO_V3):
''' '''
Base class for a V3 Input. Base class for a V3 Input.
''' '''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__() super().__init__()
self.id = id self.id = id
self.display_name = display_name self.display_name = display_name
@ -173,6 +161,7 @@ class Input(_IO_V3):
self.tooltip = tooltip self.tooltip = tooltip
self.lazy = lazy self.lazy = lazy
self.extra_dict = extra_dict if extra_dict is not None else {} self.extra_dict = extra_dict if extra_dict is not None else {}
self.rawLink = raw_link
def as_dict(self): def as_dict(self):
return prune_dict({ return prune_dict({
@ -180,10 +169,11 @@ class Input(_IO_V3):
"optional": self.optional, "optional": self.optional,
"tooltip": self.tooltip, "tooltip": self.tooltip,
"lazy": self.lazy, "lazy": self.lazy,
"rawLink": self.rawLink,
}) | prune_dict(self.extra_dict) }) | prune_dict(self.extra_dict)
def get_io_type(self): def get_io_type(self):
return _StringIOType(self.io_type) return self.io_type
def get_all(self) -> list[Input]: def get_all(self) -> list[Input]:
return [self] return [self]
@ -194,8 +184,8 @@ class WidgetInput(Input):
''' '''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: Any=None, default: Any=None,
socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None): socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link)
self.default = default self.default = default
self.socketless = socketless self.socketless = socketless
self.widget_type = widget_type self.widget_type = widget_type
@ -217,13 +207,14 @@ class Output(_IO_V3):
def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, def __init__(self, id: str=None, display_name: str=None, tooltip: str=None,
is_output_list=False): is_output_list=False):
self.id = id self.id = id
self.display_name = display_name self.display_name = display_name if display_name else id
self.tooltip = tooltip self.tooltip = tooltip
self.is_output_list = is_output_list self.is_output_list = is_output_list
def as_dict(self): def as_dict(self):
display_name = self.display_name if self.display_name else self.id
return prune_dict({ return prune_dict({
"display_name": self.display_name, "display_name": display_name,
"tooltip": self.tooltip, "tooltip": self.tooltip,
"is_output_list": self.is_output_list, "is_output_list": self.is_output_list,
}) })
@ -251,8 +242,8 @@ class Boolean(ComfyTypeIO):
'''Boolean input.''' '''Boolean input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: bool=None, label_on: str=None, label_off: str=None, default: bool=None, label_on: str=None, label_off: str=None,
socketless: bool=None, force_input: bool=None): socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link)
self.label_on = label_on self.label_on = label_on
self.label_off = label_off self.label_off = label_off
self.default: bool self.default: bool
@ -271,8 +262,8 @@ class Int(ComfyTypeIO):
'''Integer input.''' '''Integer input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None, default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link)
self.min = min self.min = min
self.max = max self.max = max
self.step = step self.step = step
@ -297,8 +288,8 @@ class Float(ComfyTypeIO):
'''Float input.''' '''Float input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: float=None, min: float=None, max: float=None, step: float=None, round: float=None, default: float=None, min: float=None, max: float=None, step: float=None, round: float=None,
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link)
self.min = min self.min = min
self.max = max self.max = max
self.step = step self.step = step
@ -323,8 +314,8 @@ class String(ComfyTypeIO):
'''String input.''' '''String input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None, multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None,
socketless: bool=None, force_input: bool=None): socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link)
self.multiline = multiline self.multiline = multiline
self.placeholder = placeholder self.placeholder = placeholder
self.dynamic_prompts = dynamic_prompts self.dynamic_prompts = dynamic_prompts
@ -357,12 +348,14 @@ class Combo(ComfyTypeIO):
image_folder: FolderType=None, image_folder: FolderType=None,
remote: RemoteOptions=None, remote: RemoteOptions=None,
socketless: bool=None, socketless: bool=None,
extra_dict=None,
raw_link: bool=None,
): ):
if isinstance(options, type) and issubclass(options, Enum): if isinstance(options, type) and issubclass(options, Enum):
options = [v.value for v in options] options = [v.value for v in options]
if isinstance(default, Enum): if isinstance(default, Enum):
default = default.value default = default.value
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link)
self.multiselect = False self.multiselect = False
self.options = options self.options = options
self.control_after_generate = control_after_generate self.control_after_generate = control_after_generate
@ -386,10 +379,6 @@ class Combo(ComfyTypeIO):
super().__init__(id, display_name, tooltip, is_output_list) super().__init__(id, display_name, tooltip, is_output_list)
self.options = options if options is not None else [] self.options = options if options is not None else []
@property
def io_type(self):
return self.options
@comfytype(io_type="COMBO") @comfytype(io_type="COMBO")
class MultiCombo(ComfyTypeI): class MultiCombo(ComfyTypeI):
'''Multiselect Combo input (dropdown for selecting potentially more than one value).''' '''Multiselect Combo input (dropdown for selecting potentially more than one value).'''
@ -398,8 +387,8 @@ class MultiCombo(ComfyTypeI):
class Input(Combo.Input): class Input(Combo.Input):
def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None, default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
socketless: bool=None): socketless: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless) super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link)
self.multiselect = True self.multiselect = True
self.placeholder = placeholder self.placeholder = placeholder
self.chip = chip self.chip = chip
@ -432,9 +421,9 @@ class Webcam(ComfyTypeIO):
Type = str Type = str
def __init__( def __init__(
self, id: str, display_name: str=None, optional=False, self, id: str, display_name: str=None, optional=False,
tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None, extra_dict=None, raw_link: bool=None
): ):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link)
@comfytype(io_type="MASK") @comfytype(io_type="MASK")
@ -787,7 +776,7 @@ class MultiType:
''' '''
Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values. Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values.
''' '''
def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None):
# if id is an Input, then use that Input with overridden values # if id is an Input, then use that Input with overridden values
self.input_override = None self.input_override = None
if isinstance(id, Input): if isinstance(id, Input):
@ -800,7 +789,7 @@ class MultiType:
# if is a widget input, make sure widget_type is set appropriately # if is a widget input, make sure widget_type is set appropriately
if isinstance(self.input_override, WidgetInput): if isinstance(self.input_override, WidgetInput):
self.input_override.widget_type = self.input_override.get_io_type() self.input_override.widget_type = self.input_override.get_io_type()
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link)
self._io_types = types self._io_types = types
@property @property
@ -854,8 +843,8 @@ class MatchType(ComfyTypeIO):
class Input(Input): class Input(Input):
def __init__(self, id: str, template: MatchType.Template, def __init__(self, id: str, template: MatchType.Template,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link)
self.template = template self.template = template
def as_dict(self): def as_dict(self):
@ -866,6 +855,8 @@ class MatchType(ComfyTypeIO):
class Output(Output): class Output(Output):
def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None,
is_output_list=False): is_output_list=False):
if not id and not display_name:
display_name = "MATCHTYPE"
super().__init__(id, display_name, tooltip, is_output_list) super().__init__(id, display_name, tooltip, is_output_list)
self.template = template self.template = template
@ -878,24 +869,30 @@ class DynamicInput(Input, ABC):
''' '''
Abstract class for dynamic input registration. Abstract class for dynamic input registration.
''' '''
def get_dynamic(self) -> list[Input]: pass
return []
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
pass
class DynamicOutput(Output, ABC): class DynamicOutput(Output, ABC):
''' '''
Abstract class for dynamic output registration. Abstract class for dynamic output registration.
''' '''
def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, pass
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
def get_dynamic(self) -> list[Output]:
return []
def handle_prefix(prefix_list: list[str] | None, id: str | None = None) -> list[str]:
if prefix_list is None:
prefix_list = []
if id is not None:
prefix_list = prefix_list + [id]
return prefix_list
def finalize_prefix(prefix_list: list[str] | None, id: str | None = None) -> str:
assert not (prefix_list is None and id is None)
if prefix_list is None:
return id
elif id is not None:
prefix_list = prefix_list + [id]
return ".".join(prefix_list)
@comfytype(io_type="COMFY_AUTOGROW_V3") @comfytype(io_type="COMFY_AUTOGROW_V3")
class Autogrow(ComfyTypeI): class Autogrow(ComfyTypeI):
@ -932,14 +929,6 @@ class Autogrow(ComfyTypeI):
def validate(self): def validate(self):
self.input.validate() self.input.validate()
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
real_inputs = []
for name, input in self.cached_inputs.items():
if name in live_inputs:
real_inputs.append(input)
add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, real_inputs, curr_prefix)
class TemplatePrefix(_AutogrowTemplate): class TemplatePrefix(_AutogrowTemplate):
def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): def __init__(self, input: Input, prefix: str, min: int=1, max: int=10):
super().__init__(input) super().__init__(input)
@ -984,22 +973,45 @@ class Autogrow(ComfyTypeI):
"template": self.template.as_dict(), "template": self.template.as_dict(),
}) })
def get_dynamic(self) -> list[Input]:
return self.template.get_all()
def get_all(self) -> list[Input]: def get_all(self) -> list[Input]:
return [self] + self.template.get_all() return [self] + self.template.get_all()
def validate(self): def validate(self):
self.template.validate() self.template.validate()
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): @staticmethod
curr_prefix = f"{curr_prefix}{self.id}." def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None):
# need to remove self from expected inputs dictionary; replaced by template inputs in frontend # NOTE: purposely do not include self in out_dict; instead use only the template inputs
for inner_dict in d.values(): # need to figure out names based on template type
if self.id in inner_dict: is_names = ("names" in value[1]["template"])
del inner_dict[self.id] is_prefix = ("prefix" in value[1]["template"])
self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) input = value[1]["template"]["input"]
if is_names:
min = value[1]["template"]["min"]
names = value[1]["template"]["names"]
max = len(names)
elif is_prefix:
prefix = value[1]["template"]["prefix"]
min = value[1]["template"]["min"]
max = value[1]["template"]["max"]
names = [f"{prefix}{i}" for i in range(max)]
# need to create a new input based on the contents of input
template_input = None
for _, dict_input in input.items():
# for now, get just the first value from dict_input
template_input = list(dict_input.values())[0]
new_dict = {}
for i, name in enumerate(names):
expected_id = finalize_prefix(curr_prefix, name)
if expected_id in live_inputs:
# required
if i < min:
type_dict = new_dict.setdefault("required", {})
# optional
else:
type_dict = new_dict.setdefault("optional", {})
type_dict[name] = template_input
parse_class_inputs(out_dict, live_inputs, new_dict, curr_prefix)
@comfytype(io_type="COMFY_DYNAMICCOMBO_V3") @comfytype(io_type="COMFY_DYNAMICCOMBO_V3")
class DynamicCombo(ComfyTypeI): class DynamicCombo(ComfyTypeI):
@ -1022,23 +1034,6 @@ class DynamicCombo(ComfyTypeI):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.options = options self.options = options
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
# check if dynamic input's id is in live_inputs
if self.id in live_inputs:
curr_prefix = f"{curr_prefix}{self.id}."
key = live_inputs[self.id]
selected_option = None
for option in self.options:
if option.key == key:
selected_option = option
break
if selected_option is not None:
add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self)
def get_dynamic(self) -> list[Input]:
return [input for option in self.options for input in option.inputs]
def get_all(self) -> list[Input]: def get_all(self) -> list[Input]:
return [self] + [input for option in self.options for input in option.inputs] return [self] + [input for option in self.options for input in option.inputs]
@ -1053,6 +1048,24 @@ class DynamicCombo(ComfyTypeI):
for input in option.inputs: for input in option.inputs:
input.validate() input.validate()
@staticmethod
def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None):
finalized_id = finalize_prefix(curr_prefix)
if finalized_id in live_inputs:
key = live_inputs[finalized_id]
selected_option = None
# get options from dict
options: list[dict[str, str | dict[str, Any]]] = value[1]["options"]
for option in options:
if option["key"] == key:
selected_option = option
break
if selected_option is not None:
parse_class_inputs(out_dict, live_inputs, selected_option["inputs"], curr_prefix)
# add self to inputs
out_dict[input_type][finalized_id] = value
out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1])
@comfytype(io_type="COMFY_DYNAMICSLOT_V3") @comfytype(io_type="COMFY_DYNAMICSLOT_V3")
class DynamicSlot(ComfyTypeI): class DynamicSlot(ComfyTypeI):
Type = dict[str, Any] Type = dict[str, Any]
@ -1075,17 +1088,8 @@ class DynamicSlot(ComfyTypeI):
self.force_input = True self.force_input = True
self.slot.force_input = True self.slot.force_input = True
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
if self.id in live_inputs:
curr_prefix = f"{curr_prefix}{self.id}."
add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix)
def get_dynamic(self) -> list[Input]:
return [self.slot] + self.inputs
def get_all(self) -> list[Input]: def get_all(self) -> list[Input]:
return [self] + [self.slot] + self.inputs return [self.slot] + self.inputs
def as_dict(self): def as_dict(self):
return super().as_dict() | prune_dict({ return super().as_dict() | prune_dict({
@ -1099,17 +1103,41 @@ class DynamicSlot(ComfyTypeI):
for input in self.inputs: for input in self.inputs:
input.validate() input.validate()
def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): @staticmethod
dynamic = d.setdefault("dynamic_paths", {}) def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None):
if self is not None: finalized_id = finalize_prefix(curr_prefix)
dynamic[self.id] = f"{curr_prefix}{self.id}" if finalized_id in live_inputs:
for i in inputs: inputs = value[1]["inputs"]
if not isinstance(i, DynamicInput): parse_class_inputs(out_dict, live_inputs, inputs, curr_prefix)
dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" # add self to inputs
out_dict[input_type][finalized_id] = value
out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1])
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
DYNAMIC_INPUT_LOOKUP[io_type] = func
def get_dynamic_input_func(io_type: str) -> Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]:
return DYNAMIC_INPUT_LOOKUP[io_type]
def setup_dynamic_input_funcs():
# Autogrow.Input
register_dynamic_input_func(Autogrow.io_type, Autogrow._expand_schema_for_dynamic)
# DynamicCombo.Input
register_dynamic_input_func(DynamicCombo.io_type, DynamicCombo._expand_schema_for_dynamic)
# DynamicSlot.Input
register_dynamic_input_func(DynamicSlot.io_type, DynamicSlot._expand_schema_for_dynamic)
if len(DYNAMIC_INPUT_LOOKUP) == 0:
setup_dynamic_input_funcs()
class V3Data(TypedDict): class V3Data(TypedDict):
hidden_inputs: dict[str, Any] hidden_inputs: dict[str, Any]
'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.'
dynamic_paths: dict[str, Any] dynamic_paths: dict[str, Any]
'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.'
create_dynamic_tuple: bool
'When True, the value of the dynamic input will be in the format (value, path_key).'
class HiddenHolder: class HiddenHolder:
def __init__(self, unique_id: str, prompt: Any, def __init__(self, unique_id: str, prompt: Any,
@ -1145,6 +1173,10 @@ class HiddenHolder:
api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None), api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None),
) )
@classmethod
def from_v3_data(cls, v3_data: V3Data | None) -> HiddenHolder:
return cls.from_dict(v3_data["hidden_inputs"] if v3_data else None)
class Hidden(str, Enum): class Hidden(str, Enum):
''' '''
Enumerator for requesting hidden variables in nodes. Enumerator for requesting hidden variables in nodes.
@ -1250,61 +1282,56 @@ class Schema:
- verify ids on inputs and outputs are unique - both internally and in relation to each other - verify ids on inputs and outputs are unique - both internally and in relation to each other
''' '''
nested_inputs: list[Input] = [] nested_inputs: list[Input] = []
if self.inputs is not None: for input in self.inputs:
for input in self.inputs: if not isinstance(input, DynamicInput):
nested_inputs.extend(input.get_all()) nested_inputs.extend(input.get_all())
input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] input_ids = [i.id for i in nested_inputs]
output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] output_ids = [o.id for o in self.outputs]
input_set = set(input_ids) input_set = set(input_ids)
output_set = set(output_ids) output_set = set(output_ids)
issues = [] issues: list[str] = []
# verify ids are unique per list # verify ids are unique per list
if len(input_set) != len(input_ids): if len(input_set) != len(input_ids):
issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.") issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.")
if len(output_set) != len(output_ids): if len(output_set) != len(output_ids):
issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.") issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.")
# verify ids are unique between lists
intersection = input_set & output_set
if len(intersection) > 0:
issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.")
if len(issues) > 0: if len(issues) > 0:
raise ValueError("\n".join(issues)) raise ValueError("\n".join(issues))
# validate inputs and outputs # validate inputs and outputs
if self.inputs is not None: for input in self.inputs:
for input in self.inputs: input.validate()
input.validate() for output in self.outputs:
if self.outputs is not None: output.validate()
for output in self.outputs:
output.validate()
def finalize(self): def finalize(self):
"""Add hidden based on selected schema options, and give outputs without ids default ids.""" """Add hidden based on selected schema options, and give outputs without ids default ids."""
# ensure inputs, outputs, and hidden are lists
if self.inputs is None:
self.inputs = []
if self.outputs is None:
self.outputs = []
if self.hidden is None:
self.hidden = []
# if is an api_node, will need key-related hidden # if is an api_node, will need key-related hidden
if self.is_api_node: if self.is_api_node:
if self.hidden is None:
self.hidden = []
if Hidden.auth_token_comfy_org not in self.hidden: if Hidden.auth_token_comfy_org not in self.hidden:
self.hidden.append(Hidden.auth_token_comfy_org) self.hidden.append(Hidden.auth_token_comfy_org)
if Hidden.api_key_comfy_org not in self.hidden: if Hidden.api_key_comfy_org not in self.hidden:
self.hidden.append(Hidden.api_key_comfy_org) self.hidden.append(Hidden.api_key_comfy_org)
# if is an output_node, will need prompt and extra_pnginfo # if is an output_node, will need prompt and extra_pnginfo
if self.is_output_node: if self.is_output_node:
if self.hidden is None:
self.hidden = []
if Hidden.prompt not in self.hidden: if Hidden.prompt not in self.hidden:
self.hidden.append(Hidden.prompt) self.hidden.append(Hidden.prompt)
if Hidden.extra_pnginfo not in self.hidden: if Hidden.extra_pnginfo not in self.hidden:
self.hidden.append(Hidden.extra_pnginfo) self.hidden.append(Hidden.extra_pnginfo)
# give outputs without ids default ids # give outputs without ids default ids
if self.outputs is not None: for i, output in enumerate(self.outputs):
for i, output in enumerate(self.outputs): if output.id is None:
if output.id is None: output.id = f"_{i}_{output.io_type}_"
output.id = f"_{i}_{output.io_type}_"
def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: def get_v1_info(self, cls) -> NodeInfoV1:
# NOTE: live_inputs will not be used anymore very soon and this will be done another way
# get V1 inputs # get V1 inputs
input = create_input_dict_v1(self.inputs, live_inputs) input = create_input_dict_v1(self.inputs)
if self.hidden: if self.hidden:
for hidden in self.hidden: for hidden in self.hidden:
input.setdefault("hidden", {})[hidden.name] = (hidden.value,) input.setdefault("hidden", {})[hidden.name] = (hidden.value,)
@ -1384,33 +1411,54 @@ class Schema:
) )
return info return info
def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]:
out_dict = {
"required": {},
"optional": {},
"dynamic_paths": {},
}
d = d.copy()
# ignore hidden for parsing
hidden = d.pop("hidden", None)
parse_class_inputs(out_dict, live_inputs, d)
if hidden is not None and include_hidden:
out_dict["hidden"] = hidden
v3_data = {}
dynamic_paths = out_dict.pop("dynamic_paths", None)
if dynamic_paths is not None:
v3_data["dynamic_paths"] = dynamic_paths
return out_dict, hidden, v3_data
def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: def parse_class_inputs(out_dict: dict[str, Any], live_inputs: dict[str, Any], curr_dict: dict[str, Any], curr_prefix: list[str] | None=None) -> None:
for input_type, inner_d in curr_dict.items():
for id, value in inner_d.items():
io_type = value[0]
if io_type in DYNAMIC_INPUT_LOOKUP:
# dynamic inputs need to be handled with lookup functions
dynamic_input_func = get_dynamic_input_func(io_type)
new_prefix = handle_prefix(curr_prefix, id)
dynamic_input_func(out_dict, live_inputs, value, input_type, new_prefix)
else:
# non-dynamic inputs get directly transferred
finalized_id = finalize_prefix(curr_prefix, id)
out_dict[input_type][finalized_id] = value
if curr_prefix:
out_dict["dynamic_paths"][finalized_id] = finalized_id
def create_input_dict_v1(inputs: list[Input]) -> dict:
input = { input = {
"required": {} "required": {}
} }
add_to_input_dict_v1(input, inputs, live_inputs) for i in inputs:
add_to_dict_v1(i, input)
return input return input
def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): def add_to_dict_v1(i: Input, d: dict):
for i in inputs:
if isinstance(i, DynamicInput):
add_to_dict_v1(i, d)
if live_inputs is not None:
i.expand_schema_for_dynamic(d, live_inputs, curr_prefix)
else:
add_to_dict_v1(i, d)
def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None):
key = "optional" if i.optional else "required" key = "optional" if i.optional else "required"
as_dict = i.as_dict() as_dict = i.as_dict()
# for v1, we don't want to include the optional key # for v1, we don't want to include the optional key
as_dict.pop("optional", None) as_dict.pop("optional", None)
if dynamic_dict is None: d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict)
value = (i.get_io_type(), as_dict)
else:
value = (i.get_io_type(), as_dict, dynamic_dict)
d.setdefault(key, {})[i.id] = value
def add_to_dict_v3(io: Input | Output, d: dict): def add_to_dict_v3(io: Input | Output, d: dict):
d[io.id] = (io.get_io_type(), io.as_dict()) d[io.id] = (io.get_io_type(), io.as_dict())
@ -1422,6 +1470,8 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data):
values = values.copy() values = values.copy()
result = {} result = {}
create_tuple = v3_data.get("create_dynamic_tuple", False)
for key, path in paths.items(): for key, path in paths.items():
parts = path.split(".") parts = path.split(".")
current = result current = result
@ -1430,7 +1480,10 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data):
is_last = (i == len(parts) - 1) is_last = (i == len(parts) - 1)
if is_last: if is_last:
current[p] = values.pop(key, None) value = values.pop(key, None)
if create_tuple:
value = (value, key)
current[p] = value
else: else:
current = current.setdefault(p, {}) current = current.setdefault(p, {})
@ -1445,7 +1498,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
SCHEMA = None SCHEMA = None
# filled in during execution # filled in during execution
resources: Resources = None
hidden: HiddenHolder = None hidden: HiddenHolder = None
@classmethod @classmethod
@ -1492,7 +1544,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
return [name for name in kwargs if kwargs[name] is None] return [name for name in kwargs if kwargs[name] is None]
def __init__(self): def __init__(self):
self.local_resources: ResourcesLocal = None
self.__class__.VALIDATE_CLASS() self.__class__.VALIDATE_CLASS()
@classmethod @classmethod
@ -1560,7 +1611,7 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) c_type: type[ComfyNode] = cls if is_class(cls) else type(cls)
type_clone: type[ComfyNode] = shallow_clone_class(c_type) type_clone: type[ComfyNode] = shallow_clone_class(c_type)
# set hidden # set hidden
type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"] if v3_data else None) type_clone.hidden = HiddenHolder.from_v3_data(v3_data)
return type_clone return type_clone
@final @final
@ -1677,19 +1728,10 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
@final @final
@classmethod @classmethod
def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: def INPUT_TYPES(cls) -> dict[str, dict]:
schema = cls.FINALIZE_SCHEMA() schema = cls.FINALIZE_SCHEMA()
info = schema.get_v1_info(cls, live_inputs) info = schema.get_v1_info(cls)
input = info.input return info.input
if not include_hidden:
input.pop("hidden", None)
if return_schema:
v3_data: V3Data = {}
dynamic = input.pop("dynamic_paths", None)
if dynamic is not None:
v3_data["dynamic_paths"] = dynamic
return input, schema, v3_data
return input
@final @final
@classmethod @classmethod
@ -1808,7 +1850,7 @@ class NodeOutput(_NodeOutputInternal):
return self.args if len(self.args) > 0 else None return self.args if len(self.args) > 0 else None
@classmethod @classmethod
def from_dict(cls, data: dict[str, Any]) -> "NodeOutput": def from_dict(cls, data: dict[str, Any]) -> NodeOutput:
args = () args = ()
ui = None ui = None
expand = None expand = None
@ -1903,8 +1945,8 @@ __all__ = [
"Tracks", "Tracks",
# Dynamic Types # Dynamic Types
"MatchType", "MatchType",
# "DynamicCombo", "DynamicCombo",
# "Autogrow", "Autogrow",
# Other classes # Other classes
"HiddenHolder", "HiddenHolder",
"Hidden", "Hidden",

View File

@ -1,72 +0,0 @@
from __future__ import annotations
import comfy.utils
import folder_paths
import logging
from abc import ABC, abstractmethod
from typing import Any
import torch
class ResourceKey(ABC):
Type = Any
def __init__(self):
...
class TorchDictFolderFilename(ResourceKey):
'''Key for requesting a torch file via file_name from a folder category.'''
Type = dict[str, torch.Tensor]
def __init__(self, folder_name: str, file_name: str):
self.folder_name = folder_name
self.file_name = file_name
def __hash__(self):
return hash((self.folder_name, self.file_name))
def __eq__(self, other: object) -> bool:
if not isinstance(other, TorchDictFolderFilename):
return False
return self.folder_name == other.folder_name and self.file_name == other.file_name
def __str__(self):
return f"{self.folder_name} -> {self.file_name}"
class Resources(ABC):
def __init__(self):
...
@abstractmethod
def get(self, key: ResourceKey, default: Any=...) -> Any:
pass
class ResourcesLocal(Resources):
def __init__(self):
super().__init__()
self.local_resources: dict[ResourceKey, Any] = {}
def get(self, key: ResourceKey, default: Any=...) -> Any:
cached = self.local_resources.get(key, None)
if cached is not None:
logging.info(f"Using cached resource '{key}'")
return cached
logging.info(f"Loading resource '{key}'")
to_return = None
if isinstance(key, TorchDictFolderFilename):
if default is ...:
to_return = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise(key.folder_name, key.file_name), safe_load=True)
else:
full_path = folder_paths.get_full_path(key.folder_name, key.file_name)
if full_path is not None:
to_return = comfy.utils.load_torch_file(full_path, safe_load=True)
if to_return is not None:
self.local_resources[key] = to_return
return to_return
if default is not ...:
return default
raise Exception(f"Unsupported resource key type: {type(key)}")
class _RESOURCES:
ResourceKey = ResourceKey
TorchDictFolderFilename = TorchDictFolderFilename
Resources = Resources
ResourcesLocal = ResourcesLocal

View File

@ -97,6 +97,11 @@ def get_input_info(
extra_info = input_info[1] extra_info = input_info[1]
else: else:
extra_info = {} extra_info = {}
# if input_type is a list, it is a Combo defined in outdated format; convert it.
# NOTE: uncomment this when we are confident old format going away won't cause too much trouble.
# if isinstance(input_type, list):
# extra_info["options"] = input_type
# input_type = IO.Combo.io_type
return input_type, input_category, extra_info return input_type, input_category, extra_info
class TopologicalSort: class TopologicalSort:

View File

@ -21,14 +21,24 @@ def validate_node_input(
""" """
# If the types are exactly the same, we can return immediately # If the types are exactly the same, we can return immediately
# Use pre-union behaviour: inverse of `__ne__` # Use pre-union behaviour: inverse of `__ne__`
# NOTE: this lets legacy '*' Any types work that override the __ne__ method of the str class.
if not received_type != input_type: if not received_type != input_type:
return True return True
# If one of the types is '*', we can return True immediately; this is the 'Any' type.
if received_type == IO.AnyType.io_type or input_type == IO.AnyType.io_type:
return True
# If the received type or input_type is a MatchType, we can return True immediately; # If the received type or input_type is a MatchType, we can return True immediately;
# validation for this is handled by the frontend # validation for this is handled by the frontend
if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type:
return True return True
# This accounts for some custom nodes that output lists of options as the type;
# if we ever want to break them on purpose, this can be removed
if isinstance(received_type, list) and input_type == IO.Combo.io_type:
return True
# Not equal, and not strings # Not equal, and not strings
if not isinstance(received_type, str) or not isinstance(input_type, str): if not isinstance(received_type, str) or not isinstance(input_type, str):
return False return False
@ -37,6 +47,10 @@ def validate_node_input(
received_types = set(t.strip() for t in received_type.split(",")) received_types = set(t.strip() for t in received_type.split(","))
input_types = set(t.strip() for t in input_type.split(",")) input_types = set(t.strip() for t in input_type.split(","))
# If any of the types is '*', we can return True immediately; this is the 'Any' type.
if IO.AnyType.io_type in received_types or IO.AnyType.io_type in input_types:
return True
if strict: if strict:
# In strict mode, all received types must be in the input types # In strict mode, all received types must be in the input types
return received_types.issubset(input_types) return received_types.issubset(input_types)

View File

@ -255,6 +255,7 @@ class LatentBatch(io.ComfyNode):
return io.Schema( return io.Schema(
node_id="LatentBatch", node_id="LatentBatch",
category="latent/batch", category="latent/batch",
is_deprecated=True,
inputs=[ inputs=[
io.Latent.Input("samples1"), io.Latent.Input("samples1"),
io.Latent.Input("samples2"), io.Latent.Input("samples2"),

View File

@ -1,8 +1,11 @@
from __future__ import annotations
from typing import TypedDict from typing import TypedDict
from typing_extensions import override from typing_extensions import override
from comfy_api.latest import ComfyExtension, io from comfy_api.latest import ComfyExtension, io
from comfy_api.latest import _io from comfy_api.latest import _io
# sentinel for missing inputs
MISSING = object()
class SwitchNode(io.ComfyNode): class SwitchNode(io.ComfyNode):
@ -14,6 +17,37 @@ class SwitchNode(io.ComfyNode):
display_name="Switch", display_name="Switch",
category="logic", category="logic",
is_experimental=True, is_experimental=True,
inputs=[
io.Boolean.Input("switch"),
io.MatchType.Input("on_false", template=template, lazy=True),
io.MatchType.Input("on_true", template=template, lazy=True),
],
outputs=[
io.MatchType.Output(template=template, display_name="output"),
],
)
@classmethod
def check_lazy_status(cls, switch, on_false=None, on_true=None):
if switch and on_true is None:
return ["on_true"]
if not switch and on_false is None:
return ["on_false"]
@classmethod
def execute(cls, switch, on_true, on_false) -> io.NodeOutput:
return io.NodeOutput(on_true if switch else on_false)
class SoftSwitchNode(io.ComfyNode):
@classmethod
def define_schema(cls):
template = io.MatchType.Template("switch")
return io.Schema(
node_id="ComfySoftSwitchNode",
display_name="Soft Switch",
category="logic",
is_experimental=True,
inputs=[ inputs=[
io.Boolean.Input("switch"), io.Boolean.Input("switch"),
io.MatchType.Input("on_false", template=template, lazy=True, optional=True), io.MatchType.Input("on_false", template=template, lazy=True, optional=True),
@ -25,14 +59,14 @@ class SwitchNode(io.ComfyNode):
) )
@classmethod @classmethod
def check_lazy_status(cls, switch, on_false=..., on_true=...): def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING):
# We use ... instead of None, as None is passed for connected-but-unevaluated inputs. # We use MISSING instead of None, as None is passed for connected-but-unevaluated inputs.
# This trick allows us to ignore the value of the switch and still be able to run execute(). # This trick allows us to ignore the value of the switch and still be able to run execute().
# One of the inputs may be missing, in which case we need to evaluate the other input # One of the inputs may be missing, in which case we need to evaluate the other input
if on_false is ...: if on_false is MISSING:
return ["on_true"] return ["on_true"]
if on_true is ...: if on_true is MISSING:
return ["on_false"] return ["on_false"]
# Normal lazy switch operation # Normal lazy switch operation
if switch and on_true is None: if switch and on_true is None:
@ -41,22 +75,50 @@ class SwitchNode(io.ComfyNode):
return ["on_false"] return ["on_false"]
@classmethod @classmethod
def validate_inputs(cls, switch, on_false=..., on_true=...): def validate_inputs(cls, switch, on_false=MISSING, on_true=MISSING):
# This check happens before check_lazy_status(), so we can eliminate the case where # This check happens before check_lazy_status(), so we can eliminate the case where
# both inputs are missing. # both inputs are missing.
if on_false is ... and on_true is ...: if on_false is MISSING and on_true is MISSING:
return "At least one of on_false or on_true must be connected to Switch node" return "At least one of on_false or on_true must be connected to Switch node"
return True return True
@classmethod @classmethod
def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput:
if on_true is ...: if on_true is MISSING:
return io.NodeOutput(on_false) return io.NodeOutput(on_false)
if on_false is ...: if on_false is MISSING:
return io.NodeOutput(on_true) return io.NodeOutput(on_true)
return io.NodeOutput(on_true if switch else on_false) return io.NodeOutput(on_true if switch else on_false)
class CustomComboNode(io.ComfyNode):
"""
Frontend node that allows user to write their own options for a combo.
This is here to make sure the node has a backend-representation to avoid some annoyances.
"""
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CustomCombo",
display_name="Custom Combo",
category="utils",
is_experimental=True,
inputs=[io.Combo.Input("choice", options=[])],
outputs=[io.String.Output()]
)
@classmethod
def validate_inputs(cls, choice: io.Combo.Type) -> bool:
# NOTE: DO NOT DO THIS unless you want to skip validation entirely on the node's inputs.
# I am doing that here because the widgets (besides the combo dropdown) on this node are fully frontend defined.
# I need to skip checking that the chosen combo option is in the options list, since those are defined by the user.
return True
@classmethod
def execute(cls, choice: io.Combo.Type) -> io.NodeOutput:
return io.NodeOutput(choice)
class DCTestNode(io.ComfyNode): class DCTestNode(io.ComfyNode):
class DCValues(TypedDict): class DCValues(TypedDict):
combo: str combo: str
@ -72,14 +134,14 @@ class DCTestNode(io.ComfyNode):
display_name="DCTest", display_name="DCTest",
category="logic", category="logic",
is_output_node=True, is_output_node=True,
inputs=[_io.DynamicCombo.Input("combo", options=[ inputs=[io.DynamicCombo.Input("combo", options=[
_io.DynamicCombo.Option("option1", [io.String.Input("string")]), io.DynamicCombo.Option("option1", [io.String.Input("string")]),
_io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), io.DynamicCombo.Option("option2", [io.Int.Input("integer")]),
_io.DynamicCombo.Option("option3", [io.Image.Input("image")]), io.DynamicCombo.Option("option3", [io.Image.Input("image")]),
_io.DynamicCombo.Option("option4", [ io.DynamicCombo.Option("option4", [
_io.DynamicCombo.Input("subcombo", options=[ io.DynamicCombo.Input("subcombo", options=[
_io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]),
_io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]),
]) ])
])] ])]
)], )],
@ -141,14 +203,65 @@ class AutogrowPrefixTestNode(io.ComfyNode):
combined = ",".join([str(x) for x in vals]) combined = ",".join([str(x) for x in vals])
return io.NodeOutput(combined) return io.NodeOutput(combined)
class ComboOutputTestNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ComboOptionTestNode",
display_name="ComboOptionTest",
category="logic",
inputs=[io.Combo.Input("combo", options=["option1", "option2", "option3"]),
io.Combo.Input("combo2", options=["option4", "option5", "option6"])],
outputs=[io.Combo.Output(), io.Combo.Output()],
)
@classmethod
def execute(cls, combo: io.Combo.Type, combo2: io.Combo.Type) -> io.NodeOutput:
return io.NodeOutput(combo, combo2)
class ConvertStringToComboNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ConvertStringToComboNode",
display_name="Convert String to Combo",
category="logic",
inputs=[io.String.Input("string")],
outputs=[io.Combo.Output()],
)
@classmethod
def execute(cls, string: str) -> io.NodeOutput:
return io.NodeOutput(string)
class InvertBooleanNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="InvertBooleanNode",
display_name="Invert Boolean",
category="logic",
inputs=[io.Boolean.Input("boolean")],
outputs=[io.Boolean.Output()],
)
@classmethod
def execute(cls, boolean: bool) -> io.NodeOutput:
return io.NodeOutput(not boolean)
class LogicExtension(ComfyExtension): class LogicExtension(ComfyExtension):
@override @override
async def get_node_list(self) -> list[type[io.ComfyNode]]: async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [ return [
# SwitchNode, SwitchNode,
CustomComboNode,
# SoftSwitchNode,
# ConvertStringToComboNode,
# DCTestNode, # DCTestNode,
# AutogrowNamesTestNode, # AutogrowNamesTestNode,
# AutogrowPrefixTestNode, # AutogrowPrefixTestNode,
# ComboOutputTestNode,
# InvertBooleanNode,
] ]
async def comfy_entrypoint() -> LogicExtension: async def comfy_entrypoint() -> LogicExtension:

View File

@ -4,11 +4,15 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
from PIL import Image from PIL import Image
import math import math
from enum import Enum
from typing import TypedDict, Literal
import comfy.utils import comfy.utils
import comfy.model_management import comfy.model_management
from comfy_extras.nodes_latent import reshape_latent_to
import node_helpers import node_helpers
from comfy_api.latest import ComfyExtension, io from comfy_api.latest import ComfyExtension, io
from nodes import MAX_RESOLUTION
class Blend(io.ComfyNode): class Blend(io.ComfyNode):
@classmethod @classmethod
@ -241,6 +245,353 @@ class ImageScaleToTotalPixels(io.ComfyNode):
s = s.movedim(1,-1) s = s.movedim(1,-1)
return io.NodeOutput(s) return io.NodeOutput(s)
class ResizeType(str, Enum):
SCALE_BY = "scale by multiplier"
SCALE_DIMENSIONS = "scale dimensions"
SCALE_LONGER_DIMENSION = "scale longer dimension"
SCALE_SHORTER_DIMENSION = "scale shorter dimension"
SCALE_WIDTH = "scale width"
SCALE_HEIGHT = "scale height"
SCALE_TOTAL_PIXELS = "scale total pixels"
MATCH_SIZE = "match size"
def is_image(input: torch.Tensor) -> bool:
# images have 4 dimensions: [batch, height, width, channels]
# masks have 3 dimensions: [batch, height, width]
return len(input.shape) == 4
def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
if is_type_image:
input = input.movedim(-1, 1)
else:
input = input.unsqueeze(1)
return input
def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
if is_type_image:
input = input.movedim(1, -1)
else:
input = input.squeeze(1)
return input
def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = round(input.shape[-1] * multiplier)
height = round(input.shape[-2] * multiplier)
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor:
if width == 0 and height == 0:
return input
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
if width == 0:
width = max(1, round(input.shape[-1] * height / input.shape[-2]))
elif height == 0:
height = max(1, round(input.shape[-2] * width / input.shape[-1]))
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = input.shape[-1]
height = input.shape[-2]
if height > width:
width = round((width / height) * longer_size)
height = longer_size
elif width > height:
height = round((height / width) * longer_size)
width = longer_size
else:
height = longer_size
width = longer_size
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = input.shape[-1]
height = input.shape[-2]
if height < width:
width = round((width / height) * shorter_size)
height = shorter_size
elif width > height:
height = round((height / width) * shorter_size)
width = shorter_size
else:
height = shorter_size
width = shorter_size
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
total = int(megapixels * 1024 * 1024)
scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2]))
width = round(input.shape[-1] * scale_by)
height = round(input.shape[-2] * scale_by)
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
match = init_image_mask_input(match, is_image(match))
width = match.shape[-1]
height = match.shape[-2]
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
input = finalize_image_mask_input(input, is_type_image)
return input
class ResizeImageMaskNode(io.ComfyNode):
scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
class ResizeTypedDict(TypedDict):
resize_type: ResizeType
scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop: Literal["disabled", "center"]
multiplier: float
width: int
height: int
longer_size: int
shorter_size: int
megapixels: float
@classmethod
def define_schema(cls):
template = io.MatchType.Template("input_type", [io.Image, io.Mask])
crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center")
return io.Schema(
node_id="ResizeImageMaskNode",
display_name="Resize Image/Mask",
category="transform",
inputs=[
io.MatchType.Input("input", template=template),
io.DynamicCombo.Input("resize_type", options=[
io.DynamicCombo.Option(ResizeType.SCALE_BY, [
io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01),
]),
io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1),
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1),
crop_combo,
]),
io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [
io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [
io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
]),
io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [
io.MultiType.Input("match", [io.Image, io.Mask]),
crop_combo,
]),
]),
io.Combo.Input("scale_method", options=cls.scale_methods, default="area"),
],
outputs=[io.MatchType.Output(template=template, display_name="resized")]
)
@classmethod
def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput:
selected_type = resize_type["resize_type"]
if selected_type == ResizeType.SCALE_BY:
return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method))
elif selected_type == ResizeType.SCALE_DIMENSIONS:
return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"]))
elif selected_type == ResizeType.SCALE_LONGER_DIMENSION:
return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method))
elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION:
return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method))
elif selected_type == ResizeType.SCALE_WIDTH:
return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method))
elif selected_type == ResizeType.SCALE_HEIGHT:
return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method))
elif selected_type == ResizeType.SCALE_TOTAL_PIXELS:
return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method))
elif selected_type == ResizeType.MATCH_SIZE:
return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"]))
raise ValueError(f"Unsupported resize type: {selected_type}")
def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None:
if len(images) == 0:
return None
# first, get the max channels count
max_channels = max(image.shape[-1] for image in images)
# then, pad all images to have the same channels count
padded_images: list[torch.Tensor] = []
for image in images:
if image.shape[-1] < max_channels:
padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0))
else:
padded_images.append(image)
# resize all images to be the same size as the first image
resized_images: list[torch.Tensor] = []
first_image_shape = padded_images[0].shape
for image in padded_images:
if image.shape[1:] != first_image_shape[1:]:
resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1))
else:
resized_images.append(image)
# batch the images in the format [b, h, w, c]
return torch.cat(resized_images, dim=0)
def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None:
if len(masks) == 0:
return None
# resize all masks to be the same size as the first mask
resized_masks: list[torch.Tensor] = []
first_mask_shape = masks[0].shape
for mask in masks:
if mask.shape[1:] != first_mask_shape[1:]:
mask = init_image_mask_input(mask, is_type_image=False)
mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center")
resized_masks.append(finalize_image_mask_input(mask, is_type_image=False))
else:
resized_masks.append(mask)
# batch the masks in the format [b, h, w]
return torch.cat(resized_masks, dim=0)
def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None:
if len(latents) == 0:
return None
samples_out = latents[0].copy()
samples_out["batch_index"] = []
first_samples = latents[0]["samples"]
tensors: list[torch.Tensor] = []
for latent in latents:
# first, deal with latent tensors
tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False))
# next, deal with batch_index
samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])]))
samples_out["samples"] = torch.cat(tensors, dim=0)
return samples_out
class BatchImagesNode(io.ComfyNode):
@classmethod
def define_schema(cls):
autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50)
return io.Schema(
node_id="BatchImagesNode",
display_name="Batch Images",
category="image",
inputs=[
io.Autogrow.Input("images", template=autogrow_template)
],
outputs=[
io.Image.Output()
]
)
@classmethod
def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput:
return io.NodeOutput(batch_images(list(images.values())))
class BatchMasksNode(io.ComfyNode):
@classmethod
def define_schema(cls):
autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50)
return io.Schema(
node_id="BatchMasksNode",
display_name="Batch Masks",
category="mask",
inputs=[
io.Autogrow.Input("masks", template=autogrow_template)
],
outputs=[
io.Mask.Output()
]
)
@classmethod
def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput:
return io.NodeOutput(batch_masks(list(masks.values())))
class BatchLatentsNode(io.ComfyNode):
@classmethod
def define_schema(cls):
autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50)
return io.Schema(
node_id="BatchLatentsNode",
display_name="Batch Latents",
category="latent",
inputs=[
io.Autogrow.Input("latents", template=autogrow_template)
],
outputs=[
io.Latent.Output()
]
)
@classmethod
def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput:
return io.NodeOutput(batch_latents(list(latents.values())))
class BatchImagesMasksLatentsNode(io.ComfyNode):
@classmethod
def define_schema(cls):
matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent])
autogrow_template = io.Autogrow.TemplatePrefix(
io.MatchType.Input("input", matchtype_template),
prefix="input", min=1, max=50)
return io.Schema(
node_id="BatchImagesMasksLatentsNode",
display_name="Batch Images/Masks/Latents",
category="util",
inputs=[
io.Autogrow.Input("inputs", template=autogrow_template)
],
outputs=[
io.MatchType.Output(id=None, template=matchtype_template)
]
)
@classmethod
def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput:
batched = None
values = list(inputs.values())
# latents
if isinstance(values[0], dict):
batched = batch_latents(values)
# images
elif is_image(values[0]):
batched = batch_images(values)
# masks
else:
batched = batch_masks(values)
return io.NodeOutput(batched)
class PostProcessingExtension(ComfyExtension): class PostProcessingExtension(ComfyExtension):
@override @override
async def get_node_list(self) -> list[type[io.ComfyNode]]: async def get_node_list(self) -> list[type[io.ComfyNode]]:
@ -250,6 +601,11 @@ class PostProcessingExtension(ComfyExtension):
Quantize, Quantize,
Sharpen, Sharpen,
ImageScaleToTotalPixels, ImageScaleToTotalPixels,
ResizeImageMaskNode,
BatchImagesNode,
BatchMasksNode,
BatchLatentsNode,
# BatchImagesMasksLatentsNode,
] ]
async def comfy_entrypoint() -> PostProcessingExtension: async def comfy_entrypoint() -> PostProcessingExtension:

View File

@ -66,7 +66,7 @@ class Float(io.ComfyNode):
display_name="Float", display_name="Float",
category="utils/primitive", category="utils/primitive",
inputs=[ inputs=[
io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize), io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize, step=0.1),
], ],
outputs=[io.Float.Output()], outputs=[io.Float.Output()],
) )

View File

@ -79,7 +79,7 @@ class IsChangedCache:
# Intentionally do not use cached outputs here. We only want constants in IS_CHANGED # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED
input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None)
try: try:
is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name, v3_data=v3_data)
is_changed = await resolve_map_node_over_list_results(is_changed) is_changed = await resolve_map_node_over_list_results(is_changed)
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
except Exception as e: except Exception as e:
@ -148,13 +148,12 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org")
def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}):
is_v3 = issubclass(class_def, _ComfyNodeInternal) is_v3 = issubclass(class_def, _ComfyNodeInternal)
v3_data: io.V3Data = {} v3_data: io.V3Data = {}
hidden_inputs_v3 = {}
valid_inputs = class_def.INPUT_TYPES()
if is_v3: if is_v3:
valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) valid_inputs, hidden, v3_data = _io.get_finalized_class_inputs(valid_inputs, inputs)
else:
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {} input_data_all = {}
missing_keys = {} missing_keys = {}
hidden_inputs_v3 = {}
for x in inputs: for x in inputs:
input_data = inputs[x] input_data = inputs[x]
_, input_category, input_info = get_input_info(class_def, x, valid_inputs) _, input_category, input_info = get_input_info(class_def, x, valid_inputs)
@ -180,18 +179,18 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=
input_data_all[x] = [input_data] input_data_all[x] = [input_data]
if is_v3: if is_v3:
if schema.hidden: if hidden is not None:
if io.Hidden.prompt in schema.hidden: if io.Hidden.prompt.name in hidden:
hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {} hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {}
if io.Hidden.dynprompt in schema.hidden: if io.Hidden.dynprompt.name in hidden:
hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt
if io.Hidden.extra_pnginfo in schema.hidden: if io.Hidden.extra_pnginfo.name in hidden:
hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None) hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None)
if io.Hidden.unique_id in schema.hidden: if io.Hidden.unique_id.name in hidden:
hidden_inputs_v3[io.Hidden.unique_id] = unique_id hidden_inputs_v3[io.Hidden.unique_id] = unique_id
if io.Hidden.auth_token_comfy_org in schema.hidden: if io.Hidden.auth_token_comfy_org.name in hidden:
hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None) hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None)
if io.Hidden.api_key_comfy_org in schema.hidden: if io.Hidden.api_key_comfy_org.name in hidden:
hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None) hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None)
else: else:
if "hidden" in valid_inputs: if "hidden" in valid_inputs:
@ -258,7 +257,7 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f
pre_execute_cb(index) pre_execute_cb(index)
# V3 # V3
if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)): if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)):
# if is just a class, then assign no resources or state, just create clone # if is just a class, then assign no state, just create clone
if is_class(obj): if is_class(obj):
type_obj = obj type_obj = obj
obj.VALIDATE_CLASS() obj.VALIDATE_CLASS()
@ -481,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
else: else:
lazy_status_present = getattr(obj, "check_lazy_status", None) is not None lazy_status_present = getattr(obj, "check_lazy_status", None) is not None
if lazy_status_present: if lazy_status_present:
required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) # for check_lazy_status, the returned data should include the original key of the input
v3_data_lazy = v3_data.copy()
v3_data_lazy["create_dynamic_tuple"] = True
required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy)
required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = await resolve_map_node_over_list_results(required_inputs)
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
required_inputs = [x for x in required_inputs if isinstance(x,str) and ( required_inputs = [x for x in required_inputs if isinstance(x,str) and (
@ -756,10 +758,13 @@ async def validate_inputs(prompt_id, prompt, item, validated):
errors = [] errors = []
valid = True valid = True
v3_data = None
validate_function_inputs = [] validate_function_inputs = []
validate_has_kwargs = False validate_has_kwargs = False
if issubclass(obj_class, _ComfyNodeInternal): if issubclass(obj_class, _ComfyNodeInternal):
class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) obj_class: _io._ComfyNodeBaseInternal
class_inputs = obj_class.INPUT_TYPES()
class_inputs, _, v3_data = _io.get_finalized_class_inputs(class_inputs, inputs)
validate_function_name = "validate_inputs" validate_function_name = "validate_inputs"
validate_function = first_real_override(obj_class, validate_function_name) validate_function = first_real_override(obj_class, validate_function_name)
else: else:
@ -779,10 +784,11 @@ async def validate_inputs(prompt_id, prompt, item, validated):
assert extra_info is not None assert extra_info is not None
if x not in inputs: if x not in inputs:
if input_category == "required": if input_category == "required":
details = f"{x}" if not v3_data else x.split(".")[-1]
error = { error = {
"type": "required_input_missing", "type": "required_input_missing",
"message": "Required input is missing", "message": "Required input is missing",
"details": f"{x}", "details": details,
"extra_info": { "extra_info": {
"input_name": x "input_name": x
} }
@ -916,8 +922,11 @@ async def validate_inputs(prompt_id, prompt, item, validated):
errors.append(error) errors.append(error)
continue continue
if isinstance(input_type, list): if isinstance(input_type, list) or input_type == io.Combo.io_type:
combo_options = input_type if input_type == io.Combo.io_type:
combo_options = extra_info.get("options", [])
else:
combo_options = input_type
if val not in combo_options: if val not in combo_options:
input_config = info input_config = info
list_info = "" list_info = ""

View File

@ -1863,6 +1863,7 @@ class ImageBatch:
FUNCTION = "batch" FUNCTION = "batch"
CATEGORY = "image" CATEGORY = "image"
DEPRECATED = True
def batch(self, image1, image2): def batch(self, image1, image2):
if image1.shape[-1] != image2.shape[-1]: if image1.shape[-1] != image2.shape[-1]: