From 9ca7e143afe6f09734c9aefcc85f491c5c0dc6e0 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:19:34 -0800 Subject: [PATCH 01/41] mm: discard async errors from pinning failures (#10738) Pretty much every error cudaHostRegister can throw also queues the same error on the async GPU queue. This was fixed for repinning error case, but there is the bad mmap and just enomem cases that are harder to detect. Do some dummy GPU work to clean the error state. --- comfy/model_management.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index e5554e225..9fcb699bc 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1126,6 +1126,16 @@ if not args.disable_pinned_memory: PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) +def discard_cuda_async_error(): + try: + a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + _ = a + b + torch.cuda.synchronize() + except torch.AcceleratorError: + #Dump it! We already know about it from the synchronous return + pass + def pin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: @@ -1158,6 +1168,8 @@ def pin_memory(tensor): PINNED_MEMORY[ptr] = size TOTAL_PINNED_MEMORY += size return True + else: + discard_cuda_async_error() return False @@ -1186,6 +1198,8 @@ def unpin_memory(tensor): if len(PINNED_MEMORY) == 0: TOTAL_PINNED_MEMORY = 0 return True + else: + discard_cuda_async_error() return False From 0e6221cc79a3f3cbf0e15a8321bfe75fcffbe667 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:26:42 -0800 Subject: [PATCH 02/41] Add some warnings for pin and unpin errors. (#11561) --- comfy/model_management.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 9fcb699bc..87baedd73 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1169,6 +1169,7 @@ def pin_memory(tensor): TOTAL_PINNED_MEMORY += size return True else: + logging.warning("Pin error.") discard_cuda_async_error() return False @@ -1199,6 +1200,7 @@ def unpin_memory(tensor): TOTAL_PINNED_MEMORY = 0 return True else: + logging.warning("Unpin error.") discard_cuda_async_error() return False From d7111e426a48127a97922227b03d31391eb4eba2 Mon Sep 17 00:00:00 2001 From: Tavi Halperin Date: Tue, 30 Dec 2025 03:07:29 +0200 Subject: [PATCH 03/41] ResizeByLongerSide: support video (#11555) (cherry picked from commit 98c6840aa4e5fd5407ba9ab113d209011e474bf6) --- comfy_extras/nodes_dataset.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index 513aecf3a..5ef851bd0 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -667,16 +667,19 @@ class ResizeImagesByLongerEdgeNode(ImageProcessingNode): @classmethod def _process(cls, image, longer_edge): - img = tensor_to_pil(image) - w, h = img.size - if w > h: - new_w = longer_edge - new_h = int(h * (longer_edge / w)) - else: - new_h = longer_edge - new_w = int(w * (longer_edge / h)) - img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) - return pil_to_tensor(img) + resized_images = [] + for image_i in image: + img = tensor_to_pil(image_i) + w, h = img.size + if w > h: + new_w = longer_edge + new_h = int(h * (longer_edge / w)) + else: + new_h = longer_edge + new_w = int(w * (longer_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + resized_images.append(pil_to_tensor(img)) + return torch.cat(resized_images, dim=0) class CenterCropImagesNode(ImageProcessingNode): From 25a1bfab4e19b541c2bd6f253a3b83886fb660a1 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 30 Dec 2025 18:33:34 +0200 Subject: [PATCH 04/41] chore(api-nodes-bytedance): mark "seededit" as deprecated, adjust display name of Seedream (#11490) --- comfy_api_nodes/nodes_bytedance.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 636cc1265..d4a2cfae6 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -229,6 +229,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -269,7 +270,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ByteDanceSeedreamNode", - display_name="ByteDance Seedream 4", + display_name="ByteDance Seedream 4.5", category="api node/image/ByteDance", description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.", inputs=[ From 178bdc5e14ec0a55e401c509719e33773cc9b565 Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Tue, 30 Dec 2025 15:40:42 -0700 Subject: [PATCH 05/41] Add handling for vace_context in context windows (#11386) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 1e0f86026..2f82d51da 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -188,6 +188,12 @@ class IndexListContextHandler(ContextHandlerABC): audio_cond = cond_value.cond if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) + # Handle vace_context (temporal dim is 3) + elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + vace_cond = cond_value.cond + if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim): + sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list) + new_cond_item[cond_key] = cond_value._copy_with(sliced_vace) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ From f59f71cf34067d46713f6243312f7f0b360d061f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 30 Dec 2025 22:41:22 -0500 Subject: [PATCH 06/41] ComfyUI version v0.7.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1f28e2407..1ed60fe5c 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.6.0" +__version__ = "0.7.0" diff --git a/pyproject.toml b/pyproject.toml index 35a268bd1..bc1467941 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.6.0" +version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 0357ed7ec4a1bbfe3832874ad6cfc1ca3db1bc0d Mon Sep 17 00:00:00 2001 From: mengqin Date: Tue, 30 Dec 2025 17:53:52 -1000 Subject: [PATCH 07/41] Add support for sage attention 3 in comfyui, enable via new cli arg (#11026) * Add support for sage attention 3 in comfyui, enable via new cli arg --use-sage-attiention3 * Fix some bugs found in PR review. The N dimension at which Sage Attention 3 takes effect is reduced to 1024 (although the improvement is not significant at this scale). * Remove the Sage Attention3 switch, but retain the attention function registration. * Fix a ruff check issue in attention.py --- comfy/ldm/modules/attention.py | 96 ++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index a8800ded0..ccf690945 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -30,6 +30,13 @@ except ImportError as e: raise e exit(-1) +SAGE_ATTENTION3_IS_AVAILABLE = False +try: + from sageattn3 import sageattn3_blackwell + SAGE_ATTENTION3_IS_AVAILABLE = True +except ImportError: + pass + FLASH_ATTENTION_IS_AVAILABLE = False try: from flash_attn import flash_attn_func @@ -563,6 +570,93 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = out.reshape(b, -1, heads * dim_head) return out +@wrap_attn +def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False + if (q.device.type != "cuda" or + q.dtype not in (torch.float16, torch.bfloat16) or + mask is not None): + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + B, H, L, D = q.shape + if H != heads: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=True, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + q_s, k_s, v_s = q, k, v + N = q.shape[2] + dim_head = D + else: + B, N, inner_dim = q.shape + if inner_dim % heads != 0: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + dim_head = inner_dim // heads + + if dim_head >= 256 or N <= 1024: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if not skip_reshape: + q_s, k_s, v_s = map( + lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(), + (q, k, v), + ) + B, H, L, D = q_s.shape + + try: + out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False) + except Exception as e: + exception_fallback = True + logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e) + + if exception_fallback: + if not skip_reshape: + del q_s, k_s, v_s + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + if not skip_output_reshape: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + else: + if skip_output_reshape: + pass + else: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + + return out try: @torch.library.custom_op("flash_attention::flash_attn", mutates_args=()) @@ -650,6 +744,8 @@ optimized_attention_masked = optimized_attention # register core-supported attention functions if SAGE_ATTENTION_IS_AVAILABLE: register_attention_function("sage", attention_sage) +if SAGE_ATTENTION3_IS_AVAILABLE: + register_attention_function("sage3", attention3_sage) if FLASH_ATTENTION_IS_AVAILABLE: register_attention_function("flash", attention_flash) if model_management.xformers_enabled(): From 0be8a76c933026011098d41e61cc6e544739e427 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 30 Dec 2025 20:09:55 -0800 Subject: [PATCH 08/41] V3 Improvements + DynamicCombo + Autogrow exposed in public API (#11345) * Support Combo outputs in a more sane way * Remove test validate_inputs function on test node * Make curr_prefix be a list of strings instead of string for easier parsing as keys get added to dynamic types * Start to account for id prefixes from frontend, need to fix bug with nested dynamics * Ensure inputs/outputs/hidden are lists in schema finalize function, remove no longer needed 'is not None' checks * Add raw_link and extra_dict to all relevant Inputs * Make nested DynamicCombos work properly with prefixed keys on latest frontend; breaks old Autogrow, but is pretty much ready for upcoming Autogrow keys * Replace ... usage with a MISSING sentinel for clarity in nodes_logic.py * Added CustomCombo node in backend to reflect frontend node * Prepare Autogrow's expand_schema_for_dynamic to work with upcoming frontend changes * Prepare for look up table for dynamic input stuff * More progress towards dynamic input lookup function stuff * Finished converting _expand_schema_for_dynamic to be done via lookup instead of OOP to guarantee working with process isolation, did refactoring to remove old implementation + cleaning INPUT_TYPES definition including v3 hidden definition * Change order of functions * Removed some unneeded functions after dynamic refactor * Make MatchType's output default displayname "MATCHTYPE" * Fix DynamicSlot get_all * Removed redundant code - dynamic stuff no longer happens in OOP way * Natively support AnyType (*) without __ne__ hacks * Remove stray code that made it in * Remove expand_schema_for_dynamic left over on DynamicInput class * get_dynamic() on DynamicInput/Output was not doing anything anymore, so removed it * Make validate_inputs validate combo input correctly * Temporarily comment out conversion to 'new' (9 month old) COMBO format in get_input_info * Remove refrences to resources feature scrapped from V3 * Expose DynamicCombo in public API * satisfy ruff after some code got commented out * Make missing input error prettier for dynamic types * Created a Switch2 node as a side-by-side test, will likely go with Switch2 as the initial switch node * Figured out Switch situation * Pass in v3_data in IsChangedCache.get function's fingerprint_inputs, add a from_v3_data helper method to HiddenHolder * Switch order of Switch and Soft Switch nodes in file * Temp test node for MatchType * Fix missing v3_data for v1 nodes in validation * For now, remove chacking duplicate id's for dynamic types * Add Resize Image/Mask node that thanks to MatchType+DynamicCombo is 16-nodes-in-1 * Made DynamicCombo references in DCTestNode use public interface * Add an AnyTypeTestNode * Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned * Comment out test logic nodes * Make primitive float's step make more sense * Add (and leave commented out) some potential logic nodes * Change default crop option to "center" on Resize Image/Mask node * Changed copy.copy(d) to d.copy() * Autogrow is available in stable frontend, so exposing it in public API * Use outputs id as display_name if no display_name present, remove v3 outputs id restriction that made them have to have unique IDs from the inputs * Enable Custom Combo node as stable frontend now supports it * Make id properly act like display_name on outputs * Add Batch Images/Masks/Latents node * Comment out Batch Images/Masks/Latents node for now, as Autogrow has a bug with MatchType where top connection is disconnected upon refresh * Removed code for a couple test nodes in nodes_logic.py * Add Batch Images, Batch Masks, and Batch Latents nodes with Autogrow, deprecate old Batch Images + LatentBatch nodes --- comfy_api/latest/__init__.py | 1 - comfy_api/latest/_io.py | 370 ++++++++++++++------------ comfy_api/latest/_resources.py | 72 ----- comfy_execution/graph.py | 5 + comfy_execution/validation.py | 14 + comfy_extras/nodes_latent.py | 1 + comfy_extras/nodes_logic.py | 149 +++++++++-- comfy_extras/nodes_post_processing.py | 356 +++++++++++++++++++++++++ comfy_extras/nodes_primitive.py | 2 +- execution.py | 45 ++-- nodes.py | 1 + 11 files changed, 742 insertions(+), 274 deletions(-) delete mode 100644 comfy_api/latest/_resources.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index fab63c7df..b0fa14ff6 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from . import _io_public as io from . import _ui_public as ui -# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple from PIL import Image diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index ba0b95498..764fa8b2b 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -26,7 +26,6 @@ if TYPE_CHECKING: from comfy_api.input import VideoInput from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, prune_dict, shallow_clone_class) -from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker from ._util import MESH, VOXEL, SVG as _SVG @@ -76,16 +75,6 @@ class NumberDisplay(str, Enum): slider = "slider" -class _StringIOType(str): - def __ne__(self, value: object) -> bool: - if self == "*" or value == "*": - return False - if not isinstance(value, str): - return True - a = frozenset(self.split(",")) - b = frozenset(value.split(",")) - return not (b.issubset(a) or a.issubset(b)) - class _ComfyType(ABC): Type = Any io_type: str = None @@ -125,8 +114,7 @@ def comfytype(io_type: str, **kwargs): new_cls.__module__ = cls.__module__ new_cls.__doc__ = cls.__doc__ # assign ComfyType attributes, if needed - # NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details) - new_cls.io_type = _StringIOType(io_type) + new_cls.io_type = io_type if hasattr(new_cls, "Input") and new_cls.Input is not None: new_cls.Input.Parent = new_cls if hasattr(new_cls, "Output") and new_cls.Output is not None: @@ -165,7 +153,7 @@ class Input(_IO_V3): ''' Base class for a V3 Input. ''' - def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): super().__init__() self.id = id self.display_name = display_name @@ -173,6 +161,7 @@ class Input(_IO_V3): self.tooltip = tooltip self.lazy = lazy self.extra_dict = extra_dict if extra_dict is not None else {} + self.rawLink = raw_link def as_dict(self): return prune_dict({ @@ -180,10 +169,11 @@ class Input(_IO_V3): "optional": self.optional, "tooltip": self.tooltip, "lazy": self.lazy, + "rawLink": self.rawLink, }) | prune_dict(self.extra_dict) def get_io_type(self): - return _StringIOType(self.io_type) + return self.io_type def get_all(self) -> list[Input]: return [self] @@ -194,8 +184,8 @@ class WidgetInput(Input): ''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: Any=None, - socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.default = default self.socketless = socketless self.widget_type = widget_type @@ -217,13 +207,14 @@ class Output(_IO_V3): def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): self.id = id - self.display_name = display_name + self.display_name = display_name if display_name else id self.tooltip = tooltip self.is_output_list = is_output_list def as_dict(self): + display_name = self.display_name if self.display_name else self.id return prune_dict({ - "display_name": self.display_name, + "display_name": display_name, "tooltip": self.tooltip, "is_output_list": self.is_output_list, }) @@ -251,8 +242,8 @@ class Boolean(ComfyTypeIO): '''Boolean input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: bool=None, label_on: str=None, label_off: str=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.label_on = label_on self.label_off = label_off self.default: bool @@ -271,8 +262,8 @@ class Int(ComfyTypeIO): '''Integer input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -297,8 +288,8 @@ class Float(ComfyTypeIO): '''Float input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: float=None, min: float=None, max: float=None, step: float=None, round: float=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -323,8 +314,8 @@ class String(ComfyTypeIO): '''String input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.multiline = multiline self.placeholder = placeholder self.dynamic_prompts = dynamic_prompts @@ -357,12 +348,14 @@ class Combo(ComfyTypeIO): image_folder: FolderType=None, remote: RemoteOptions=None, socketless: bool=None, + extra_dict=None, + raw_link: bool=None, ): if isinstance(options, type) and issubclass(options, Enum): options = [v.value for v in options] if isinstance(default, Enum): default = default.value - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) self.multiselect = False self.options = options self.control_after_generate = control_after_generate @@ -386,10 +379,6 @@ class Combo(ComfyTypeIO): super().__init__(id, display_name, tooltip, is_output_list) self.options = options if options is not None else [] - @property - def io_type(self): - return self.options - @comfytype(io_type="COMBO") class MultiCombo(ComfyTypeI): '''Multiselect Combo input (dropdown for selecting potentially more than one value).''' @@ -398,8 +387,8 @@ class MultiCombo(ComfyTypeI): class Input(Combo.Input): def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None, - socketless: bool=None): - super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless) + socketless: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link) self.multiselect = True self.placeholder = placeholder self.chip = chip @@ -432,9 +421,9 @@ class Webcam(ComfyTypeIO): Type = str def __init__( self, id: str, display_name: str=None, optional=False, - tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None + tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None, extra_dict=None, raw_link: bool=None ): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) @comfytype(io_type="MASK") @@ -787,7 +776,7 @@ class MultiType: ''' Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values. ''' - def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): # if id is an Input, then use that Input with overridden values self.input_override = None if isinstance(id, Input): @@ -800,7 +789,7 @@ class MultiType: # if is a widget input, make sure widget_type is set appropriately if isinstance(self.input_override, WidgetInput): self.input_override.widget_type = self.input_override.get_io_type() - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self._io_types = types @property @@ -854,8 +843,8 @@ class MatchType(ComfyTypeIO): class Input(Input): def __init__(self, id: str, template: MatchType.Template, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.template = template def as_dict(self): @@ -866,6 +855,8 @@ class MatchType(ComfyTypeIO): class Output(Output): def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): + if not id and not display_name: + display_name = "MATCHTYPE" super().__init__(id, display_name, tooltip, is_output_list) self.template = template @@ -878,24 +869,30 @@ class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - def get_dynamic(self) -> list[Input]: - return [] - - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - pass + pass class DynamicOutput(Output, ABC): ''' Abstract class for dynamic output registration. ''' - def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) + pass - def get_dynamic(self) -> list[Output]: - return [] +def handle_prefix(prefix_list: list[str] | None, id: str | None = None) -> list[str]: + if prefix_list is None: + prefix_list = [] + if id is not None: + prefix_list = prefix_list + [id] + return prefix_list + +def finalize_prefix(prefix_list: list[str] | None, id: str | None = None) -> str: + assert not (prefix_list is None and id is None) + if prefix_list is None: + return id + elif id is not None: + prefix_list = prefix_list + [id] + return ".".join(prefix_list) @comfytype(io_type="COMFY_AUTOGROW_V3") class Autogrow(ComfyTypeI): @@ -932,14 +929,6 @@ class Autogrow(ComfyTypeI): def validate(self): self.input.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - real_inputs = [] - for name, input in self.cached_inputs.items(): - if name in live_inputs: - real_inputs.append(input) - add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, real_inputs, curr_prefix) - class TemplatePrefix(_AutogrowTemplate): def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): super().__init__(input) @@ -984,22 +973,45 @@ class Autogrow(ComfyTypeI): "template": self.template.as_dict(), }) - def get_dynamic(self) -> list[Input]: - return self.template.get_all() - def get_all(self) -> list[Input]: return [self] + self.template.get_all() def validate(self): self.template.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - curr_prefix = f"{curr_prefix}{self.id}." - # need to remove self from expected inputs dictionary; replaced by template inputs in frontend - for inner_dict in d.values(): - if self.id in inner_dict: - del inner_dict[self.id] - self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + # NOTE: purposely do not include self in out_dict; instead use only the template inputs + # need to figure out names based on template type + is_names = ("names" in value[1]["template"]) + is_prefix = ("prefix" in value[1]["template"]) + input = value[1]["template"]["input"] + if is_names: + min = value[1]["template"]["min"] + names = value[1]["template"]["names"] + max = len(names) + elif is_prefix: + prefix = value[1]["template"]["prefix"] + min = value[1]["template"]["min"] + max = value[1]["template"]["max"] + names = [f"{prefix}{i}" for i in range(max)] + # need to create a new input based on the contents of input + template_input = None + for _, dict_input in input.items(): + # for now, get just the first value from dict_input + template_input = list(dict_input.values())[0] + new_dict = {} + for i, name in enumerate(names): + expected_id = finalize_prefix(curr_prefix, name) + if expected_id in live_inputs: + # required + if i < min: + type_dict = new_dict.setdefault("required", {}) + # optional + else: + type_dict = new_dict.setdefault("optional", {}) + type_dict[name] = template_input + parse_class_inputs(out_dict, live_inputs, new_dict, curr_prefix) @comfytype(io_type="COMFY_DYNAMICCOMBO_V3") class DynamicCombo(ComfyTypeI): @@ -1022,23 +1034,6 @@ class DynamicCombo(ComfyTypeI): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) self.options = options - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - # check if dynamic input's id is in live_inputs - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - key = live_inputs[self.id] - selected_option = None - for option in self.options: - if option.key == key: - selected_option = option - break - if selected_option is not None: - add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self) - - def get_dynamic(self) -> list[Input]: - return [input for option in self.options for input in option.inputs] - def get_all(self) -> list[Input]: return [self] + [input for option in self.options for input in option.inputs] @@ -1053,6 +1048,24 @@ class DynamicCombo(ComfyTypeI): for input in option.inputs: input.validate() + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + key = live_inputs[finalized_id] + selected_option = None + # get options from dict + options: list[dict[str, str | dict[str, Any]]] = value[1]["options"] + for option in options: + if option["key"] == key: + selected_option = option + break + if selected_option is not None: + parse_class_inputs(out_dict, live_inputs, selected_option["inputs"], curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + @comfytype(io_type="COMFY_DYNAMICSLOT_V3") class DynamicSlot(ComfyTypeI): Type = dict[str, Any] @@ -1075,17 +1088,8 @@ class DynamicSlot(ComfyTypeI): self.force_input = True self.slot.force_input = True - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix) - - def get_dynamic(self) -> list[Input]: - return [self.slot] + self.inputs - def get_all(self) -> list[Input]: - return [self] + [self.slot] + self.inputs + return [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ @@ -1099,17 +1103,41 @@ class DynamicSlot(ComfyTypeI): for input in self.inputs: input.validate() -def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): - dynamic = d.setdefault("dynamic_paths", {}) - if self is not None: - dynamic[self.id] = f"{curr_prefix}{self.id}" - for i in inputs: - if not isinstance(i, DynamicInput): - dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + inputs = value[1]["inputs"] + parse_class_inputs(out_dict, live_inputs, inputs, curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + +DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} +def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): + DYNAMIC_INPUT_LOOKUP[io_type] = func + +def get_dynamic_input_func(io_type: str) -> Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]: + return DYNAMIC_INPUT_LOOKUP[io_type] + +def setup_dynamic_input_funcs(): + # Autogrow.Input + register_dynamic_input_func(Autogrow.io_type, Autogrow._expand_schema_for_dynamic) + # DynamicCombo.Input + register_dynamic_input_func(DynamicCombo.io_type, DynamicCombo._expand_schema_for_dynamic) + # DynamicSlot.Input + register_dynamic_input_func(DynamicSlot.io_type, DynamicSlot._expand_schema_for_dynamic) + +if len(DYNAMIC_INPUT_LOOKUP) == 0: + setup_dynamic_input_funcs() class V3Data(TypedDict): hidden_inputs: dict[str, Any] + 'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.' dynamic_paths: dict[str, Any] + 'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.' + create_dynamic_tuple: bool + 'When True, the value of the dynamic input will be in the format (value, path_key).' class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -1145,6 +1173,10 @@ class HiddenHolder: api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None), ) + @classmethod + def from_v3_data(cls, v3_data: V3Data | None) -> HiddenHolder: + return cls.from_dict(v3_data["hidden_inputs"] if v3_data else None) + class Hidden(str, Enum): ''' Enumerator for requesting hidden variables in nodes. @@ -1250,61 +1282,56 @@ class Schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' nested_inputs: list[Input] = [] - if self.inputs is not None: - for input in self.inputs: + for input in self.inputs: + if not isinstance(input, DynamicInput): nested_inputs.extend(input.get_all()) - input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] - output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] + input_ids = [i.id for i in nested_inputs] + output_ids = [o.id for o in self.outputs] input_set = set(input_ids) output_set = set(output_ids) - issues = [] + issues: list[str] = [] # verify ids are unique per list if len(input_set) != len(input_ids): issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.") if len(output_set) != len(output_ids): issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.") - # verify ids are unique between lists - intersection = input_set & output_set - if len(intersection) > 0: - issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) # validate inputs and outputs - if self.inputs is not None: - for input in self.inputs: - input.validate() - if self.outputs is not None: - for output in self.outputs: - output.validate() + for input in self.inputs: + input.validate() + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" + # ensure inputs, outputs, and hidden are lists + if self.inputs is None: + self.inputs = [] + if self.outputs is None: + self.outputs = [] + if self.hidden is None: + self.hidden = [] # if is an api_node, will need key-related hidden if self.is_api_node: - if self.hidden is None: - self.hidden = [] if Hidden.auth_token_comfy_org not in self.hidden: self.hidden.append(Hidden.auth_token_comfy_org) if Hidden.api_key_comfy_org not in self.hidden: self.hidden.append(Hidden.api_key_comfy_org) # if is an output_node, will need prompt and extra_pnginfo if self.is_output_node: - if self.hidden is None: - self.hidden = [] if Hidden.prompt not in self.hidden: self.hidden.append(Hidden.prompt) if Hidden.extra_pnginfo not in self.hidden: self.hidden.append(Hidden.extra_pnginfo) # give outputs without ids default ids - if self.outputs is not None: - for i, output in enumerate(self.outputs): - if output.id is None: - output.id = f"_{i}_{output.io_type}_" + for i, output in enumerate(self.outputs): + if output.id is None: + output.id = f"_{i}_{output.io_type}_" - def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: - # NOTE: live_inputs will not be used anymore very soon and this will be done another way + def get_v1_info(self, cls) -> NodeInfoV1: # get V1 inputs - input = create_input_dict_v1(self.inputs, live_inputs) + input = create_input_dict_v1(self.inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1384,33 +1411,54 @@ class Schema: ) return info +def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]: + out_dict = { + "required": {}, + "optional": {}, + "dynamic_paths": {}, + } + d = d.copy() + # ignore hidden for parsing + hidden = d.pop("hidden", None) + parse_class_inputs(out_dict, live_inputs, d) + if hidden is not None and include_hidden: + out_dict["hidden"] = hidden + v3_data = {} + dynamic_paths = out_dict.pop("dynamic_paths", None) + if dynamic_paths is not None: + v3_data["dynamic_paths"] = dynamic_paths + return out_dict, hidden, v3_data -def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: +def parse_class_inputs(out_dict: dict[str, Any], live_inputs: dict[str, Any], curr_dict: dict[str, Any], curr_prefix: list[str] | None=None) -> None: + for input_type, inner_d in curr_dict.items(): + for id, value in inner_d.items(): + io_type = value[0] + if io_type in DYNAMIC_INPUT_LOOKUP: + # dynamic inputs need to be handled with lookup functions + dynamic_input_func = get_dynamic_input_func(io_type) + new_prefix = handle_prefix(curr_prefix, id) + dynamic_input_func(out_dict, live_inputs, value, input_type, new_prefix) + else: + # non-dynamic inputs get directly transferred + finalized_id = finalize_prefix(curr_prefix, id) + out_dict[input_type][finalized_id] = value + if curr_prefix: + out_dict["dynamic_paths"][finalized_id] = finalized_id + +def create_input_dict_v1(inputs: list[Input]) -> dict: input = { "required": {} } - add_to_input_dict_v1(input, inputs, live_inputs) + for i in inputs: + add_to_dict_v1(i, input) return input -def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): - for i in inputs: - if isinstance(i, DynamicInput): - add_to_dict_v1(i, d) - if live_inputs is not None: - i.expand_schema_for_dynamic(d, live_inputs, curr_prefix) - else: - add_to_dict_v1(i, d) - -def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None): +def add_to_dict_v1(i: Input, d: dict): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - if dynamic_dict is None: - value = (i.get_io_type(), as_dict) - else: - value = (i.get_io_type(), as_dict, dynamic_dict) - d.setdefault(key, {})[i.id] = value + d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) @@ -1422,6 +1470,8 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): values = values.copy() result = {} + create_tuple = v3_data.get("create_dynamic_tuple", False) + for key, path in paths.items(): parts = path.split(".") current = result @@ -1430,7 +1480,10 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): is_last = (i == len(parts) - 1) if is_last: - current[p] = values.pop(key, None) + value = values.pop(key, None) + if create_tuple: + value = (value, key) + current[p] = value else: current = current.setdefault(p, {}) @@ -1445,7 +1498,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): SCHEMA = None # filled in during execution - resources: Resources = None hidden: HiddenHolder = None @classmethod @@ -1492,7 +1544,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): return [name for name in kwargs if kwargs[name] is None] def __init__(self): - self.local_resources: ResourcesLocal = None self.__class__.VALIDATE_CLASS() @classmethod @@ -1560,7 +1611,7 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"] if v3_data else None) + type_clone.hidden = HiddenHolder.from_v3_data(v3_data) return type_clone @final @@ -1677,19 +1728,10 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: + def INPUT_TYPES(cls) -> dict[str, dict]: schema = cls.FINALIZE_SCHEMA() - info = schema.get_v1_info(cls, live_inputs) - input = info.input - if not include_hidden: - input.pop("hidden", None) - if return_schema: - v3_data: V3Data = {} - dynamic = input.pop("dynamic_paths", None) - if dynamic is not None: - v3_data["dynamic_paths"] = dynamic - return input, schema, v3_data - return input + info = schema.get_v1_info(cls) + return info.input @final @classmethod @@ -1808,7 +1850,7 @@ class NodeOutput(_NodeOutputInternal): return self.args if len(self.args) > 0 else None @classmethod - def from_dict(cls, data: dict[str, Any]) -> "NodeOutput": + def from_dict(cls, data: dict[str, Any]) -> NodeOutput: args = () ui = None expand = None @@ -1903,8 +1945,8 @@ __all__ = [ "Tracks", # Dynamic Types "MatchType", - # "DynamicCombo", - # "Autogrow", + "DynamicCombo", + "Autogrow", # Other classes "HiddenHolder", "Hidden", diff --git a/comfy_api/latest/_resources.py b/comfy_api/latest/_resources.py deleted file mode 100644 index a6bdda972..000000000 --- a/comfy_api/latest/_resources.py +++ /dev/null @@ -1,72 +0,0 @@ -from __future__ import annotations -import comfy.utils -import folder_paths -import logging -from abc import ABC, abstractmethod -from typing import Any -import torch - -class ResourceKey(ABC): - Type = Any - def __init__(self): - ... - -class TorchDictFolderFilename(ResourceKey): - '''Key for requesting a torch file via file_name from a folder category.''' - Type = dict[str, torch.Tensor] - def __init__(self, folder_name: str, file_name: str): - self.folder_name = folder_name - self.file_name = file_name - - def __hash__(self): - return hash((self.folder_name, self.file_name)) - - def __eq__(self, other: object) -> bool: - if not isinstance(other, TorchDictFolderFilename): - return False - return self.folder_name == other.folder_name and self.file_name == other.file_name - - def __str__(self): - return f"{self.folder_name} -> {self.file_name}" - -class Resources(ABC): - def __init__(self): - ... - - @abstractmethod - def get(self, key: ResourceKey, default: Any=...) -> Any: - pass - -class ResourcesLocal(Resources): - def __init__(self): - super().__init__() - self.local_resources: dict[ResourceKey, Any] = {} - - def get(self, key: ResourceKey, default: Any=...) -> Any: - cached = self.local_resources.get(key, None) - if cached is not None: - logging.info(f"Using cached resource '{key}'") - return cached - logging.info(f"Loading resource '{key}'") - to_return = None - if isinstance(key, TorchDictFolderFilename): - if default is ...: - to_return = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise(key.folder_name, key.file_name), safe_load=True) - else: - full_path = folder_paths.get_full_path(key.folder_name, key.file_name) - if full_path is not None: - to_return = comfy.utils.load_torch_file(full_path, safe_load=True) - - if to_return is not None: - self.local_resources[key] = to_return - return to_return - if default is not ...: - return default - raise Exception(f"Unsupported resource key type: {type(key)}") - - -class _RESOURCES: - ResourceKey = ResourceKey - TorchDictFolderFilename = TorchDictFolderFilename - Resources = Resources - ResourcesLocal = ResourcesLocal diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 0d811e354..8fc5846b7 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -97,6 +97,11 @@ def get_input_info( extra_info = input_info[1] else: extra_info = {} + # if input_type is a list, it is a Combo defined in outdated format; convert it. + # NOTE: uncomment this when we are confident old format going away won't cause too much trouble. + # if isinstance(input_type, list): + # extra_info["options"] = input_type + # input_type = IO.Combo.io_type return input_type, input_category, extra_info class TopologicalSort: diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index 24c0b4ed7..e73624bd1 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -21,14 +21,24 @@ def validate_node_input( """ # If the types are exactly the same, we can return immediately # Use pre-union behaviour: inverse of `__ne__` + # NOTE: this lets legacy '*' Any types work that override the __ne__ method of the str class. if not received_type != input_type: return True + # If one of the types is '*', we can return True immediately; this is the 'Any' type. + if received_type == IO.AnyType.io_type or input_type == IO.AnyType.io_type: + return True + # If the received type or input_type is a MatchType, we can return True immediately; # validation for this is handled by the frontend if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: return True + # This accounts for some custom nodes that output lists of options as the type; + # if we ever want to break them on purpose, this can be removed + if isinstance(received_type, list) and input_type == IO.Combo.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False @@ -37,6 +47,10 @@ def validate_node_input( received_types = set(t.strip() for t in received_type.split(",")) input_types = set(t.strip() for t in input_type.split(",")) + # If any of the types is '*', we can return True immediately; this is the 'Any' type. + if IO.AnyType.io_type in received_types or IO.AnyType.io_type in input_types: + return True + if strict: # In strict mode, all received types must be in the input types return received_types.issubset(input_types) diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 2815c5ffc..9ba1c4ba8 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -255,6 +255,7 @@ class LatentBatch(io.ComfyNode): return io.Schema( node_id="LatentBatch", category="latent/batch", + is_deprecated=True, inputs=[ io.Latent.Input("samples1"), io.Latent.Input("samples2"), diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py index 95a6ba788..eb888316a 100644 --- a/comfy_extras/nodes_logic.py +++ b/comfy_extras/nodes_logic.py @@ -1,8 +1,11 @@ +from __future__ import annotations from typing import TypedDict from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy_api.latest import _io +# sentinel for missing inputs +MISSING = object() class SwitchNode(io.ComfyNode): @@ -14,6 +17,37 @@ class SwitchNode(io.ComfyNode): display_name="Switch", category="logic", is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True), + io.MatchType.Input("on_true", template=template, lazy=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=None, on_true=None): + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def execute(cls, switch, on_true, on_false) -> io.NodeOutput: + return io.NodeOutput(on_true if switch else on_false) + + +class SoftSwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySoftSwitchNode", + display_name="Soft Switch", + category="logic", + is_experimental=True, inputs=[ io.Boolean.Input("switch"), io.MatchType.Input("on_false", template=template, lazy=True, optional=True), @@ -25,14 +59,14 @@ class SwitchNode(io.ComfyNode): ) @classmethod - def check_lazy_status(cls, switch, on_false=..., on_true=...): - # We use ... instead of None, as None is passed for connected-but-unevaluated inputs. + def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING): + # We use MISSING instead of None, as None is passed for connected-but-unevaluated inputs. # This trick allows us to ignore the value of the switch and still be able to run execute(). # One of the inputs may be missing, in which case we need to evaluate the other input - if on_false is ...: + if on_false is MISSING: return ["on_true"] - if on_true is ...: + if on_true is MISSING: return ["on_false"] # Normal lazy switch operation if switch and on_true is None: @@ -41,22 +75,50 @@ class SwitchNode(io.ComfyNode): return ["on_false"] @classmethod - def validate_inputs(cls, switch, on_false=..., on_true=...): + def validate_inputs(cls, switch, on_false=MISSING, on_true=MISSING): # This check happens before check_lazy_status(), so we can eliminate the case where # both inputs are missing. - if on_false is ... and on_true is ...: + if on_false is MISSING and on_true is MISSING: return "At least one of on_false or on_true must be connected to Switch node" return True @classmethod - def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: - if on_true is ...: + def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput: + if on_true is MISSING: return io.NodeOutput(on_false) - if on_false is ...: + if on_false is MISSING: return io.NodeOutput(on_true) return io.NodeOutput(on_true if switch else on_false) +class CustomComboNode(io.ComfyNode): + """ + Frontend node that allows user to write their own options for a combo. + This is here to make sure the node has a backend-representation to avoid some annoyances. + """ + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CustomCombo", + display_name="Custom Combo", + category="utils", + is_experimental=True, + inputs=[io.Combo.Input("choice", options=[])], + outputs=[io.String.Output()] + ) + + @classmethod + def validate_inputs(cls, choice: io.Combo.Type) -> bool: + # NOTE: DO NOT DO THIS unless you want to skip validation entirely on the node's inputs. + # I am doing that here because the widgets (besides the combo dropdown) on this node are fully frontend defined. + # I need to skip checking that the chosen combo option is in the options list, since those are defined by the user. + return True + + @classmethod + def execute(cls, choice: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(choice) + + class DCTestNode(io.ComfyNode): class DCValues(TypedDict): combo: str @@ -72,14 +134,14 @@ class DCTestNode(io.ComfyNode): display_name="DCTest", category="logic", is_output_node=True, - inputs=[_io.DynamicCombo.Input("combo", options=[ - _io.DynamicCombo.Option("option1", [io.String.Input("string")]), - _io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), - _io.DynamicCombo.Option("option3", [io.Image.Input("image")]), - _io.DynamicCombo.Option("option4", [ - _io.DynamicCombo.Input("subcombo", options=[ - _io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), - _io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + inputs=[io.DynamicCombo.Input("combo", options=[ + io.DynamicCombo.Option("option1", [io.String.Input("string")]), + io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + io.DynamicCombo.Option("option4", [ + io.DynamicCombo.Input("subcombo", options=[ + io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), ]) ])] )], @@ -141,14 +203,65 @@ class AutogrowPrefixTestNode(io.ComfyNode): combined = ",".join([str(x) for x in vals]) return io.NodeOutput(combined) +class ComboOutputTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ComboOptionTestNode", + display_name="ComboOptionTest", + category="logic", + inputs=[io.Combo.Input("combo", options=["option1", "option2", "option3"]), + io.Combo.Input("combo2", options=["option4", "option5", "option6"])], + outputs=[io.Combo.Output(), io.Combo.Output()], + ) + + @classmethod + def execute(cls, combo: io.Combo.Type, combo2: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(combo, combo2) + +class ConvertStringToComboNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ConvertStringToComboNode", + display_name="Convert String to Combo", + category="logic", + inputs=[io.String.Input("string")], + outputs=[io.Combo.Output()], + ) + + @classmethod + def execute(cls, string: str) -> io.NodeOutput: + return io.NodeOutput(string) + +class InvertBooleanNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="InvertBooleanNode", + display_name="Invert Boolean", + category="logic", + inputs=[io.Boolean.Input("boolean")], + outputs=[io.Boolean.Output()], + ) + + @classmethod + def execute(cls, boolean: bool) -> io.NodeOutput: + return io.NodeOutput(not boolean) + class LogicExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ - # SwitchNode, + SwitchNode, + CustomComboNode, + # SoftSwitchNode, + # ConvertStringToComboNode, # DCTestNode, # AutogrowNamesTestNode, # AutogrowPrefixTestNode, + # ComboOutputTestNode, + # InvertBooleanNode, ] async def comfy_entrypoint() -> LogicExtension: diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index ca2cdeb50..01afa13a1 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -4,11 +4,15 @@ import torch import torch.nn.functional as F from PIL import Image import math +from enum import Enum +from typing import TypedDict, Literal import comfy.utils import comfy.model_management +from comfy_extras.nodes_latent import reshape_latent_to import node_helpers from comfy_api.latest import ComfyExtension, io +from nodes import MAX_RESOLUTION class Blend(io.ComfyNode): @classmethod @@ -241,6 +245,353 @@ class ImageScaleToTotalPixels(io.ComfyNode): s = s.movedim(1,-1) return io.NodeOutput(s) +class ResizeType(str, Enum): + SCALE_BY = "scale by multiplier" + SCALE_DIMENSIONS = "scale dimensions" + SCALE_LONGER_DIMENSION = "scale longer dimension" + SCALE_SHORTER_DIMENSION = "scale shorter dimension" + SCALE_WIDTH = "scale width" + SCALE_HEIGHT = "scale height" + SCALE_TOTAL_PIXELS = "scale total pixels" + MATCH_SIZE = "match size" + +def is_image(input: torch.Tensor) -> bool: + # images have 4 dimensions: [batch, height, width, channels] + # masks have 3 dimensions: [batch, height, width] + return len(input.shape) == 4 + +def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(-1, 1) + else: + input = input.unsqueeze(1) + return input + +def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(1, -1) + else: + input = input.squeeze(1) + return input + +def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = round(input.shape[-1] * multiplier) + height = round(input.shape[-2] * multiplier) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor: + if width == 0 and height == 0: + return input + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + + if width == 0: + width = max(1, round(input.shape[-1] * height / input.shape[-2])) + elif height == 0: + height = max(1, round(input.shape[-2] * width / input.shape[-1])) + + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height > width: + width = round((width / height) * longer_size) + height = longer_size + elif width > height: + height = round((height / width) * longer_size) + width = longer_size + else: + height = longer_size + width = longer_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height < width: + width = round((width / height) * shorter_size) + height = shorter_size + elif width > height: + height = round((height / width) * shorter_size) + width = shorter_size + else: + height = shorter_size + width = shorter_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + total = int(megapixels * 1024 * 1024) + + scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2])) + width = round(input.shape[-1] * scale_by) + height = round(input.shape[-2] * scale_by) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + match = init_image_mask_input(match, is_image(match)) + + width = match.shape[-1] + height = match.shape[-2] + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +class ResizeImageMaskNode(io.ComfyNode): + + scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + class ResizeTypedDict(TypedDict): + resize_type: ResizeType + scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop: Literal["disabled", "center"] + multiplier: float + width: int + height: int + longer_size: int + shorter_size: int + megapixels: float + + @classmethod + def define_schema(cls): + template = io.MatchType.Template("input_type", [io.Image, io.Mask]) + crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + return io.Schema( + node_id="ResizeImageMaskNode", + display_name="Resize Image/Mask", + category="transform", + inputs=[ + io.MatchType.Input("input", template=template), + io.DynamicCombo.Input("resize_type", options=[ + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + crop_combo, + ]), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask]), + crop_combo, + ]), + ]), + io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + outputs=[io.MatchType.Output(template=template, display_name="resized")] + ) + + @classmethod + def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput: + selected_type = resize_type["resize_type"] + if selected_type == ResizeType.SCALE_BY: + return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method)) + elif selected_type == ResizeType.SCALE_DIMENSIONS: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_LONGER_DIMENSION: + return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method)) + elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION: + return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method)) + elif selected_type == ResizeType.SCALE_WIDTH: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method)) + elif selected_type == ResizeType.SCALE_HEIGHT: + return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method)) + elif selected_type == ResizeType.SCALE_TOTAL_PIXELS: + return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) + elif selected_type == ResizeType.MATCH_SIZE: + return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + raise ValueError(f"Unsupported resize type: {selected_type}") + +def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: + if len(images) == 0: + return None + # first, get the max channels count + max_channels = max(image.shape[-1] for image in images) + # then, pad all images to have the same channels count + padded_images: list[torch.Tensor] = [] + for image in images: + if image.shape[-1] < max_channels: + padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0)) + else: + padded_images.append(image) + # resize all images to be the same size as the first image + resized_images: list[torch.Tensor] = [] + first_image_shape = padded_images[0].shape + for image in padded_images: + if image.shape[1:] != first_image_shape[1:]: + resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1)) + else: + resized_images.append(image) + # batch the images in the format [b, h, w, c] + return torch.cat(resized_images, dim=0) + +def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None: + if len(masks) == 0: + return None + # resize all masks to be the same size as the first mask + resized_masks: list[torch.Tensor] = [] + first_mask_shape = masks[0].shape + for mask in masks: + if mask.shape[1:] != first_mask_shape[1:]: + mask = init_image_mask_input(mask, is_type_image=False) + mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center") + resized_masks.append(finalize_image_mask_input(mask, is_type_image=False)) + else: + resized_masks.append(mask) + # batch the masks in the format [b, h, w] + return torch.cat(resized_masks, dim=0) + +def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None: + if len(latents) == 0: + return None + samples_out = latents[0].copy() + samples_out["batch_index"] = [] + first_samples = latents[0]["samples"] + tensors: list[torch.Tensor] = [] + for latent in latents: + # first, deal with latent tensors + tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False)) + # next, deal with batch_index + samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])])) + samples_out["samples"] = torch.cat(tensors, dim=0) + return samples_out + +class BatchImagesNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50) + return io.Schema( + node_id="BatchImagesNode", + display_name="Batch Images", + category="image", + inputs=[ + io.Autogrow.Input("images", template=autogrow_template) + ], + outputs=[ + io.Image.Output() + ] + ) + + @classmethod + def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_images(list(images.values()))) + +class BatchMasksNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50) + return io.Schema( + node_id="BatchMasksNode", + display_name="Batch Masks", + category="mask", + inputs=[ + io.Autogrow.Input("masks", template=autogrow_template) + ], + outputs=[ + io.Mask.Output() + ] + ) + + @classmethod + def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_masks(list(masks.values()))) + +class BatchLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50) + return io.Schema( + node_id="BatchLatentsNode", + display_name="Batch Latents", + category="latent", + inputs=[ + io.Autogrow.Input("latents", template=autogrow_template) + ], + outputs=[ + io.Latent.Output() + ] + ) + + @classmethod + def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_latents(list(latents.values()))) + +class BatchImagesMasksLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent]) + autogrow_template = io.Autogrow.TemplatePrefix( + io.MatchType.Input("input", matchtype_template), + prefix="input", min=1, max=50) + return io.Schema( + node_id="BatchImagesMasksLatentsNode", + display_name="Batch Images/Masks/Latents", + category="util", + inputs=[ + io.Autogrow.Input("inputs", template=autogrow_template) + ], + outputs=[ + io.MatchType.Output(id=None, template=matchtype_template) + ] + ) + + @classmethod + def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput: + batched = None + values = list(inputs.values()) + # latents + if isinstance(values[0], dict): + batched = batch_latents(values) + # images + elif is_image(values[0]): + batched = batch_images(values) + # masks + else: + batched = batch_masks(values) + return io.NodeOutput(batched) + class PostProcessingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: @@ -250,6 +601,11 @@ class PostProcessingExtension(ComfyExtension): Quantize, Sharpen, ImageScaleToTotalPixels, + ResizeImageMaskNode, + BatchImagesNode, + BatchMasksNode, + BatchLatentsNode, + # BatchImagesMasksLatentsNode, ] async def comfy_entrypoint() -> PostProcessingExtension: diff --git a/comfy_extras/nodes_primitive.py b/comfy_extras/nodes_primitive.py index 5a1aeba80..937321800 100644 --- a/comfy_extras/nodes_primitive.py +++ b/comfy_extras/nodes_primitive.py @@ -66,7 +66,7 @@ class Float(io.ComfyNode): display_name="Float", category="utils/primitive", inputs=[ - io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize), + io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize, step=0.1), ], outputs=[io.Float.Output()], ) diff --git a/execution.py b/execution.py index 0c239efd7..38159b1f4 100644 --- a/execution.py +++ b/execution.py @@ -79,7 +79,7 @@ class IsChangedCache: # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: - is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) + is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name, v3_data=v3_data) is_changed = await resolve_map_node_over_list_results(is_changed) node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] except Exception as e: @@ -148,13 +148,12 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) v3_data: io.V3Data = {} + hidden_inputs_v3 = {} + valid_inputs = class_def.INPUT_TYPES() if is_v3: - valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) - else: - valid_inputs = class_def.INPUT_TYPES() + valid_inputs, hidden, v3_data = _io.get_finalized_class_inputs(valid_inputs, inputs) input_data_all = {} missing_keys = {} - hidden_inputs_v3 = {} for x in inputs: input_data = inputs[x] _, input_category, input_info = get_input_info(class_def, x, valid_inputs) @@ -180,18 +179,18 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt= input_data_all[x] = [input_data] if is_v3: - if schema.hidden: - if io.Hidden.prompt in schema.hidden: + if hidden is not None: + if io.Hidden.prompt.name in hidden: hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {} - if io.Hidden.dynprompt in schema.hidden: + if io.Hidden.dynprompt.name in hidden: hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt - if io.Hidden.extra_pnginfo in schema.hidden: + if io.Hidden.extra_pnginfo.name in hidden: hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None) - if io.Hidden.unique_id in schema.hidden: + if io.Hidden.unique_id.name in hidden: hidden_inputs_v3[io.Hidden.unique_id] = unique_id - if io.Hidden.auth_token_comfy_org in schema.hidden: + if io.Hidden.auth_token_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None) - if io.Hidden.api_key_comfy_org in schema.hidden: + if io.Hidden.api_key_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None) else: if "hidden" in valid_inputs: @@ -258,7 +257,7 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f pre_execute_cb(index) # V3 if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)): - # if is just a class, then assign no resources or state, just create clone + # if is just a class, then assign no state, just create clone if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() @@ -481,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) + # for check_lazy_status, the returned data should include the original key of the input + v3_data_lazy = v3_data.copy() + v3_data_lazy["create_dynamic_tuple"] = True + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -756,10 +758,13 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors = [] valid = True + v3_data = None validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): - class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) + obj_class: _io._ComfyNodeBaseInternal + class_inputs = obj_class.INPUT_TYPES() + class_inputs, _, v3_data = _io.get_finalized_class_inputs(class_inputs, inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: @@ -779,10 +784,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): assert extra_info is not None if x not in inputs: if input_category == "required": + details = f"{x}" if not v3_data else x.split(".")[-1] error = { "type": "required_input_missing", "message": "Required input is missing", - "details": f"{x}", + "details": details, "extra_info": { "input_name": x } @@ -916,8 +922,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors.append(error) continue - if isinstance(input_type, list): - combo_options = input_type + if isinstance(input_type, list) or input_type == io.Combo.io_type: + if input_type == io.Combo.io_type: + combo_options = extra_info.get("options", []) + else: + combo_options = input_type if val not in combo_options: input_config = info list_info = "" diff --git a/nodes.py b/nodes.py index 7d83ecb21..d9e4ebd91 100644 --- a/nodes.py +++ b/nodes.py @@ -1863,6 +1863,7 @@ class ImageBatch: FUNCTION = "batch" CATEGORY = "image" + DEPRECATED = True def batch(self, image1, image2): if image1.shape[-1] != image2.shape[-1]: From 6ca3d5c011bc15737131eb665939ae0a39a74254 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 31 Dec 2025 06:12:38 +0200 Subject: [PATCH 09/41] fix(api-nodes-vidu): preserve percent-encoding for signed URLs (#11564) --- comfy_api_nodes/util/_helpers.py | 20 ++++++++++++++++++++ comfy_api_nodes/util/download_helpers.py | 3 ++- 2 files changed, 22 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py index 491e6b6a8..648defe3d 100644 --- a/comfy_api_nodes/util/_helpers.py +++ b/comfy_api_nodes/util/_helpers.py @@ -1,16 +1,22 @@ import asyncio import contextlib import os +import re import time from collections.abc import Callable from io import BytesIO +from yarl import URL + from comfy.cli_args import args from comfy.model_management import processing_interrupted from comfy_api.latest import IO from .common_exceptions import ProcessingInterrupted +_HAS_PCT_ESC = re.compile(r"%[0-9A-Fa-f]{2}") # any % followed by 2 hex digits +_HAS_BAD_PCT = re.compile(r"%(?![0-9A-Fa-f]{2})") # any % not followed by 2 hex digits + def is_processing_interrupted() -> bool: """Return True if user/runtime requested interruption.""" @@ -69,3 +75,17 @@ def get_fs_object_size(path_or_object: str | BytesIO) -> int: if isinstance(path_or_object, str): return os.path.getsize(path_or_object) return len(path_or_object.getvalue()) + + +def to_aiohttp_url(url: str) -> URL: + """If `url` appears to be already percent-encoded (contains at least one valid %HH + escape and no malformed '%' sequences) and contains no raw whitespace/control + characters preserve the original encoding byte-for-byte (important for signed/presigned URLs). + Otherwise, return `URL(url)` and allow yarl to normalize/quote as needed.""" + if any(c.isspace() for c in url) or any(ord(c) < 0x20 for c in url): + # Avoid encoded=True if URL contains raw whitespace/control chars + return URL(url) + if _HAS_PCT_ESC.search(url) and not _HAS_BAD_PCT.search(url): + # Preserve encoding only if it appears pre-encoded AND has no invalid % sequences + return URL(url, encoded=True) + return URL(url) diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py index 3e0d0352d..4668d14a9 100644 --- a/comfy_api_nodes/util/download_helpers.py +++ b/comfy_api_nodes/util/download_helpers.py @@ -19,6 +19,7 @@ from ._helpers import ( get_auth_header, is_processing_interrupted, sleep_with_interrupt, + to_aiohttp_url, ) from .client import _diagnose_connectivity from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted @@ -94,7 +95,7 @@ async def download_url_to_bytesio( monitor_task = asyncio.create_task(_monitor()) - req_task = asyncio.create_task(session.get(url, headers=headers)) + req_task = asyncio.create_task(session.get(to_aiohttp_url(url), headers=headers)) done, pending = await asyncio.wait({req_task, monitor_task}, return_when=asyncio.FIRST_COMPLETED) if monitor_task in done and req_task in pending: From 236b9e211d5093b33acbe1918f56a6bfb4a5cf17 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 1 Jan 2026 05:38:39 +0800 Subject: [PATCH 10/41] chore: update workflow templates to v0.7.65 (#11579) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8b670b813..3a05799eb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.64 +comfyui-workflow-templates==0.7.65 comfyui-embedded-docs==0.3.1 torch torchsde From d622a618749b603531b753cef286a6051dd85565 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 14:38:36 -0800 Subject: [PATCH 11/41] Refactor: move clip_preprocess to comfy.clip_model (#11586) --- comfy/clip_model.py | 19 +++++++++++++++++++ comfy/clip_vision.py | 22 ++-------------------- 2 files changed, 21 insertions(+), 20 deletions(-) diff --git a/comfy/clip_model.py b/comfy/clip_model.py index 7c0cadab5..e88872728 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -2,6 +2,25 @@ import torch from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.ops +def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): + image = image[:, :, :, :3] if image.shape[3] > 3 else image + mean = torch.tensor(mean, device=image.device, dtype=image.dtype) + std = torch.tensor(std, device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + if crop: + scale = (size / min(image.shape[2], image.shape[3])) + scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) + else: + scale_size = (size, size) + + image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 447b1ce4a..d5fc53497 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -1,6 +1,5 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace import os -import torch import json import logging @@ -17,24 +16,7 @@ class Output: def __setitem__(self, key, item): setattr(self, key, item) -def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): - image = image[:, :, :, :3] if image.shape[3] > 3 else image - mean = torch.tensor(mean, device=image.device, dtype=image.dtype) - std = torch.tensor(std, device=image.device, dtype=image.dtype) - image = image.movedim(-1, 1) - if not (image.shape[2] == size and image.shape[3] == size): - if crop: - scale = (size / min(image.shape[2], image.shape[3])) - scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) - else: - scale_size = (size, size) - - image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) - h = (image.shape[2] - size)//2 - w = (image.shape[3] - size)//2 - image = image[:,:,h:h+size,w:w+size] - image = torch.clip((255. * image), 0, 255).round() / 255.0 - return (image - mean.view([3,1,1])) / std.view([3,1,1]) +clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually IMAGE_ENCODERS = { "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection, @@ -73,7 +55,7 @@ class ClipVisionModel(): def encode_image(self, image, crop=True): comfy.model_management.load_model_gpu(self.patcher) - pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() + pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2) outputs = Output() From 1bdc9a947f578733f81c9ae894a5acd5809c7a66 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 16:29:55 -0800 Subject: [PATCH 12/41] Remove duplicate import of model_management (#11587) --- comfy/text_encoders/llama.py | 1 - 1 file changed, 1 deletion(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index ed29e014d..faa4e1de8 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -8,7 +8,6 @@ from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management import comfy.ldm.common_dit -import comfy.model_management from . import qwen_vl @dataclass From 65cfcf5b1bb0d0618fef7bee08ee64397be5c434 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 1 Jan 2026 19:06:14 -0800 Subject: [PATCH 13/41] New Year ruff cleanup. (#11595) --- app/model_manager.py | 4 ++-- comfy/hooks.py | 3 ++- comfy/ldm/chroma_radiance/model.py | 2 +- comfy/ldm/hunyuan_video/upsampler.py | 3 ++- comfy/ldm/modules/diffusionmodules/model.py | 6 ++++-- comfy/ldm/modules/ema.py | 4 ++-- comfy/ldm/util.py | 2 +- comfy/taesd/taehv.py | 6 ++++-- comfy_execution/graph.py | 6 +++--- comfy_extras/nodes_apg.py | 3 ++- comfy_extras/nodes_wan.py | 2 +- nodes.py | 6 ++++-- pyproject.toml | 4 ++++ server.py | 6 +++--- 14 files changed, 35 insertions(+), 22 deletions(-) diff --git a/app/model_manager.py b/app/model_manager.py index ab36bca74..f124d1117 100644 --- a/app/model_manager.py +++ b/app/model_manager.py @@ -44,7 +44,7 @@ class ModelFileManager: @routes.get("/experiment/models/{folder}") async def get_all_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = self.get_model_file_list(folder) return web.json_response(files) @@ -55,7 +55,7 @@ class ModelFileManager: path_index = int(request.match_info.get("path_index", None)) filename = request.match_info.get("filename", None) - if not folder_name in folder_paths.folder_names_and_paths: + if folder_name not in folder_paths.folder_names_and_paths: return web.Response(status=404) folders = folder_paths.folder_names_and_paths[folder_name] diff --git a/comfy/hooks.py b/comfy/hooks.py index 9d0731072..1a76c7ba4 100644 --- a/comfy/hooks.py +++ b/comfy/hooks.py @@ -527,7 +527,8 @@ class HookKeyframeGroup: if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0: break # if eval_c is outside the percent range, stop looking further - else: break + else: + break # update steps current context is used self._current_used_steps += 1 # update current timestep this was performed on diff --git a/comfy/ldm/chroma_radiance/model.py b/comfy/ldm/chroma_radiance/model.py index 70d173889..4fb56165e 100644 --- a/comfy/ldm/chroma_radiance/model.py +++ b/comfy/ldm/chroma_radiance/model.py @@ -270,7 +270,7 @@ class ChromaRadiance(Chroma): bad_keys = tuple( k for k, v in overrides.items() - if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys) + if not isinstance(v, type(getattr(params, k))) and (v is not None or k not in nullable_keys) ) if bad_keys: e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}" diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 85f515f67..d9e76922f 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -3,7 +3,8 @@ import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm -import model_management, model_patcher +import model_management +import model_patcher class SRResidualCausalBlock3D(nn.Module): def __init__(self, channels: int): diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 681a55db5..1ae3ef034 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -394,7 +394,8 @@ class Model(nn.Module): attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = self.ch*4 self.num_resolutions = len(ch_mult) @@ -548,7 +549,8 @@ class Encoder(nn.Module): conv3d=False, time_compress=None, **ignore_kwargs): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) diff --git a/comfy/ldm/modules/ema.py b/comfy/ldm/modules/ema.py index bded25019..96ee6e895 100644 --- a/comfy/ldm/modules/ema.py +++ b/comfy/ldm/modules/ema.py @@ -45,7 +45,7 @@ class LitEma(nn.Module): shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) @@ -54,7 +54,7 @@ class LitEma(nn.Module): if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def store(self, parameters): """ diff --git a/comfy/ldm/util.py b/comfy/ldm/util.py index 30b4b4721..304936ff4 100644 --- a/comfy/ldm/util.py +++ b/comfy/ldm/util.py @@ -71,7 +71,7 @@ def count_params(model, verbose=False): def instantiate_from_config(config): - if not "target" in config: + if "target" not in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py index 3dfe1e4d4..0e5f9a378 100644 --- a/comfy/taesd/taehv.py +++ b/comfy/taesd/taehv.py @@ -154,7 +154,8 @@ class TAEHV(nn.Module): self._show_progress_bar = value def encode(self, x, **kwargs): - if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_unshuffle(x, self.patch_size) x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] if x.shape[1] % 4 != 0: # pad at end to multiple of 4 @@ -167,5 +168,6 @@ class TAEHV(nn.Module): def decode(self, x, **kwargs): x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) - if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_shuffle(x, self.patch_size) return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 8fc5846b7..9d170b16e 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -207,15 +207,15 @@ class ExecutionList(TopologicalSort): return self.output_cache.get(node_id) is not None def cache_link(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: self.execution_cache[to_node_id] = {} self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id) - if not from_node_id in self.execution_cache_listeners: + if from_node_id not in self.execution_cache_listeners: self.execution_cache_listeners[from_node_id] = set() self.execution_cache_listeners[from_node_id].add(to_node_id) def get_cache(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: return None value = self.execution_cache[to_node_id].get(from_node_id) if value is None: diff --git a/comfy_extras/nodes_apg.py b/comfy_extras/nodes_apg.py index f27ae7da8..b9df2dcc9 100644 --- a/comfy_extras/nodes_apg.py +++ b/comfy_extras/nodes_apg.py @@ -55,7 +55,8 @@ class APG(io.ComfyNode): def pre_cfg_function(args): nonlocal running_avg, prev_sigma - if len(args["conds_out"]) == 1: return args["conds_out"] + if len(args["conds_out"]) == 1: + return args["conds_out"] cond = args["conds_out"][0] uncond = args["conds_out"][1] diff --git a/comfy_extras/nodes_wan.py b/comfy_extras/nodes_wan.py index b0bd471bf..d32aad98e 100644 --- a/comfy_extras/nodes_wan.py +++ b/comfy_extras/nodes_wan.py @@ -817,7 +817,7 @@ def get_sample_indices(original_fps, if required_duration > total_frames / original_fps: raise ValueError("required_duration must be less than video length") - if not fixed_start is None and fixed_start >= 0: + if fixed_start is not None and fixed_start >= 0: start_frame = fixed_start else: max_start = total_frames - required_origin_frames diff --git a/nodes.py b/nodes.py index d9e4ebd91..eae2f0086 100644 --- a/nodes.py +++ b/nodes.py @@ -2242,8 +2242,10 @@ async def init_external_custom_nodes(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) - if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue - if module_path.endswith(".disabled"): continue + if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": + continue + if module_path.endswith(".disabled"): + continue if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue diff --git a/pyproject.toml b/pyproject.toml index bc1467941..60378de1e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -15,12 +15,16 @@ lint.select = [ "N805", # invalid-first-argument-name-for-method "S307", # suspicious-eval-usage "S102", # exec + "E", "T", # print-usage "W", # The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names. # See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f "F", ] + +lint.ignore = ["E501", "E722", "E731", "E712", "E402", "E741"] + exclude = ["*.ipynb", "**/generated/*.pyi"] [tool.pylint] diff --git a/server.py b/server.py index c27f8be7d..70c8b5e3b 100644 --- a/server.py +++ b/server.py @@ -324,7 +324,7 @@ class PromptServer(): @routes.get("/models/{folder}") async def get_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = folder_paths.get_filename_list(folder) return web.json_response(files) @@ -579,7 +579,7 @@ class PromptServer(): folder_name = request.match_info.get("folder_name", None) if folder_name is None: return web.Response(status=404) - if not "filename" in request.rel_url.query: + if "filename" not in request.rel_url.query: return web.Response(status=404) filename = request.rel_url.query["filename"] @@ -593,7 +593,7 @@ class PromptServer(): if out is None: return web.Response(status=404) dt = json.loads(out) - if not "__metadata__" in dt: + if "__metadata__" not in dt: return web.Response(status=404) return web.json_response(dt["__metadata__"]) From 9e5f677746463228e35ac6a08f308d758ed620d5 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 10:35:34 +0200 Subject: [PATCH 14/41] Ignore all frames except the first one for MPO format. (#11569) --- nodes.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/nodes.py b/nodes.py index eae2f0086..662907ae6 100644 --- a/nodes.py +++ b/nodes.py @@ -1663,8 +1663,6 @@ class LoadImage: output_masks = [] w, h = None, None - excluded_formats = ['MPO'] - for i in ImageSequence.Iterator(img): i = node_helpers.pillow(ImageOps.exif_transpose, i) @@ -1692,7 +1690,10 @@ class LoadImage: output_images.append(image) output_masks.append(mask.unsqueeze(0)) - if len(output_images) > 1 and img.format not in excluded_formats: + if img.format == "MPO": + break # ignore all frames except the first one for MPO format + + if len(output_images) > 1: output_image = torch.cat(output_images, dim=0) output_mask = torch.cat(output_masks, dim=0) else: From 303b1735f8785c0d1f947af965567850ca413f61 Mon Sep 17 00:00:00 2001 From: throttlekitty Date: Fri, 2 Jan 2026 01:37:37 -0700 Subject: [PATCH 15/41] Give Mahiro CFG a more appropriate display name (#11580) --- comfy_extras/nodes_mahiro.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_mahiro.py b/comfy_extras/nodes_mahiro.py index 07b3353f4..6459ca8c1 100644 --- a/comfy_extras/nodes_mahiro.py +++ b/comfy_extras/nodes_mahiro.py @@ -10,7 +10,7 @@ class Mahiro(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="Mahiro", - display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", + display_name="Mahiro CFG", category="_for_testing", description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.", inputs=[ From f2fda021ab179ba31d9175698b82474a5dd14359 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 13:18:43 +0200 Subject: [PATCH 16/41] Tripo3D: pass face_limit parameter only when it differs from default (#11601) --- comfy_api_nodes/nodes_tripo.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index bd3c24fb3..e72f8e96a 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -155,7 +155,7 @@ class TripoTextToModelNode(IO.ComfyNode): model_seed=model_seed, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, geometry_quality=geometry_quality, auto_size=True, quad=quad, @@ -255,7 +255,7 @@ class TripoImageToModelNode(IO.ComfyNode): texture_alignment=texture_alignment, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, auto_size=True, quad=quad, ), @@ -369,7 +369,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): texture_quality=texture_quality, geometry_quality=geometry_quality, texture_alignment=texture_alignment, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, quad=quad, ), ) From 9a552df898ec57f066784cc1f7c475644099b3c1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 2 Jan 2026 17:28:10 -0800 Subject: [PATCH 17/41] Remove leftover scaled_fp8 key. (#11603) --- comfy/utils.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/utils.py b/comfy/utils.py index 8d4e2b445..e4162d7ac 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1230,6 +1230,8 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}): out_sd = {} layers = {} for k in list(state_dict.keys()): + if k == scaled_fp8_key: + continue if not k.startswith(model_prefix): out_sd[k] = state_dict[k] continue From 53e762a3af9502ebe61a60eb2d39d783fe8d012b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 3 Jan 2026 19:28:38 -0800 Subject: [PATCH 18/41] Print memory summary on OOM to help with debugging. (#11613) --- comfy/model_management.py | 4 ++++ execution.py | 1 + 2 files changed, 5 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 87baedd73..2501cecb7 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1542,6 +1542,10 @@ def soft_empty_cache(force=False): def unload_all_models(): free_memory(1e30, get_torch_device()) +def debug_memory_summary(): + if is_amd() or is_nvidia(): + return torch.cuda.memory.memory_summary() + return "" #TODO: might be cleaner to put this somewhere else import threading diff --git a/execution.py b/execution.py index 38159b1f4..648f204ec 100644 --- a/execution.py +++ b/execution.py @@ -601,6 +601,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, if isinstance(ex, comfy.model_management.OOM_EXCEPTION): tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number." + logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary())) logging.error("Got an OOM, unloading all loaded models.") comfy.model_management.unload_all_models() From acbf08cd60fade74b2e9e5009fa0dcad9538356b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sun, 4 Jan 2026 09:05:02 +0200 Subject: [PATCH 19/41] feat(api-nodes): add support for 720p resolution for Kling Omni nodes (#11604) --- comfy_api_nodes/nodes_kling.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 58259e029..9c707a339 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -807,6 +807,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): ), IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), IO.Combo.Input("duration", options=[5, 10]), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -826,6 +827,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt: str, aspect_ratio: str, duration: int, + resolution: str = "1080p", ) -> IO.NodeOutput: validate_string(prompt, min_length=1, max_length=2500) response = await sync_op( @@ -837,6 +839,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt=prompt, aspect_ratio=aspect_ratio, duration=str(duration), + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -872,6 +875,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): optional=True, tooltip="Up to 6 additional reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -893,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): first_frame: Input.Image, end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -936,6 +941,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): prompt=prompt, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -964,6 +970,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): "reference_images", tooltip="Up to 7 reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -984,6 +991,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio: str, duration: int, reference_images: Input.Image, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1005,6 +1013,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio=aspect_ratio, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1036,6 +1045,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1058,6 +1068,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): reference_video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1090,6 +1101,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): duration=str(duration), image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1119,6 +1131,7 @@ class OmniProEditVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1139,6 +1152,7 @@ class OmniProEditVideoNode(IO.ComfyNode): video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1171,6 +1185,7 @@ class OmniProEditVideoNode(IO.ComfyNode): duration=None, image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) From 38d049382533c6662d815b08ca3395e96cca9f57 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 16:13:50 -0800 Subject: [PATCH 20/41] Fix case where upscale model wouldn't be moved to cpu. (#11633) --- comfy_extras/nodes_upscale_model.py | 24 +++++++++++++----------- 1 file changed, 13 insertions(+), 11 deletions(-) diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 4d62b87be..ed587851c 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -78,18 +78,20 @@ class ImageUpscaleWithModel(io.ComfyNode): overlap = 32 oom = True - while oom: - try: - steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) - pbar = comfy.utils.ProgressBar(steps) - s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) - oom = False - except model_management.OOM_EXCEPTION as e: - tile //= 2 - if tile < 128: - raise e + try: + while oom: + try: + steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) + pbar = comfy.utils.ProgressBar(steps) + s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) + oom = False + except model_management.OOM_EXCEPTION as e: + tile //= 2 + if tile < 128: + raise e + finally: + upscale_model.to("cpu") - upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return io.NodeOutput(s) From f2b002372b71cf0671a4cf1fa539e1c386d727e4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 22:58:59 -0800 Subject: [PATCH 21/41] Support the LTXV 2 model. (#11632) --- comfy/latent_formats.py | 3 + comfy/ldm/lightricks/av_model.py | 837 ++++++++++++++++ comfy/ldm/lightricks/embeddings_connector.py | 305 ++++++ comfy/ldm/lightricks/latent_upsampler.py | 292 ++++++ comfy/ldm/lightricks/model.py | 715 +++++++++++--- comfy/ldm/lightricks/symmetric_patchifier.py | 87 +- comfy/ldm/lightricks/vae/audio_vae.py | 286 ++++++ .../vae/causal_audio_autoencoder.py | 909 ++++++++++++++++++ comfy/ldm/lightricks/vocoders/vocoder.py | 213 ++++ comfy/model_base.py | 57 +- comfy/model_detection.py | 2 +- comfy/sd.py | 9 +- comfy/supported_models.py | 17 +- comfy/text_encoders/llama.py | 79 ++ comfy/text_encoders/lt.py | 111 +++ comfy/utils.py | 2 +- comfy_extras/nodes_audio.py | 2 +- comfy_extras/nodes_hunyuan.py | 15 +- comfy_extras/nodes_lt.py | 188 +++- comfy_extras/nodes_lt_audio.py | 183 ++++ comfy_extras/nodes_lt_upsampler.py | 75 ++ nodes.py | 10 +- pyproject.toml | 2 +- 23 files changed, 4214 insertions(+), 185 deletions(-) create mode 100644 comfy/ldm/lightricks/av_model.py create mode 100644 comfy/ldm/lightricks/embeddings_connector.py create mode 100644 comfy/ldm/lightricks/latent_upsampler.py create mode 100644 comfy/ldm/lightricks/vae/audio_vae.py create mode 100644 comfy/ldm/lightricks/vae/causal_audio_autoencoder.py create mode 100644 comfy/ldm/lightricks/vocoders/vocoder.py create mode 100644 comfy_extras/nodes_lt_audio.py create mode 100644 comfy_extras/nodes_lt_upsampler.py diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index f1ca0151e..9bbe30b53 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -407,6 +407,9 @@ class LTXV(LatentFormat): self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512] +class LTXAV(LTXV): + pass + class HunyuanVideo(LatentFormat): latent_channels = 16 latent_dimensions = 3 diff --git a/comfy/ldm/lightricks/av_model.py b/comfy/ldm/lightricks/av_model.py new file mode 100644 index 000000000..759535501 --- /dev/null +++ b/comfy/ldm/lightricks/av_model.py @@ -0,0 +1,837 @@ +from typing import Tuple +import torch +import torch.nn as nn +from comfy.ldm.lightricks.model import ( + CrossAttention, + FeedForward, + AdaLayerNormSingle, + PixArtAlphaTextProjection, + LTXVModel, +) +from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier +import comfy.ldm.common_dit + +class BasicAVTransformerBlock(nn.Module): + def __init__( + self, + v_dim, + a_dim, + v_heads, + a_heads, + vd_head, + ad_head, + v_context_dim=None, + a_context_dim=None, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + + self.attn_precision = attn_precision + + self.attn1 = CrossAttention( + query_dim=v_dim, + heads=v_heads, + dim_head=vd_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + self.audio_attn1 = CrossAttention( + query_dim=a_dim, + heads=a_heads, + dim_head=ad_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + self.attn2 = CrossAttention( + query_dim=v_dim, + context_dim=v_context_dim, + heads=v_heads, + dim_head=vd_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + self.audio_attn2 = CrossAttention( + query_dim=a_dim, + context_dim=a_context_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + # Q: Video, K,V: Audio + self.audio_to_video_attn = CrossAttention( + query_dim=v_dim, + context_dim=a_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + # Q: Audio, K,V: Video + self.video_to_audio_attn = CrossAttention( + query_dim=a_dim, + context_dim=v_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + self.ff = FeedForward( + v_dim, dim_out=v_dim, glu=True, dtype=dtype, device=device, operations=operations + ) + self.audio_ff = FeedForward( + a_dim, dim_out=a_dim, glu=True, dtype=dtype, device=device, operations=operations + ) + + self.scale_shift_table = nn.Parameter(torch.empty(6, v_dim, device=device, dtype=dtype)) + self.audio_scale_shift_table = nn.Parameter( + torch.empty(6, a_dim, device=device, dtype=dtype) + ) + + self.scale_shift_table_a2v_ca_audio = nn.Parameter( + torch.empty(5, a_dim, device=device, dtype=dtype) + ) + self.scale_shift_table_a2v_ca_video = nn.Parameter( + torch.empty(5, v_dim, device=device, dtype=dtype) + ) + + def get_ada_values( + self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None) + ): + num_ada_params = scale_shift_table.shape[0] + + ada_values = ( + scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=timestep.device, dtype=timestep.dtype) + + timestep.reshape(batch_size, timestep.shape[1], num_ada_params, -1)[:, :, indices, :] + ).unbind(dim=2) + return ada_values + + def get_av_ca_ada_values( + self, + scale_shift_table: torch.Tensor, + batch_size: int, + scale_shift_timestep: torch.Tensor, + gate_timestep: torch.Tensor, + num_scale_shift_values: int = 4, + ): + scale_shift_ada_values = self.get_ada_values( + scale_shift_table[:num_scale_shift_values, :], + batch_size, + scale_shift_timestep, + ) + gate_ada_values = self.get_ada_values( + scale_shift_table[num_scale_shift_values:, :], + batch_size, + gate_timestep, + ) + + scale_shift_chunks = [t.squeeze(2) for t in scale_shift_ada_values] + gate_ada_values = [t.squeeze(2) for t in gate_ada_values] + + return (*scale_shift_chunks, *gate_ada_values) + + def forward( + self, + x: Tuple[torch.Tensor, torch.Tensor], + v_context=None, + a_context=None, + attention_mask=None, + v_timestep=None, + a_timestep=None, + v_pe=None, + a_pe=None, + v_cross_pe=None, + a_cross_pe=None, + v_cross_scale_shift_timestep=None, + a_cross_scale_shift_timestep=None, + v_cross_gate_timestep=None, + a_cross_gate_timestep=None, + transformer_options=None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + run_vx = transformer_options.get("run_vx", True) + run_ax = transformer_options.get("run_ax", True) + + vx, ax = x + run_ax = run_ax and ax.numel() > 0 + run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0 + run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True) + + if run_vx: + vshift_msa, vscale_msa, vgate_msa = ( + self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 3)) + ) + + norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa + vx += self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) * vgate_msa + vx += self.attn2( + comfy.ldm.common_dit.rms_norm(vx), + context=v_context, + mask=attention_mask, + transformer_options=transformer_options, + ) + + del vshift_msa, vscale_msa, vgate_msa + + if run_ax: + ashift_msa, ascale_msa, agate_msa = ( + self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 3)) + ) + + norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa + ax += ( + self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options) + * agate_msa + ) + ax += self.audio_attn2( + comfy.ldm.common_dit.rms_norm(ax), + context=a_context, + mask=attention_mask, + transformer_options=transformer_options, + ) + + del ashift_msa, ascale_msa, agate_msa + + # Audio - Video cross attention. + if run_a2v or run_v2a: + # norm3 + vx_norm3 = comfy.ldm.common_dit.rms_norm(vx) + ax_norm3 = comfy.ldm.common_dit.rms_norm(ax) + + ( + scale_ca_audio_hidden_states_a2v, + shift_ca_audio_hidden_states_a2v, + scale_ca_audio_hidden_states_v2a, + shift_ca_audio_hidden_states_v2a, + gate_out_v2a, + ) = self.get_av_ca_ada_values( + self.scale_shift_table_a2v_ca_audio, + ax.shape[0], + a_cross_scale_shift_timestep, + a_cross_gate_timestep, + ) + + ( + scale_ca_video_hidden_states_a2v, + shift_ca_video_hidden_states_a2v, + scale_ca_video_hidden_states_v2a, + shift_ca_video_hidden_states_v2a, + gate_out_a2v, + ) = self.get_av_ca_ada_values( + self.scale_shift_table_a2v_ca_video, + vx.shape[0], + v_cross_scale_shift_timestep, + v_cross_gate_timestep, + ) + + if run_a2v: + vx_scaled = ( + vx_norm3 * (1 + scale_ca_video_hidden_states_a2v) + + shift_ca_video_hidden_states_a2v + ) + ax_scaled = ( + ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + + shift_ca_audio_hidden_states_a2v + ) + vx += ( + self.audio_to_video_attn( + vx_scaled, + context=ax_scaled, + pe=v_cross_pe, + k_pe=a_cross_pe, + transformer_options=transformer_options, + ) + * gate_out_a2v + ) + + del gate_out_a2v + del scale_ca_video_hidden_states_a2v,\ + shift_ca_video_hidden_states_a2v,\ + scale_ca_audio_hidden_states_a2v,\ + shift_ca_audio_hidden_states_a2v,\ + + if run_v2a: + ax_scaled = ( + ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + + shift_ca_audio_hidden_states_v2a + ) + vx_scaled = ( + vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + + shift_ca_video_hidden_states_v2a + ) + ax += ( + self.video_to_audio_attn( + ax_scaled, + context=vx_scaled, + pe=a_cross_pe, + k_pe=v_cross_pe, + transformer_options=transformer_options, + ) + * gate_out_v2a + ) + + del gate_out_v2a + del scale_ca_video_hidden_states_v2a,\ + shift_ca_video_hidden_states_v2a,\ + scale_ca_audio_hidden_states_v2a,\ + shift_ca_audio_hidden_states_v2a + + if run_vx: + vshift_mlp, vscale_mlp, vgate_mlp = ( + self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, None)) + ) + + vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp + vx += self.ff(vx_scaled) * vgate_mlp + del vshift_mlp, vscale_mlp, vgate_mlp + + if run_ax: + ashift_mlp, ascale_mlp, agate_mlp = ( + self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, None)) + ) + + ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp + ax += self.audio_ff(ax_scaled) * agate_mlp + + del ashift_mlp, ascale_mlp, agate_mlp + + + return vx, ax + + +class LTXAVModel(LTXVModel): + """LTXAV model for audio-video generation.""" + + def __init__( + self, + in_channels=128, + audio_in_channels=128, + cross_attention_dim=4096, + audio_cross_attention_dim=2048, + attention_head_dim=128, + audio_attention_head_dim=64, + num_attention_heads=32, + audio_num_attention_heads=32, + caption_channels=3840, + num_layers=48, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[20, 2048, 2048], + audio_positional_embedding_max_pos=[20], + causal_temporal_positioning=False, + vae_scale_factors=(8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier=1000.0, + av_ca_timestep_scale_multiplier=1.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): + # Store audio-specific parameters + self.audio_in_channels = audio_in_channels + self.audio_cross_attention_dim = audio_cross_attention_dim + self.audio_attention_head_dim = audio_attention_head_dim + self.audio_num_attention_heads = audio_num_attention_heads + self.audio_positional_embedding_max_pos = audio_positional_embedding_max_pos + + # Calculate audio dimensions + self.audio_inner_dim = audio_num_attention_heads * audio_attention_head_dim + self.audio_out_channels = audio_in_channels + + # Audio-specific constants + self.num_audio_channels = 8 + self.audio_frequency_bins = 16 + + self.av_ca_timestep_scale_multiplier = av_ca_timestep_scale_multiplier + + super().__init__( + in_channels=in_channels, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + caption_channels=caption_channels, + num_layers=num_layers, + positional_embedding_theta=positional_embedding_theta, + positional_embedding_max_pos=positional_embedding_max_pos, + causal_temporal_positioning=causal_temporal_positioning, + vae_scale_factors=vae_scale_factors, + use_middle_indices_grid=use_middle_indices_grid, + timestep_scale_multiplier=timestep_scale_multiplier, + dtype=dtype, + device=device, + operations=operations, + **kwargs, + ) + + def _init_model_components(self, device, dtype, **kwargs): + """Initialize LTXAV-specific components.""" + # Audio-specific projections + self.audio_patchify_proj = self.operations.Linear( + self.audio_in_channels, self.audio_inner_dim, bias=True, dtype=dtype, device=device + ) + + # Audio-specific AdaLN + self.audio_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + dtype=dtype, + device=device, + operations=self.operations, + ) + + num_scale_shift_values = 4 + self.av_ca_video_scale_shift_adaln_single = AdaLayerNormSingle( + self.inner_dim, + use_additional_conditions=False, + embedding_coefficient=num_scale_shift_values, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_a2v_gate_adaln_single = AdaLayerNormSingle( + self.inner_dim, + use_additional_conditions=False, + embedding_coefficient=1, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_audio_scale_shift_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + embedding_coefficient=num_scale_shift_values, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_v2a_gate_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + embedding_coefficient=1, + dtype=dtype, + device=device, + operations=self.operations, + ) + + # Audio caption projection + self.audio_caption_projection = PixArtAlphaTextProjection( + in_features=self.caption_channels, + hidden_size=self.audio_inner_dim, + dtype=dtype, + device=device, + operations=self.operations, + ) + + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks for LTXAV.""" + self.transformer_blocks = nn.ModuleList( + [ + BasicAVTransformerBlock( + v_dim=self.inner_dim, + a_dim=self.audio_inner_dim, + v_heads=self.num_attention_heads, + a_heads=self.audio_num_attention_heads, + vd_head=self.attention_head_dim, + ad_head=self.audio_attention_head_dim, + v_context_dim=self.cross_attention_dim, + a_context_dim=self.audio_cross_attention_dim, + dtype=dtype, + device=device, + operations=self.operations, + ) + for _ in range(self.num_layers) + ] + ) + + def _init_output_components(self, device, dtype): + """Initialize output components for LTXAV.""" + # Video output components + super()._init_output_components(device, dtype) + # Audio output components + self.audio_scale_shift_table = nn.Parameter( + torch.empty(2, self.audio_inner_dim, dtype=dtype, device=device) + ) + self.audio_norm_out = self.operations.LayerNorm( + self.audio_inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device + ) + self.audio_proj_out = self.operations.Linear( + self.audio_inner_dim, self.audio_out_channels, dtype=dtype, device=device + ) + self.a_patchifier = AudioPatchifier(1, start_end=True) + + def separate_audio_and_video_latents(self, x, audio_length): + """Separate audio and video latents from combined input.""" + # vx = x[:, : self.in_channels] + # ax = x[:, self.in_channels :] + # + # ax = ax.reshape(ax.shape[0], -1) + # ax = ax[:, : audio_length * self.num_audio_channels * self.audio_frequency_bins] + # + # ax = ax.reshape( + # ax.shape[0], self.num_audio_channels, audio_length, self.audio_frequency_bins + # ) + + vx = x[0] + ax = x[1] if len(x) > 1 else torch.zeros( + (vx.shape[0], self.num_audio_channels, 0, self.audio_frequency_bins), + device=vx.device, dtype=vx.dtype + ) + return vx, ax + + def recombine_audio_and_video_latents(self, vx, ax, target_shape=None): + if ax.numel() == 0: + return vx + else: + return [vx, ax] + """Recombine audio and video latents for output.""" + # if ax.device != vx.device or ax.dtype != vx.dtype: + # logging.warning("Audio and video latents are on different devices or dtypes.") + # ax = ax.to(device=vx.device, dtype=vx.dtype) + # logging.warning(f"Audio audio latent moved to device: {ax.device}, dtype: {ax.dtype}") + # + # ax = ax.reshape(ax.shape[0], -1) + # # pad to f x h x w of the video latents + # divisor = vx.shape[-1] * vx.shape[-2] * vx.shape[-3] + # if target_shape is None: + # repetitions = math.ceil(ax.shape[-1] / divisor) + # else: + # repetitions = target_shape[1] - vx.shape[1] + # padded_len = repetitions * divisor + # ax = F.pad(ax, (0, padded_len - ax.shape[-1])) + # ax = ax.reshape(ax.shape[0], -1, vx.shape[-3], vx.shape[-2], vx.shape[-1]) + # return torch.cat([vx, ax], dim=1) + + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input for LTXAV - separate audio and video, then patchify.""" + audio_length = kwargs.get("audio_length", 0) + # Separate audio and video latents + vx, ax = self.separate_audio_and_video_latents(x, audio_length) + [vx, v_pixel_coords, additional_args] = super()._process_input( + vx, keyframe_idxs, denoise_mask, **kwargs + ) + + ax, a_latent_coords = self.a_patchifier.patchify(ax) + ax = self.audio_patchify_proj(ax) + + # additional_args.update({"av_orig_shape": list(x.shape)}) + return [vx, ax], [v_pixel_coords, a_latent_coords], additional_args + + def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs): + """Prepare timestep embeddings.""" + # TODO: some code reuse is needed here. + grid_mask = kwargs.get("grid_mask", None) + if grid_mask is not None: + timestep = timestep[:, grid_mask] + + timestep = timestep * self.timestep_scale_multiplier + v_timestep, v_embedded_timestep = self.adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + # Second dimension is 1 or number of tokens (if timestep_per_token) + v_timestep = v_timestep.view(batch_size, -1, v_timestep.shape[-1]) + v_embedded_timestep = v_embedded_timestep.view( + batch_size, -1, v_embedded_timestep.shape[-1] + ) + + # Prepare audio timestep + a_timestep = kwargs.get("a_timestep") + if a_timestep is not None: + a_timestep = a_timestep * self.timestep_scale_multiplier + av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier + + av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single( + a_timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single( + timestep.flatten() * av_ca_factor, + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single( + a_timestep.flatten() * av_ca_factor, + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + a_timestep, a_embedded_timestep = self.audio_adaln_single( + a_timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1]) + a_embedded_timestep = a_embedded_timestep.view( + batch_size, -1, a_embedded_timestep.shape[-1] + ) + cross_av_timestep_ss = [ + av_ca_audio_scale_shift_timestep, + av_ca_video_scale_shift_timestep, + av_ca_a2v_gate_noise_timestep, + av_ca_v2a_gate_noise_timestep, + ] + cross_av_timestep_ss = list( + [t.view(batch_size, -1, t.shape[-1]) for t in cross_av_timestep_ss] + ) + else: + a_timestep = timestep + a_embedded_timestep = kwargs.get("embedded_timestep") + cross_av_timestep_ss = [] + + return [v_timestep, a_timestep, cross_av_timestep_ss], [ + v_embedded_timestep, + a_embedded_timestep, + ] + + def _prepare_context(self, context, batch_size, x, attention_mask=None): + vx = x[0] + ax = x[1] + v_context, a_context = torch.split( + context, int(context.shape[-1] / 2), len(context.shape) - 1 + ) + + v_context, attention_mask = super()._prepare_context( + v_context, batch_size, vx, attention_mask + ) + if self.audio_caption_projection is not None: + a_context = self.audio_caption_projection(a_context) + a_context = a_context.view(batch_size, -1, ax.shape[-1]) + + return [v_context, a_context], attention_mask + + def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype): + v_pixel_coords = pixel_coords[0] + v_pe = super()._prepare_positional_embeddings(v_pixel_coords, frame_rate, x_dtype) + + a_latent_coords = pixel_coords[1] + a_pe = self._precompute_freqs_cis( + a_latent_coords, + dim=self.audio_inner_dim, + out_dtype=x_dtype, + max_pos=self.audio_positional_embedding_max_pos, + use_middle_indices_grid=self.use_middle_indices_grid, + num_attention_heads=self.audio_num_attention_heads, + ) + + # calculate positional embeddings for the middle of the token duration, to use in av cross attention layers. + max_pos = max( + self.positional_embedding_max_pos[0], self.audio_positional_embedding_max_pos[0] + ) + v_pixel_coords = v_pixel_coords.to(torch.float32) + v_pixel_coords[:, 0] = v_pixel_coords[:, 0] * (1.0 / frame_rate) + av_cross_video_freq_cis = self._precompute_freqs_cis( + v_pixel_coords[:, 0:1, :], + dim=self.audio_cross_attention_dim, + out_dtype=x_dtype, + max_pos=[max_pos], + use_middle_indices_grid=True, + num_attention_heads=self.audio_num_attention_heads, + ) + av_cross_audio_freq_cis = self._precompute_freqs_cis( + a_latent_coords[:, 0:1, :], + dim=self.audio_cross_attention_dim, + out_dtype=x_dtype, + max_pos=[max_pos], + use_middle_indices_grid=True, + num_attention_heads=self.audio_num_attention_heads, + ) + + return [(v_pe, av_cross_video_freq_cis), (a_pe, av_cross_audio_freq_cis)] + + def _process_transformer_blocks( + self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs + ): + vx = x[0] + ax = x[1] + v_context = context[0] + a_context = context[1] + v_timestep = timestep[0] + a_timestep = timestep[1] + v_pe, av_cross_video_freq_cis = pe[0] + a_pe, av_cross_audio_freq_cis = pe[1] + + ( + av_ca_audio_scale_shift_timestep, + av_ca_video_scale_shift_timestep, + av_ca_a2v_gate_noise_timestep, + av_ca_v2a_gate_noise_timestep, + ) = timestep[2] + + """Process transformer blocks for LTXAV.""" + patches_replace = transformer_options.get("patches_replace", {}) + blocks_replace = patches_replace.get("dit", {}) + + # Process transformer blocks + for i, block in enumerate(self.transformer_blocks): + if ("double_block", i) in blocks_replace: + + def block_wrap(args): + out = {} + out["img"] = block( + args["img"], + v_context=args["v_context"], + a_context=args["a_context"], + attention_mask=args["attention_mask"], + v_timestep=args["v_timestep"], + a_timestep=args["a_timestep"], + v_pe=args["v_pe"], + a_pe=args["a_pe"], + v_cross_pe=args["v_cross_pe"], + a_cross_pe=args["a_cross_pe"], + v_cross_scale_shift_timestep=args["v_cross_scale_shift_timestep"], + a_cross_scale_shift_timestep=args["a_cross_scale_shift_timestep"], + v_cross_gate_timestep=args["v_cross_gate_timestep"], + a_cross_gate_timestep=args["a_cross_gate_timestep"], + transformer_options=args["transformer_options"], + ) + return out + + out = blocks_replace[("double_block", i)]( + { + "img": (vx, ax), + "v_context": v_context, + "a_context": a_context, + "attention_mask": attention_mask, + "v_timestep": v_timestep, + "a_timestep": a_timestep, + "v_pe": v_pe, + "a_pe": a_pe, + "v_cross_pe": av_cross_video_freq_cis, + "a_cross_pe": av_cross_audio_freq_cis, + "v_cross_scale_shift_timestep": av_ca_video_scale_shift_timestep, + "a_cross_scale_shift_timestep": av_ca_audio_scale_shift_timestep, + "v_cross_gate_timestep": av_ca_a2v_gate_noise_timestep, + "a_cross_gate_timestep": av_ca_v2a_gate_noise_timestep, + "transformer_options": transformer_options, + }, + {"original_block": block_wrap}, + ) + vx, ax = out["img"] + else: + vx, ax = block( + (vx, ax), + v_context=v_context, + a_context=a_context, + attention_mask=attention_mask, + v_timestep=v_timestep, + a_timestep=a_timestep, + v_pe=v_pe, + a_pe=a_pe, + v_cross_pe=av_cross_video_freq_cis, + a_cross_pe=av_cross_audio_freq_cis, + v_cross_scale_shift_timestep=av_ca_video_scale_shift_timestep, + a_cross_scale_shift_timestep=av_ca_audio_scale_shift_timestep, + v_cross_gate_timestep=av_ca_a2v_gate_noise_timestep, + a_cross_gate_timestep=av_ca_v2a_gate_noise_timestep, + transformer_options=transformer_options, + ) + + return [vx, ax] + + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + vx = x[0] + ax = x[1] + v_embedded_timestep = embedded_timestep[0] + a_embedded_timestep = embedded_timestep[1] + vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs) + + # Process audio output + a_scale_shift_values = ( + self.audio_scale_shift_table[None, None].to(device=a_embedded_timestep.device, dtype=a_embedded_timestep.dtype) + + a_embedded_timestep[:, :, None] + ) + a_shift, a_scale = a_scale_shift_values[:, :, 0], a_scale_shift_values[:, :, 1] + + ax = self.audio_norm_out(ax) + ax = ax * (1 + a_scale) + a_shift + ax = self.audio_proj_out(ax) + + # Unpatchify audio + ax = self.a_patchifier.unpatchify( + ax, channels=self.num_audio_channels, freq=self.audio_frequency_bins + ) + + # Recombine audio and video + original_shape = kwargs.get("av_orig_shape") + return self.recombine_audio_and_video_latents(vx, ax, original_shape) + + def forward( + self, + x, + timestep, + context, + attention_mask=None, + frame_rate=25, + transformer_options={}, + keyframe_idxs=None, + **kwargs, + ): + """ + Forward pass for LTXAV model. + + Args: + x: Combined audio-video input tensor + timestep: Tuple of (video_timestep, audio_timestep) or single timestep + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments including audio_length + + Returns: + Combined audio-video output tensor + """ + # Handle timestep format + if isinstance(timestep, (tuple, list)) and len(timestep) == 2: + v_timestep, a_timestep = timestep + kwargs["a_timestep"] = a_timestep + timestep = v_timestep + else: + kwargs["a_timestep"] = timestep + + # Call parent forward method + return super().forward( + x, + timestep, + context, + attention_mask, + frame_rate, + transformer_options, + keyframe_idxs, + **kwargs, + ) diff --git a/comfy/ldm/lightricks/embeddings_connector.py b/comfy/ldm/lightricks/embeddings_connector.py new file mode 100644 index 000000000..f7a43f3c3 --- /dev/null +++ b/comfy/ldm/lightricks/embeddings_connector.py @@ -0,0 +1,305 @@ +import math +from typing import Optional + +import comfy.ldm.common_dit +import torch +from comfy.ldm.lightricks.model import ( + CrossAttention, + FeedForward, + generate_freq_grid_np, + interleaved_freqs_cis, + split_freqs_cis, +) +from torch import nn + + +class BasicTransformerBlock1D(nn.Module): + r""" + A basic Transformer block. + + Parameters: + + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + attention_bias (: + obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. + upcast_attention (`bool`, *optional*): + Whether to upcast the attention computation to float32. This is useful for mixed precision training. + norm_elementwise_affine (`bool`, *optional*, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`. + norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon value for normalization layers. + qk_norm (`str`, *optional*, defaults to None): + Set to 'layer_norm' or `rms_norm` to perform query and key normalization. + final_dropout (`bool` *optional*, defaults to False): + Whether to apply a final dropout after the last feed-forward layer. + ff_inner_dim (`int`, *optional*): Dimension of the inner feed-forward layer. If not provided, defaults to `dim * 4`. + ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward layer. + attention_out_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the attention output layer. + use_rope (`bool`, *optional*, defaults to `False`): Whether to use Rotary Position Embeddings (RoPE). + ffn_dim_mult (`int`, *optional*, defaults to 4): Multiplier for the inner dimension of the feed-forward layer. + """ + + def __init__( + self, + dim, + n_heads, + d_head, + context_dim=None, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + + # Define 3 blocks. Each block has its own normalization layer. + # 1. Self-Attn + self.attn1 = CrossAttention( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + context_dim=None, + dtype=dtype, + device=device, + operations=operations, + ) + + # 3. Feed-forward + self.ff = FeedForward( + dim, + dim_out=dim, + glu=True, + dtype=dtype, + device=device, + operations=operations, + ) + + def forward(self, hidden_states, attention_mask=None, pe=None) -> torch.FloatTensor: + + # Notice that normalization is always applied before the real computation in the following blocks. + + # 1. Normalization Before Self-Attention + norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + norm_hidden_states = norm_hidden_states.squeeze(1) + + # 2. Self-Attention + attn_output = self.attn1(norm_hidden_states, mask=attention_mask, pe=pe) + + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + # 3. Normalization before Feed-Forward + norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + # 4. Feed-forward + ff_output = self.ff(norm_hidden_states) + + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + return hidden_states + + +class Embeddings1DConnector(nn.Module): + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels=128, + cross_attention_dim=2048, + attention_head_dim=128, + num_attention_heads=30, + num_layers=2, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[4096], + causal_temporal_positioning=False, + num_learnable_registers: Optional[int] = 128, + dtype=None, + device=None, + operations=None, + split_rope=False, + double_precision_rope=False, + **kwargs, + ): + super().__init__() + self.dtype = dtype + self.out_channels = in_channels + self.num_attention_heads = num_attention_heads + self.inner_dim = num_attention_heads * attention_head_dim + self.causal_temporal_positioning = causal_temporal_positioning + self.positional_embedding_theta = positional_embedding_theta + self.positional_embedding_max_pos = positional_embedding_max_pos + self.split_rope = split_rope + self.double_precision_rope = double_precision_rope + self.transformer_1d_blocks = nn.ModuleList( + [ + BasicTransformerBlock1D( + self.inner_dim, + num_attention_heads, + attention_head_dim, + context_dim=cross_attention_dim, + dtype=dtype, + device=device, + operations=operations, + ) + for _ in range(num_layers) + ] + ) + + inner_dim = num_attention_heads * attention_head_dim + self.num_learnable_registers = num_learnable_registers + if self.num_learnable_registers: + self.learnable_registers = nn.Parameter( + torch.rand( + self.num_learnable_registers, inner_dim, dtype=dtype, device=device + ) + * 2.0 + - 1.0 + ) + + def get_fractional_positions(self, indices_grid): + fractional_positions = torch.stack( + [ + indices_grid[:, i] / self.positional_embedding_max_pos[i] + for i in range(1) + ], + dim=-1, + ) + return fractional_positions + + def precompute_freqs(self, indices_grid, spacing): + source_dtype = indices_grid.dtype + dtype = ( + torch.float32 + if source_dtype in (torch.bfloat16, torch.float16) + else source_dtype + ) + + fractional_positions = self.get_fractional_positions(indices_grid) + indices = ( + generate_freq_grid_np( + self.positional_embedding_theta, + indices_grid.shape[1], + self.inner_dim, + ) + if self.double_precision_rope + else self.generate_freq_grid(spacing, dtype, fractional_positions.device) + ).to(device=fractional_positions.device) + + if spacing == "exp_2": + freqs = ( + (indices * fractional_positions.unsqueeze(-1)) + .transpose(-1, -2) + .flatten(2) + ) + else: + freqs = ( + (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) + .transpose(-1, -2) + .flatten(2) + ) + return freqs + + def generate_freq_grid(self, spacing, dtype, device): + dim = self.inner_dim + theta = self.positional_embedding_theta + n_pos_dims = 1 + n_elem = 2 * n_pos_dims # 2 for cos and sin e.g. x 3 = 6 + start = 1 + end = theta + + if spacing == "exp": + indices = theta ** (torch.arange(0, dim, n_elem, device="cpu", dtype=torch.float32) / (dim - n_elem)) + indices = indices.to(dtype=dtype, device=device) + elif spacing == "exp_2": + indices = 1.0 / theta ** (torch.arange(0, dim, n_elem, device=device) / dim) + indices = indices.to(dtype=dtype) + elif spacing == "linear": + indices = torch.linspace( + start, end, dim // n_elem, device=device, dtype=dtype + ) + elif spacing == "sqrt": + indices = torch.linspace( + start**2, end**2, dim // n_elem, device=device, dtype=dtype + ).sqrt() + + indices = indices * math.pi / 2 + + return indices + + def precompute_freqs_cis(self, indices_grid, spacing="exp"): + dim = self.inner_dim + n_elem = 2 # 2 because of cos and sin + freqs = self.precompute_freqs(indices_grid, spacing) + if self.split_rope: + expected_freqs = dim // 2 + current_freqs = freqs.shape[-1] + pad_size = expected_freqs - current_freqs + cos_freq, sin_freq = split_freqs_cis( + freqs, pad_size, self.num_attention_heads + ) + else: + cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem) + return cos_freq.to(self.dtype), sin_freq.to(self.dtype), self.split_rope + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + """ + The [`Transformer2DModel`] forward method. + + Args: + hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): + Input `hidden_states`. + indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): + attention_mask ( `torch.Tensor`, *optional*): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + # 1. Input + + if self.num_learnable_registers: + num_registers_duplications = math.ceil( + max(1024, hidden_states.shape[1]) / self.num_learnable_registers + ) + learnable_registers = torch.tile( + self.learnable_registers, (num_registers_duplications, 1) + ) + + hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1) + + if attention_mask is not None: + attention_mask = torch.zeros([1, 1, 1, hidden_states.shape[1]], dtype=attention_mask.dtype, device=attention_mask.device) + + indices_grid = torch.arange( + hidden_states.shape[1], dtype=torch.float32, device=hidden_states.device + ) + indices_grid = indices_grid[None, None, :] + freqs_cis = self.precompute_freqs_cis(indices_grid) + + # 2. Blocks + for block_idx, block in enumerate(self.transformer_1d_blocks): + hidden_states = block( + hidden_states, attention_mask=attention_mask, pe=freqs_cis + ) + + # 3. Output + # if self.output_scale is not None: + # hidden_states = hidden_states / self.output_scale + + hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + return hidden_states, attention_mask diff --git a/comfy/ldm/lightricks/latent_upsampler.py b/comfy/ldm/lightricks/latent_upsampler.py new file mode 100644 index 000000000..78ed7653f --- /dev/null +++ b/comfy/ldm/lightricks/latent_upsampler.py @@ -0,0 +1,292 @@ +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + + +def _rational_for_scale(scale: float) -> Tuple[int, int]: + mapping = {0.75: (3, 4), 1.5: (3, 2), 2.0: (2, 1), 4.0: (4, 1)} + if float(scale) not in mapping: + raise ValueError( + f"Unsupported spatial_scale {scale}. Choose from {list(mapping.keys())}" + ) + return mapping[float(scale)] + + +class PixelShuffleND(nn.Module): + def __init__(self, dims, upscale_factors=(2, 2, 2)): + super().__init__() + assert dims in [1, 2, 3], "dims must be 1, 2, or 3" + self.dims = dims + self.upscale_factors = upscale_factors + + def forward(self, x): + if self.dims == 3: + return rearrange( + x, + "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", + p1=self.upscale_factors[0], + p2=self.upscale_factors[1], + p3=self.upscale_factors[2], + ) + elif self.dims == 2: + return rearrange( + x, + "b (c p1 p2) h w -> b c (h p1) (w p2)", + p1=self.upscale_factors[0], + p2=self.upscale_factors[1], + ) + elif self.dims == 1: + return rearrange( + x, + "b (c p1) f h w -> b c (f p1) h w", + p1=self.upscale_factors[0], + ) + + +class BlurDownsample(nn.Module): + """ + Anti-aliased spatial downsampling by integer stride using a fixed separable binomial kernel. + Applies only on H,W. Works for dims=2 or dims=3 (per-frame). + """ + + def __init__(self, dims: int, stride: int): + super().__init__() + assert dims in (2, 3) + assert stride >= 1 and isinstance(stride, int) + self.dims = dims + self.stride = stride + + # 5x5 separable binomial kernel [1,4,6,4,1] (outer product), normalized + k = torch.tensor([1.0, 4.0, 6.0, 4.0, 1.0]) + k2d = k[:, None] @ k[None, :] + k2d = (k2d / k2d.sum()).float() # shape (5,5) + self.register_buffer("kernel", k2d[None, None, :, :]) # (1,1,5,5) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.stride == 1: + return x + + def _apply_2d(x2d: torch.Tensor) -> torch.Tensor: + # x2d: (B, C, H, W) + B, C, H, W = x2d.shape + weight = self.kernel.expand(C, 1, 5, 5) # depthwise + x2d = F.conv2d( + x2d, weight=weight, bias=None, stride=self.stride, padding=2, groups=C + ) + return x2d + + if self.dims == 2: + return _apply_2d(x) + else: + # dims == 3: apply per-frame on H,W + b, c, f, h, w = x.shape + x = rearrange(x, "b c f h w -> (b f) c h w") + x = _apply_2d(x) + h2, w2 = x.shape[-2:] + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f, h=h2, w=w2) + return x + + +class SpatialRationalResampler(nn.Module): + """ + Fully-learned rational spatial scaling: up by 'num' via PixelShuffle, then anti-aliased + downsample by 'den' using fixed blur + stride. Operates on H,W only. + + For dims==3, work per-frame for spatial scaling (temporal axis untouched). + """ + + def __init__(self, mid_channels: int, scale: float): + super().__init__() + self.scale = float(scale) + self.num, self.den = _rational_for_scale(self.scale) + self.conv = nn.Conv2d( + mid_channels, (self.num**2) * mid_channels, kernel_size=3, padding=1 + ) + self.pixel_shuffle = PixelShuffleND(2, upscale_factors=(self.num, self.num)) + self.blur_down = BlurDownsample(dims=2, stride=self.den) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + b, c, f, h, w = x.shape + x = rearrange(x, "b c f h w -> (b f) c h w") + x = self.conv(x) + x = self.pixel_shuffle(x) + x = self.blur_down(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + return x + + +class ResBlock(nn.Module): + def __init__( + self, channels: int, mid_channels: Optional[int] = None, dims: int = 3 + ): + super().__init__() + if mid_channels is None: + mid_channels = channels + + Conv = nn.Conv2d if dims == 2 else nn.Conv3d + + self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1) + self.norm1 = nn.GroupNorm(32, mid_channels) + self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1) + self.norm2 = nn.GroupNorm(32, channels) + self.activation = nn.SiLU() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + x = self.conv1(x) + x = self.norm1(x) + x = self.activation(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.activation(x + residual) + return x + + +class LatentUpsampler(nn.Module): + """ + Model to spatially upsample VAE latents. + + Args: + in_channels (`int`): Number of channels in the input latent + mid_channels (`int`): Number of channels in the middle layers + num_blocks_per_stage (`int`): Number of ResBlocks to use in each stage (pre/post upsampling) + dims (`int`): Number of dimensions for convolutions (2 or 3) + spatial_upsample (`bool`): Whether to spatially upsample the latent + temporal_upsample (`bool`): Whether to temporally upsample the latent + """ + + def __init__( + self, + in_channels: int = 128, + mid_channels: int = 512, + num_blocks_per_stage: int = 4, + dims: int = 3, + spatial_upsample: bool = True, + temporal_upsample: bool = False, + spatial_scale: float = 2.0, + rational_resampler: bool = False, + ): + super().__init__() + + self.in_channels = in_channels + self.mid_channels = mid_channels + self.num_blocks_per_stage = num_blocks_per_stage + self.dims = dims + self.spatial_upsample = spatial_upsample + self.temporal_upsample = temporal_upsample + self.spatial_scale = float(spatial_scale) + self.rational_resampler = rational_resampler + + Conv = nn.Conv2d if dims == 2 else nn.Conv3d + + self.initial_conv = Conv(in_channels, mid_channels, kernel_size=3, padding=1) + self.initial_norm = nn.GroupNorm(32, mid_channels) + self.initial_activation = nn.SiLU() + + self.res_blocks = nn.ModuleList( + [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] + ) + + if spatial_upsample and temporal_upsample: + self.upsampler = nn.Sequential( + nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(3), + ) + elif spatial_upsample: + if rational_resampler: + self.upsampler = SpatialRationalResampler( + mid_channels=mid_channels, scale=self.spatial_scale + ) + else: + self.upsampler = nn.Sequential( + nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(2), + ) + elif temporal_upsample: + self.upsampler = nn.Sequential( + nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(1), + ) + else: + raise ValueError( + "Either spatial_upsample or temporal_upsample must be True" + ) + + self.post_upsample_res_blocks = nn.ModuleList( + [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] + ) + + self.final_conv = Conv(mid_channels, in_channels, kernel_size=3, padding=1) + + def forward(self, latent: torch.Tensor) -> torch.Tensor: + b, c, f, h, w = latent.shape + + if self.dims == 2: + x = rearrange(latent, "b c f h w -> (b f) c h w") + x = self.initial_conv(x) + x = self.initial_norm(x) + x = self.initial_activation(x) + + for block in self.res_blocks: + x = block(x) + + x = self.upsampler(x) + + for block in self.post_upsample_res_blocks: + x = block(x) + + x = self.final_conv(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + else: + x = self.initial_conv(latent) + x = self.initial_norm(x) + x = self.initial_activation(x) + + for block in self.res_blocks: + x = block(x) + + if self.temporal_upsample: + x = self.upsampler(x) + x = x[:, :, 1:, :, :] + else: + if isinstance(self.upsampler, SpatialRationalResampler): + x = self.upsampler(x) + else: + x = rearrange(x, "b c f h w -> (b f) c h w") + x = self.upsampler(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + + for block in self.post_upsample_res_blocks: + x = block(x) + + x = self.final_conv(x) + + return x + + @classmethod + def from_config(cls, config): + return cls( + in_channels=config.get("in_channels", 4), + mid_channels=config.get("mid_channels", 128), + num_blocks_per_stage=config.get("num_blocks_per_stage", 4), + dims=config.get("dims", 2), + spatial_upsample=config.get("spatial_upsample", True), + temporal_upsample=config.get("temporal_upsample", False), + spatial_scale=config.get("spatial_scale", 2.0), + rational_resampler=config.get("rational_resampler", False), + ) + + def config(self): + return { + "_class_name": "LatentUpsampler", + "in_channels": self.in_channels, + "mid_channels": self.mid_channels, + "num_blocks_per_stage": self.num_blocks_per_stage, + "dims": self.dims, + "spatial_upsample": self.spatial_upsample, + "temporal_upsample": self.temporal_upsample, + "spatial_scale": self.spatial_scale, + "rational_resampler": self.rational_resampler, + } diff --git a/comfy/ldm/lightricks/model.py b/comfy/ldm/lightricks/model.py index 593f7940f..d61e19d6e 100644 --- a/comfy/ldm/lightricks/model.py +++ b/comfy/ldm/lightricks/model.py @@ -1,13 +1,47 @@ +from abc import ABC, abstractmethod +from enum import Enum +import functools +import math +from typing import Dict, Optional, Tuple + +from einops import rearrange +import numpy as np import torch from torch import nn import comfy.patcher_extension import comfy.ldm.modules.attention import comfy.ldm.common_dit -import math -from typing import Dict, Optional, Tuple from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords -from comfy.ldm.flux.math import apply_rope1 + +def _log_base(x, base): + return np.log(x) / np.log(base) + +class LTXRopeType(str, Enum): + INTERLEAVED = "interleaved" + SPLIT = "split" + + KEY = "rope_type" + + @classmethod + def from_dict(cls, kwargs, default=None): + if default is None: + default = cls.INTERLEAVED + return cls(kwargs.get(cls.KEY, default)) + + +class LTXFrequenciesPrecision(str, Enum): + FLOAT32 = "float32" + FLOAT64 = "float64" + + KEY = "frequencies_precision" + + @classmethod + def from_dict(cls, kwargs, default=None): + if default is None: + default = cls.FLOAT32 + return cls(kwargs.get(cls.KEY, default)) + def get_timestep_embedding( timesteps: torch.Tensor, @@ -39,9 +73,7 @@ def get_timestep_embedding( assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 - exponent = -math.log(max_period) * torch.arange( - start=0, end=half_dim, dtype=torch.float32, device=timesteps.device - ) + exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) @@ -73,7 +105,9 @@ class TimestepEmbedding(nn.Module): post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True, - dtype=None, device=None, operations=None, + dtype=None, + device=None, + operations=None, ): super().__init__() @@ -90,7 +124,9 @@ class TimestepEmbedding(nn.Module): time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim - self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device) + self.linear_2 = operations.Linear( + time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device + ) if post_act_fn is None: self.post_act = None @@ -139,12 +175,22 @@ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 """ - def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): + def __init__( + self, + embedding_dim, + size_emb_dim, + use_additional_conditions: bool = False, + dtype=None, + device=None, + operations=None, + ): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) - self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations) + self.timestep_embedder = TimestepEmbedding( + in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations + ) def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): timesteps_proj = self.time_proj(timestep) @@ -163,15 +209,22 @@ class AdaLayerNormSingle(nn.Module): use_additional_conditions (`bool`): To use additional conditions for normalization or not. """ - def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): + def __init__( + self, embedding_dim: int, embedding_coefficient: int = 6, use_additional_conditions: bool = False, dtype=None, device=None, operations=None + ): super().__init__() self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( - embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations + embedding_dim, + size_emb_dim=embedding_dim // 3, + use_additional_conditions=use_additional_conditions, + dtype=dtype, + device=device, + operations=operations, ) self.silu = nn.SiLU() - self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device) + self.linear = operations.Linear(embedding_dim, embedding_coefficient * embedding_dim, bias=True, dtype=dtype, device=device) def forward( self, @@ -185,6 +238,7 @@ class AdaLayerNormSingle(nn.Module): embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) return self.linear(self.silu(embedded_timestep)), embedded_timestep + class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. @@ -192,18 +246,24 @@ class PixArtAlphaTextProjection(nn.Module): Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ - def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None): + def __init__( + self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None + ): super().__init__() if out_features is None: out_features = hidden_size - self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device) + self.linear_1 = operations.Linear( + in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device + ) if act_fn == "gelu_tanh": self.act_1 = nn.GELU(approximate="tanh") elif act_fn == "silu": self.act_1 = nn.SiLU() else: raise ValueError(f"Unknown activation function: {act_fn}") - self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device) + self.linear_2 = operations.Linear( + in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device + ) def forward(self, caption): hidden_states = self.linear_1(caption) @@ -222,23 +282,68 @@ class GELU_approx(nn.Module): class FeedForward(nn.Module): - def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None): + def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0.0, dtype=None, device=None, operations=None): super().__init__() inner_dim = int(dim * mult) project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations) self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) + project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) ) def forward(self, x): return self.net(x) +def apply_rotary_emb(input_tensor, freqs_cis): + cos_freqs, sin_freqs = freqs_cis[0], freqs_cis[1] + split_pe = freqs_cis[2] if len(freqs_cis) > 2 else False + return ( + apply_split_rotary_emb(input_tensor, cos_freqs, sin_freqs) + if split_pe else + apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs) + ) + +def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: remove duplicate funcs and pick the best/fastest one + t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) + t1, t2 = t_dup.unbind(dim=-1) + t_dup = torch.stack((-t2, t1), dim=-1) + input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") + + out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs + + return out + +def apply_split_rotary_emb(input_tensor, cos, sin): + needs_reshape = False + if input_tensor.ndim != 4 and cos.ndim == 4: + B, H, T, _ = cos.shape + input_tensor = input_tensor.reshape(B, T, H, -1).swapaxes(1, 2) + needs_reshape = True + split_input = rearrange(input_tensor, "... (d r) -> ... d r", d=2) + first_half_input = split_input[..., :1, :] + second_half_input = split_input[..., 1:, :] + output = split_input * cos.unsqueeze(-2) + first_half_output = output[..., :1, :] + second_half_output = output[..., 1:, :] + first_half_output.addcmul_(-sin.unsqueeze(-2), second_half_input) + second_half_output.addcmul_(sin.unsqueeze(-2), first_half_input) + output = rearrange(output, "... d r -> ... (d r)") + return output.swapaxes(1, 2).reshape(B, T, -1) if needs_reshape else output + class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None): + def __init__( + self, + query_dim, + context_dim=None, + heads=8, + dim_head=64, + dropout=0.0, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): super().__init__() inner_dim = dim_head * heads context_dim = query_dim if context_dim is None else context_dim @@ -254,9 +359,11 @@ class CrossAttention(nn.Module): self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) - self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) + self.to_out = nn.Sequential( + operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout) + ) - def forward(self, x, context=None, mask=None, pe=None, transformer_options={}): + def forward(self, x, context=None, mask=None, pe=None, k_pe=None, transformer_options={}): q = self.to_q(x) context = x if context is None else context k = self.to_k(context) @@ -266,8 +373,8 @@ class CrossAttention(nn.Module): k = self.k_norm(k) if pe is not None: - q = apply_rope1(q.unsqueeze(1), pe).squeeze(1) - k = apply_rope1(k.unsqueeze(1), pe).squeeze(1) + q = apply_rotary_emb(q, pe) + k = apply_rotary_emb(k, pe if k_pe is None else k_pe) if mask is None: out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options) @@ -277,14 +384,34 @@ class CrossAttention(nn.Module): class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None): + def __init__( + self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None + ): super().__init__() self.attn_precision = attn_precision - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) + self.attn1 = CrossAttention( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) + self.attn2 = CrossAttention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype)) @@ -306,116 +433,446 @@ class BasicTransformerBlock(nn.Module): return x def get_fractional_positions(indices_grid, max_pos): + n_pos_dims = indices_grid.shape[1] + assert n_pos_dims == len(max_pos), f'Number of position dimensions ({n_pos_dims}) must match max_pos length ({len(max_pos)})' fractional_positions = torch.stack( - [ - indices_grid[:, i] / max_pos[i] - for i in range(3) - ], - dim=-1, + [indices_grid[:, i] / max_pos[i] for i in range(n_pos_dims)], + axis=-1, ) return fractional_positions -def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]): - dtype = torch.float32 - device = indices_grid.device +@functools.lru_cache(maxsize=5) +def generate_freq_grid_np(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, _ = None): + theta = positional_embedding_theta + start = 1 + end = theta + + n_elem = 2 * positional_embedding_max_pos_count + pow_indices = np.power( + theta, + np.linspace( + _log_base(start, theta), + _log_base(end, theta), + inner_dim // n_elem, + dtype=np.float64, + ), + ) + return torch.tensor(pow_indices * math.pi / 2, dtype=torch.float32) + +def generate_freq_grid_pytorch(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, device): + theta = positional_embedding_theta + start = 1 + end = theta + n_elem = 2 * positional_embedding_max_pos_count + + indices = theta ** ( + torch.linspace( + math.log(start, theta), + math.log(end, theta), + inner_dim // n_elem, + device=device, + dtype=torch.float32, + ) + ) + indices = indices.to(dtype=torch.float32) + + indices = indices * math.pi / 2 + + return indices + +def generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid): + if use_middle_indices_grid: + assert(len(indices_grid.shape) == 4 and indices_grid.shape[-1] ==2) + indices_grid_start, indices_grid_end = indices_grid[..., 0], indices_grid[..., 1] + indices_grid = (indices_grid_start + indices_grid_end) / 2.0 + elif len(indices_grid.shape) == 4: + indices_grid = indices_grid[..., 0] # Get fractional positions and compute frequency indices fractional_positions = get_fractional_positions(indices_grid, max_pos) - indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2 + indices = indices.to(device=fractional_positions.device) - # Compute frequencies and apply cos/sin - freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2) - cos_vals = freqs.cos().repeat_interleave(2, dim=-1) - sin_vals = freqs.sin().repeat_interleave(2, dim=-1) + freqs = ( + (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) + .transpose(-1, -2) + .flatten(2) + ) + return freqs - # Pad if dim is not divisible by 6 - if dim % 6 != 0: - padding_size = dim % 6 - cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1) - sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1) +def interleaved_freqs_cis(freqs, pad_size): + cos_freq = freqs.cos().repeat_interleave(2, dim=-1) + sin_freq = freqs.sin().repeat_interleave(2, dim=-1) + if pad_size != 0: + cos_padding = torch.ones_like(cos_freq[:, :, : pad_size]) + sin_padding = torch.zeros_like(cos_freq[:, :, : pad_size]) + cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) + sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) + return cos_freq, sin_freq - # Reshape and extract one value per pair (since repeat_interleave duplicates each value) - cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] - sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] +def split_freqs_cis(freqs, pad_size, num_attention_heads): + cos_freq = freqs.cos() + sin_freq = freqs.sin() - # Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension - freqs_cis = torch.stack([ - torch.stack([cos_vals, -sin_vals], dim=-1), - torch.stack([sin_vals, cos_vals], dim=-1) - ], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2] + if pad_size != 0: + cos_padding = torch.ones_like(cos_freq[:, :, :pad_size]) + sin_padding = torch.zeros_like(sin_freq[:, :, :pad_size]) - return freqs_cis + cos_freq = torch.concatenate([cos_padding, cos_freq], axis=-1) + sin_freq = torch.concatenate([sin_padding, sin_freq], axis=-1) + # Reshape freqs to be compatible with multi-head attention + B , T, half_HD = cos_freq.shape -class LTXVModel(torch.nn.Module): - def __init__(self, - in_channels=128, - cross_attention_dim=2048, - attention_head_dim=64, - num_attention_heads=32, + cos_freq = cos_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads) + sin_freq = sin_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads) - caption_channels=4096, - num_layers=28, + cos_freq = torch.swapaxes(cos_freq, 1, 2) # (B,H,T,D//2) + sin_freq = torch.swapaxes(sin_freq, 1, 2) # (B,H,T,D//2) + return cos_freq, sin_freq +class LTXBaseModel(torch.nn.Module, ABC): + """ + Abstract base class for LTX models (Lightricks Transformer models). - positional_embedding_theta=10000.0, - positional_embedding_max_pos=[20, 2048, 2048], - causal_temporal_positioning=False, - vae_scale_factors=(8, 32, 32), - dtype=None, device=None, operations=None, **kwargs): + This class defines the common interface and shared functionality for all LTX models, + including LTXV (video) and LTXAV (audio-video) variants. + """ + + def __init__( + self, + in_channels: int, + cross_attention_dim: int, + attention_head_dim: int, + num_attention_heads: int, + caption_channels: int, + num_layers: int, + positional_embedding_theta: float = 10000.0, + positional_embedding_max_pos: list = [20, 2048, 2048], + causal_temporal_positioning: bool = False, + vae_scale_factors: tuple = (8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier = 1000.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): super().__init__() self.generator = None self.vae_scale_factors = vae_scale_factors + self.use_middle_indices_grid = use_middle_indices_grid self.dtype = dtype - self.out_channels = in_channels - self.inner_dim = num_attention_heads * attention_head_dim + self.in_channels = in_channels + self.cross_attention_dim = cross_attention_dim + self.attention_head_dim = attention_head_dim + self.num_attention_heads = num_attention_heads + self.caption_channels = caption_channels + self.num_layers = num_layers + self.positional_embedding_theta = positional_embedding_theta + self.positional_embedding_max_pos = positional_embedding_max_pos + self.split_positional_embedding = LTXRopeType.from_dict(kwargs) + self.freq_grid_generator = ( + generate_freq_grid_np if LTXFrequenciesPrecision.from_dict(kwargs) == LTXFrequenciesPrecision.FLOAT64 + else generate_freq_grid_pytorch + ) self.causal_temporal_positioning = causal_temporal_positioning + self.operations = operations + self.timestep_scale_multiplier = timestep_scale_multiplier - self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device) + # Common dimensions + self.inner_dim = num_attention_heads * attention_head_dim + self.out_channels = in_channels + + # Initialize common components + self._init_common_components(device, dtype) + + # Initialize model-specific components + self._init_model_components(device, dtype, **kwargs) + + # Initialize transformer blocks + self._init_transformer_blocks(device, dtype, **kwargs) + + # Initialize output components + self._init_output_components(device, dtype) + + def _init_common_components(self, device, dtype): + """Initialize components common to all LTX models + - patchify_proj: Linear projection for patchifying input + - adaln_single: AdaLN layer for timestep embedding + - caption_projection: Linear projection for caption embedding + """ + self.patchify_proj = self.operations.Linear( + self.in_channels, self.inner_dim, bias=True, dtype=dtype, device=device + ) self.adaln_single = AdaLayerNormSingle( - self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations + self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=self.operations ) - # self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device) - self.caption_projection = PixArtAlphaTextProjection( - in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations + in_features=self.caption_channels, + hidden_size=self.inner_dim, + dtype=dtype, + device=device, + operations=self.operations, ) + @abstractmethod + def _init_model_components(self, device, dtype, **kwargs): + """Initialize model-specific components. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _init_output_components(self, device, dtype): + """Initialize output components. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input data. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, **kwargs): + """Process transformer blocks. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + """Process output data. Must be implemented by subclasses.""" + pass + + def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs): + """Prepare timestep embeddings.""" + grid_mask = kwargs.get("grid_mask", None) + if grid_mask is not None: + timestep = timestep[:, grid_mask] + + timestep = timestep * self.timestep_scale_multiplier + timestep, embedded_timestep = self.adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + # Second dimension is 1 or number of tokens (if timestep_per_token) + timestep = timestep.view(batch_size, -1, timestep.shape[-1]) + embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1]) + + return timestep, embedded_timestep + + def _prepare_context(self, context, batch_size, x, attention_mask=None): + """Prepare context for transformer blocks.""" + if self.caption_projection is not None: + context = self.caption_projection(context) + context = context.view(batch_size, -1, x.shape[-1]) + + return context, attention_mask + + def _precompute_freqs_cis( + self, + indices_grid, + dim, + out_dtype, + theta=10000.0, + max_pos=[20, 2048, 2048], + use_middle_indices_grid=False, + num_attention_heads=32, + ): + split_mode = self.split_positional_embedding == LTXRopeType.SPLIT + indices = self.freq_grid_generator(theta, indices_grid.shape[1], dim, indices_grid.device) + freqs = generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid) + + if split_mode: + expected_freqs = dim // 2 + current_freqs = freqs.shape[-1] + pad_size = expected_freqs - current_freqs + cos_freq, sin_freq = split_freqs_cis(freqs, pad_size, num_attention_heads) + else: + # 2 because of cos and sin by 3 for (t, x, y), 1 for temporal only + n_elem = 2 * indices_grid.shape[1] + cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem) + return cos_freq.to(out_dtype), sin_freq.to(out_dtype), split_mode + + def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype): + """Prepare positional embeddings.""" + fractional_coords = pixel_coords.to(torch.float32) + fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) + pe = self._precompute_freqs_cis( + fractional_coords, + dim=self.inner_dim, + out_dtype=x_dtype, + max_pos=self.positional_embedding_max_pos, + use_middle_indices_grid=self.use_middle_indices_grid, + num_attention_heads=self.num_attention_heads, + ) + return pe + + def _prepare_attention_mask(self, attention_mask, x_dtype): + """Prepare attention mask.""" + if attention_mask is not None and not torch.is_floating_point(attention_mask): + attention_mask = (attention_mask - 1).to(x_dtype).reshape( + (attention_mask.shape[0], 1, -1, attention_mask.shape[-1]) + ) * torch.finfo(x_dtype).max + return attention_mask + + def forward( + self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs + ): + """ + Forward pass for LTX models. + + Args: + x: Input tensor + timestep: Timestep tensor + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments + + Returns: + Processed output tensor + """ + return comfy.patcher_extension.WrapperExecutor.new_class_executor( + self._forward, + self, + comfy.patcher_extension.get_all_wrappers( + comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options + ), + ).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, denoise_mask=denoise_mask, **kwargs) + + def _forward( + self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs + ): + """ + Internal forward pass for LTX models. + + Args: + x: Input tensor + timestep: Timestep tensor + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments + + Returns: + Processed output tensor + """ + if isinstance(x, list): + input_dtype = x[0].dtype + batch_size = x[0].shape[0] + else: + input_dtype = x.dtype + batch_size = x.shape[0] + # Process input + merged_args = {**transformer_options, **kwargs} + x, pixel_coords, additional_args = self._process_input(x, keyframe_idxs, denoise_mask, **merged_args) + merged_args.update(additional_args) + + # Prepare timestep and context + timestep, embedded_timestep = self._prepare_timestep(timestep, batch_size, input_dtype, **merged_args) + context, attention_mask = self._prepare_context(context, batch_size, x, attention_mask) + + # Prepare attention mask and positional embeddings + attention_mask = self._prepare_attention_mask(attention_mask, input_dtype) + pe = self._prepare_positional_embeddings(pixel_coords, frame_rate, input_dtype) + + # Process transformer blocks + x = self._process_transformer_blocks( + x, context, attention_mask, timestep, pe, transformer_options=transformer_options, **merged_args + ) + + # Process output + x = self._process_output(x, embedded_timestep, keyframe_idxs, **merged_args) + return x + + +class LTXVModel(LTXBaseModel): + """LTXV model for video generation.""" + + def __init__( + self, + in_channels=128, + cross_attention_dim=2048, + attention_head_dim=64, + num_attention_heads=32, + caption_channels=4096, + num_layers=28, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[20, 2048, 2048], + causal_temporal_positioning=False, + vae_scale_factors=(8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier = 1000.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): + super().__init__( + in_channels=in_channels, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + caption_channels=caption_channels, + num_layers=num_layers, + positional_embedding_theta=positional_embedding_theta, + positional_embedding_max_pos=positional_embedding_max_pos, + causal_temporal_positioning=causal_temporal_positioning, + vae_scale_factors=vae_scale_factors, + use_middle_indices_grid=use_middle_indices_grid, + timestep_scale_multiplier=timestep_scale_multiplier, + dtype=dtype, + device=device, + operations=operations, + **kwargs, + ) + + def _init_model_components(self, device, dtype, **kwargs): + """Initialize LTXV-specific components.""" + # No additional components needed for LTXV beyond base class + pass + + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks for LTXV.""" self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, - num_attention_heads, - attention_head_dim, - context_dim=cross_attention_dim, - # attn_precision=attn_precision, - dtype=dtype, device=device, operations=operations + self.num_attention_heads, + self.attention_head_dim, + context_dim=self.cross_attention_dim, + dtype=dtype, + device=device, + operations=self.operations, ) - for d in range(num_layers) + for _ in range(self.num_layers) ] ) + def _init_output_components(self, device, dtype): + """Initialize output components for LTXV.""" self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device)) - self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device) - - self.patchifier = SymmetricPatchifier(1) - - def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs): - return comfy.patcher_extension.WrapperExecutor.new_class_executor( - self._forward, - self, - comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs) - - def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs): - patches_replace = transformer_options.get("patches_replace", {}) - - orig_shape = list(x.shape) + self.norm_out = self.operations.LayerNorm( + self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device + ) + self.proj_out = self.operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device) + self.patchifier = SymmetricPatchifier(1, start_end=True) + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input for LTXV.""" + additional_args = {"orig_shape": list(x.shape)} x, latent_coords = self.patchifier.patchify(x) pixel_coords = latent_to_pixel_coords( latent_coords=latent_coords, @@ -423,44 +880,30 @@ class LTXVModel(torch.nn.Module): causal_fix=self.causal_temporal_positioning, ) + grid_mask = None if keyframe_idxs is not None: - pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs + additional_args.update({ "orig_patchified_shape": list(x.shape)}) + denoise_mask = self.patchifier.patchify(denoise_mask)[0] + grid_mask = ~torch.any(denoise_mask < 0, dim=-1)[0] + additional_args.update({"grid_mask": grid_mask}) + x = x[:, grid_mask, :] + pixel_coords = pixel_coords[:, :, grid_mask, ...] - fractional_coords = pixel_coords.to(torch.float32) - fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) + kf_grid_mask = grid_mask[-keyframe_idxs.shape[2]:] + keyframe_idxs = keyframe_idxs[..., kf_grid_mask, :] + pixel_coords[:, :, -keyframe_idxs.shape[2]:, :] = keyframe_idxs x = self.patchify_proj(x) - timestep = timestep * 1000.0 - - if attention_mask is not None and not torch.is_floating_point(attention_mask): - attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max - - pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype) - - batch_size = x.shape[0] - timestep, embedded_timestep = self.adaln_single( - timestep.flatten(), - {"resolution": None, "aspect_ratio": None}, - batch_size=batch_size, - hidden_dtype=x.dtype, - ) - # Second dimension is 1 or number of tokens (if timestep_per_token) - timestep = timestep.view(batch_size, -1, timestep.shape[-1]) - embedded_timestep = embedded_timestep.view( - batch_size, -1, embedded_timestep.shape[-1] - ) - - # 2. Blocks - if self.caption_projection is not None: - batch_size = x.shape[0] - context = self.caption_projection(context) - context = context.view( - batch_size, -1, x.shape[-1] - ) + return x, pixel_coords, additional_args + def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs): + """Process transformer blocks for LTXV.""" + patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + for i, block in enumerate(self.transformer_blocks): if ("double_block", i) in blocks_replace: + def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"]) @@ -478,16 +921,28 @@ class LTXVModel(torch.nn.Module): transformer_options=transformer_options, ) - # 3. Output + return x + + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + """Process output for LTXV.""" + # Apply scale-shift modulation scale_shift_values = ( self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None] ) shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] + x = self.norm_out(x) - # Modulation - x = torch.addcmul(x, x, scale).add_(shift) + x = x * (1 + scale) + shift x = self.proj_out(x) + if keyframe_idxs is not None: + grid_mask = kwargs["grid_mask"] + orig_patchified_shape = kwargs["orig_patchified_shape"] + full_x = torch.zeros(orig_patchified_shape, dtype=x.dtype, device=x.device) + full_x[:, grid_mask, :] = x + x = full_x + # Unpatchify to restore original dimensions + orig_shape = kwargs["orig_shape"] x = self.patchifier.unpatchify( latents=x, output_height=orig_shape[3], diff --git a/comfy/ldm/lightricks/symmetric_patchifier.py b/comfy/ldm/lightricks/symmetric_patchifier.py index 4b9972b9f..8f9a41186 100644 --- a/comfy/ldm/lightricks/symmetric_patchifier.py +++ b/comfy/ldm/lightricks/symmetric_patchifier.py @@ -21,20 +21,23 @@ def latent_to_pixel_coords( Returns: Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates. """ + shape = [1] * latent_coords.ndim + shape[1] = -1 pixel_coords = ( latent_coords - * torch.tensor(scale_factors, device=latent_coords.device)[None, :, None] + * torch.tensor(scale_factors, device=latent_coords.device).view(*shape) ) if causal_fix: # Fix temporal scale for first frame to 1 due to causality - pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0) + pixel_coords[:, 0, ...] = (pixel_coords[:, 0, ...] + 1 - scale_factors[0]).clamp(min=0) return pixel_coords class Patchifier(ABC): - def __init__(self, patch_size: int): + def __init__(self, patch_size: int, start_end: bool=False): super().__init__() self._patch_size = (1, patch_size, patch_size) + self.start_end = start_end @abstractmethod def patchify( @@ -71,11 +74,23 @@ class Patchifier(ABC): torch.arange(0, latent_width, self._patch_size[2], device=device), indexing="ij", ) - latent_sample_coords = torch.stack(latent_sample_coords, dim=0) - latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) - latent_coords = rearrange( - latent_coords, "b c f h w -> b c (f h w)", b=batch_size + latent_sample_coords_start = torch.stack(latent_sample_coords, dim=0) + delta = torch.tensor(self._patch_size, device=latent_sample_coords_start.device, dtype=latent_sample_coords_start.dtype)[:, None, None, None] + latent_sample_coords_end = latent_sample_coords_start + delta + + latent_sample_coords_start = latent_sample_coords_start.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) + latent_sample_coords_start = rearrange( + latent_sample_coords_start, "b c f h w -> b c (f h w)", b=batch_size ) + if self.start_end: + latent_sample_coords_end = latent_sample_coords_end.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) + latent_sample_coords_end = rearrange( + latent_sample_coords_end, "b c f h w -> b c (f h w)", b=batch_size + ) + + latent_coords = torch.stack((latent_sample_coords_start, latent_sample_coords_end), dim=-1) + else: + latent_coords = latent_sample_coords_start return latent_coords @@ -115,3 +130,61 @@ class SymmetricPatchifier(Patchifier): q=self._patch_size[2], ) return latents + + +class AudioPatchifier(Patchifier): + def __init__(self, patch_size: int, + sample_rate=16000, + hop_length=160, + audio_latent_downsample_factor=4, + is_causal=True, + start_end=False, + shift = 0 + ): + super().__init__(patch_size, start_end=start_end) + self.hop_length = hop_length + self.sample_rate = sample_rate + self.audio_latent_downsample_factor = audio_latent_downsample_factor + self.is_causal = is_causal + self.shift = shift + + def copy_with_shift(self, shift): + return AudioPatchifier( + self.patch_size, self.sample_rate, self.hop_length, self.audio_latent_downsample_factor, + self.is_causal, self.start_end, shift + ) + + def _get_audio_latent_time_in_sec(self, start_latent, end_latent: int, dtype: torch.dtype, device=torch.device): + audio_latent_frame = torch.arange(start_latent, end_latent, dtype=dtype, device=device) + audio_mel_frame = audio_latent_frame * self.audio_latent_downsample_factor + if self.is_causal: + audio_mel_frame = (audio_mel_frame + 1 - self.audio_latent_downsample_factor).clip(min=0) + return audio_mel_frame * self.hop_length / self.sample_rate + + + def patchify(self, audio_latents: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + # audio_latents: (batch, channels, time, freq) + b, _, t, _ = audio_latents.shape + audio_latents = rearrange( + audio_latents, + "b c t f -> b t (c f)", + ) + + audio_latents_start_timings = self._get_audio_latent_time_in_sec(self.shift, t + self.shift, torch.float32, audio_latents.device) + audio_latents_start_timings = audio_latents_start_timings.unsqueeze(0).expand(b, -1).unsqueeze(1) + + if self.start_end: + audio_latents_end_timings = self._get_audio_latent_time_in_sec(self.shift + 1, t + self.shift + 1, torch.float32, audio_latents.device) + audio_latents_end_timings = audio_latents_end_timings.unsqueeze(0).expand(b, -1).unsqueeze(1) + + audio_latents_timings = torch.stack([audio_latents_start_timings, audio_latents_end_timings], dim=-1) + else: + audio_latents_timings = audio_latents_start_timings + return audio_latents, audio_latents_timings + + def unpatchify(self, audio_latents: torch.Tensor, channels: int, freq: int) -> torch.Tensor: + # audio_latents: (batch, time, freq * channels) + audio_latents = rearrange( + audio_latents, "b t (c f) -> b c t f", c=channels, f=freq + ) + return audio_latents diff --git a/comfy/ldm/lightricks/vae/audio_vae.py b/comfy/ldm/lightricks/vae/audio_vae.py new file mode 100644 index 000000000..a9111d3bd --- /dev/null +++ b/comfy/ldm/lightricks/vae/audio_vae.py @@ -0,0 +1,286 @@ +import json +from dataclasses import dataclass +import math +import torch +import torchaudio + +import comfy.model_management +import comfy.model_patcher +import comfy.utils as utils +from comfy.ldm.mmaudio.vae.distributions import DiagonalGaussianDistribution +from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier +from comfy.ldm.lightricks.vae.causal_audio_autoencoder import ( + CausalityAxis, + CausalAudioAutoencoder, +) +from comfy.ldm.lightricks.vocoders.vocoder import Vocoder + +LATENT_DOWNSAMPLE_FACTOR = 4 + + +@dataclass(frozen=True) +class AudioVAEComponentConfig: + """Container for model component configuration extracted from metadata.""" + + autoencoder: dict + vocoder: dict + + @classmethod + def from_metadata(cls, metadata: dict) -> "AudioVAEComponentConfig": + assert metadata is not None and "config" in metadata, "Metadata is required for audio VAE" + + raw_config = metadata["config"] + if isinstance(raw_config, str): + parsed_config = json.loads(raw_config) + else: + parsed_config = raw_config + + audio_config = parsed_config.get("audio_vae") + vocoder_config = parsed_config.get("vocoder") + + assert audio_config is not None, "Audio VAE config is required for audio VAE" + assert vocoder_config is not None, "Vocoder config is required for audio VAE" + + return cls(autoencoder=audio_config, vocoder=vocoder_config) + + +class ModelDeviceManager: + """Manages device placement and GPU residency for the composed model.""" + + def __init__(self, module: torch.nn.Module): + load_device = comfy.model_management.get_torch_device() + offload_device = comfy.model_management.vae_offload_device() + self.patcher = comfy.model_patcher.ModelPatcher(module, load_device, offload_device) + + def ensure_model_loaded(self) -> None: + comfy.model_management.free_memory( + self.patcher.model_size(), + self.patcher.load_device, + ) + comfy.model_management.load_model_gpu(self.patcher) + + def move_to_load_device(self, tensor: torch.Tensor) -> torch.Tensor: + return tensor.to(self.patcher.load_device) + + @property + def load_device(self): + return self.patcher.load_device + + +class AudioLatentNormalizer: + """Applies per-channel statistics in patch space and restores original layout.""" + + def __init__(self, patchfier: AudioPatchifier, statistics_processor: torch.nn.Module): + self.patchifier = patchfier + self.statistics = statistics_processor + + def normalize(self, latents: torch.Tensor) -> torch.Tensor: + channels = latents.shape[1] + freq = latents.shape[3] + patched, _ = self.patchifier.patchify(latents) + normalized = self.statistics.normalize(patched) + return self.patchifier.unpatchify(normalized, channels=channels, freq=freq) + + def denormalize(self, latents: torch.Tensor) -> torch.Tensor: + channels = latents.shape[1] + freq = latents.shape[3] + patched, _ = self.patchifier.patchify(latents) + denormalized = self.statistics.un_normalize(patched) + return self.patchifier.unpatchify(denormalized, channels=channels, freq=freq) + + +class AudioPreprocessor: + """Prepares raw waveforms for the autoencoder by matching training conditions.""" + + def __init__(self, target_sample_rate: int, mel_bins: int, mel_hop_length: int, n_fft: int): + self.target_sample_rate = target_sample_rate + self.mel_bins = mel_bins + self.mel_hop_length = mel_hop_length + self.n_fft = n_fft + + def resample(self, waveform: torch.Tensor, source_rate: int) -> torch.Tensor: + if source_rate == self.target_sample_rate: + return waveform + return torchaudio.functional.resample(waveform, source_rate, self.target_sample_rate) + + @staticmethod + def normalize_amplitude( + waveform: torch.Tensor, max_amplitude: float = 0.5, eps: float = 1e-5 + ) -> torch.Tensor: + waveform = waveform - waveform.mean(dim=2, keepdim=True) + peak = torch.max(torch.abs(waveform)) + eps + scale = peak.clamp(max=max_amplitude) / peak + return waveform * scale + + def waveform_to_mel( + self, waveform: torch.Tensor, waveform_sample_rate: int, device + ) -> torch.Tensor: + waveform = self.resample(waveform, waveform_sample_rate) + waveform = self.normalize_amplitude(waveform) + + mel_transform = torchaudio.transforms.MelSpectrogram( + sample_rate=self.target_sample_rate, + n_fft=self.n_fft, + win_length=self.n_fft, + hop_length=self.mel_hop_length, + f_min=0.0, + f_max=self.target_sample_rate / 2.0, + n_mels=self.mel_bins, + window_fn=torch.hann_window, + center=True, + pad_mode="reflect", + power=1.0, + mel_scale="slaney", + norm="slaney", + ).to(device) + + mel = mel_transform(waveform) + mel = torch.log(torch.clamp(mel, min=1e-5)) + return mel.permute(0, 1, 3, 2).contiguous() + + +class AudioVAE(torch.nn.Module): + """High-level Audio VAE wrapper exposing encode and decode entry points.""" + + def __init__(self, state_dict: dict, metadata: dict): + super().__init__() + + component_config = AudioVAEComponentConfig.from_metadata(metadata) + + vae_sd = utils.state_dict_prefix_replace(state_dict, {"audio_vae.": ""}, filter_keys=True) + vocoder_sd = utils.state_dict_prefix_replace(state_dict, {"vocoder.": ""}, filter_keys=True) + + self.autoencoder = CausalAudioAutoencoder(config=component_config.autoencoder) + self.vocoder = Vocoder(config=component_config.vocoder) + + self.autoencoder.load_state_dict(vae_sd, strict=False) + self.vocoder.load_state_dict(vocoder_sd, strict=False) + + autoencoder_config = self.autoencoder.get_config() + self.normalizer = AudioLatentNormalizer( + AudioPatchifier( + patch_size=1, + audio_latent_downsample_factor=LATENT_DOWNSAMPLE_FACTOR, + sample_rate=autoencoder_config["sampling_rate"], + hop_length=autoencoder_config["mel_hop_length"], + is_causal=autoencoder_config["is_causal"], + ), + self.autoencoder.per_channel_statistics, + ) + + self.preprocessor = AudioPreprocessor( + target_sample_rate=autoencoder_config["sampling_rate"], + mel_bins=autoencoder_config["mel_bins"], + mel_hop_length=autoencoder_config["mel_hop_length"], + n_fft=autoencoder_config["n_fft"], + ) + + self.device_manager = ModelDeviceManager(self) + + def encode(self, audio: dict) -> torch.Tensor: + """Encode a waveform dictionary into normalized latent tensors.""" + + waveform = audio["waveform"] + waveform_sample_rate = audio["sample_rate"] + input_device = waveform.device + # Ensure that Audio VAE is loaded on the correct device. + self.device_manager.ensure_model_loaded() + + waveform = self.device_manager.move_to_load_device(waveform) + expected_channels = self.autoencoder.encoder.in_channels + if waveform.shape[1] != expected_channels: + raise ValueError( + f"Input audio must have {expected_channels} channels, got {waveform.shape[1]}" + ) + + mel_spec = self.preprocessor.waveform_to_mel( + waveform, waveform_sample_rate, device=self.device_manager.load_device + ) + + latents = self.autoencoder.encode(mel_spec) + posterior = DiagonalGaussianDistribution(latents) + latent_mode = posterior.mode() + + normalized = self.normalizer.normalize(latent_mode) + return normalized.to(input_device) + + def decode(self, latents: torch.Tensor) -> torch.Tensor: + """Decode normalized latent tensors into an audio waveform.""" + original_shape = latents.shape + + # Ensure that Audio VAE is loaded on the correct device. + self.device_manager.ensure_model_loaded() + + latents = self.device_manager.move_to_load_device(latents) + latents = self.normalizer.denormalize(latents) + + target_shape = self.target_shape_from_latents(original_shape) + mel_spec = self.autoencoder.decode(latents, target_shape=target_shape) + + waveform = self.run_vocoder(mel_spec) + return self.device_manager.move_to_load_device(waveform) + + def target_shape_from_latents(self, latents_shape): + batch, _, time, _ = latents_shape + target_length = time * LATENT_DOWNSAMPLE_FACTOR + if self.autoencoder.causality_axis != CausalityAxis.NONE: + target_length -= LATENT_DOWNSAMPLE_FACTOR - 1 + return ( + batch, + self.autoencoder.decoder.out_ch, + target_length, + self.autoencoder.mel_bins, + ) + + def num_of_latents_from_frames(self, frames_number: int, frame_rate: int) -> int: + return math.ceil((float(frames_number) / frame_rate) * self.latents_per_second) + + def run_vocoder(self, mel_spec: torch.Tensor) -> torch.Tensor: + audio_channels = self.autoencoder.decoder.out_ch + vocoder_input = mel_spec.transpose(2, 3) + + if audio_channels == 1: + vocoder_input = vocoder_input.squeeze(1) + elif audio_channels != 2: + raise ValueError(f"Unsupported audio_channels: {audio_channels}") + + return self.vocoder(vocoder_input) + + @property + def sample_rate(self) -> int: + return int(self.autoencoder.sampling_rate) + + @property + def mel_hop_length(self) -> int: + return int(self.autoencoder.mel_hop_length) + + @property + def mel_bins(self) -> int: + return int(self.autoencoder.mel_bins) + + @property + def latent_channels(self) -> int: + return int(self.autoencoder.decoder.z_channels) + + @property + def latent_frequency_bins(self) -> int: + return int(self.mel_bins // LATENT_DOWNSAMPLE_FACTOR) + + @property + def latents_per_second(self) -> float: + return self.sample_rate / self.mel_hop_length / LATENT_DOWNSAMPLE_FACTOR + + @property + def output_sample_rate(self) -> int: + output_rate = getattr(self.vocoder, "output_sample_rate", None) + if output_rate is not None: + return int(output_rate) + upsample_factor = getattr(self.vocoder, "upsample_factor", None) + if upsample_factor is None: + raise AttributeError( + "Vocoder is missing upsample_factor; cannot infer output sample rate" + ) + return int(self.sample_rate * upsample_factor / self.mel_hop_length) + + def memory_required(self, input_shape): + return self.device_manager.patcher.model_size() diff --git a/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py b/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py new file mode 100644 index 000000000..f12b9bb53 --- /dev/null +++ b/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py @@ -0,0 +1,909 @@ +from __future__ import annotations +import torch +from torch import nn +from torch.nn import functional as F +from typing import Optional +from enum import Enum +from .pixel_norm import PixelNorm +import comfy.ops +import logging + +ops = comfy.ops.disable_weight_init + + +class StringConvertibleEnum(Enum): + """ + Base enum class that provides string-to-enum conversion functionality. + + This mixin adds a str_to_enum() class method that handles conversion from + strings, None, or existing enum instances with case-insensitive matching. + """ + + @classmethod + def str_to_enum(cls, value): + """ + Convert a string, enum instance, or None to the appropriate enum member. + + Args: + value: Can be an enum instance of this class, a string, or None + + Returns: + Enum member of this class + + Raises: + ValueError: If the value cannot be converted to a valid enum member + """ + # Already an enum instance of this class + if isinstance(value, cls): + return value + + # None maps to NONE member if it exists + if value is None: + if hasattr(cls, "NONE"): + return cls.NONE + raise ValueError(f"{cls.__name__} does not have a NONE member to map None to") + + # String conversion (case-insensitive) + if isinstance(value, str): + value_lower = value.lower() + + # Try to match against enum values + for member in cls: + # Handle members with None values + if member.value is None: + if value_lower == "none": + return member + # Handle members with string values + elif isinstance(member.value, str) and member.value.lower() == value_lower: + return member + + # Build helpful error message with valid values + valid_values = [] + for member in cls: + if member.value is None: + valid_values.append("none") + elif isinstance(member.value, str): + valid_values.append(member.value) + + raise ValueError(f"Invalid {cls.__name__} string: '{value}'. " f"Valid values are: {valid_values}") + + raise ValueError( + f"Cannot convert type {type(value).__name__} to {cls.__name__} enum. " + f"Expected string, None, or {cls.__name__} instance." + ) + + +class AttentionType(StringConvertibleEnum): + """Enum for specifying the attention mechanism type.""" + + VANILLA = "vanilla" + LINEAR = "linear" + NONE = "none" + + +class CausalityAxis(StringConvertibleEnum): + """Enum for specifying the causality axis in causal convolutions.""" + + NONE = None + WIDTH = "width" + HEIGHT = "height" + WIDTH_COMPATIBILITY = "width-compatibility" + + +def Normalize(in_channels, *, num_groups=32, normtype="group"): + if normtype == "group": + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + elif normtype == "pixel": + return PixelNorm(dim=1, eps=1e-6) + else: + raise ValueError(f"Invalid normalization type: {normtype}") + + +class CausalConv2d(nn.Module): + """ + A causal 2D convolution. + + This layer ensures that the output at time `t` only depends on inputs + at time `t` and earlier. It achieves this by applying asymmetric padding + to the time dimension (width) before the convolution. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + dilation=1, + groups=1, + bias=True, + causality_axis: CausalityAxis = CausalityAxis.HEIGHT, + ): + super().__init__() + + self.causality_axis = causality_axis + + # Ensure kernel_size and dilation are tuples + kernel_size = nn.modules.utils._pair(kernel_size) + dilation = nn.modules.utils._pair(dilation) + + # Calculate padding dimensions + pad_h = (kernel_size[0] - 1) * dilation[0] + pad_w = (kernel_size[1] - 1) * dilation[1] + + # The padding tuple for F.pad is (pad_left, pad_right, pad_top, pad_bottom) + match self.causality_axis: + case CausalityAxis.NONE: + self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2) + case CausalityAxis.WIDTH | CausalityAxis.WIDTH_COMPATIBILITY: + self.padding = (pad_w, 0, pad_h // 2, pad_h - pad_h // 2) + case CausalityAxis.HEIGHT: + self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h, 0) + case _: + raise ValueError(f"Invalid causality_axis: {causality_axis}") + + # The internal convolution layer uses no padding, as we handle it manually + self.conv = ops.Conv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=0, + dilation=dilation, + groups=groups, + bias=bias, + ) + + def forward(self, x): + # Apply causal padding before convolution + x = F.pad(x, self.padding) + return self.conv(x) + + +def make_conv2d( + in_channels, + out_channels, + kernel_size, + stride=1, + padding=None, + dilation=1, + groups=1, + bias=True, + causality_axis: Optional[CausalityAxis] = None, +): + """ + Create a 2D convolution layer that can be either causal or non-causal. + + Args: + in_channels: Number of input channels + out_channels: Number of output channels + kernel_size: Size of the convolution kernel + stride: Convolution stride + padding: Padding (if None, will be calculated based on causal flag) + dilation: Dilation rate + groups: Number of groups for grouped convolution + bias: Whether to use bias + causality_axis: Dimension along which to apply causality. + + Returns: + Either a regular Conv2d or CausalConv2d layer + """ + if causality_axis is not None: + # For causal convolution, padding is handled internally by CausalConv2d + return CausalConv2d(in_channels, out_channels, kernel_size, stride, dilation, groups, bias, causality_axis) + else: + # For non-causal convolution, use symmetric padding if not specified + if padding is None: + if isinstance(kernel_size, int): + padding = kernel_size // 2 + else: + padding = tuple(k // 2 for k in kernel_size) + return ops.Conv2d( + in_channels, + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.HEIGHT): + super().__init__() + self.with_conv = with_conv + self.causality_axis = causality_axis + if self.with_conv: + self.conv = make_conv2d(in_channels, in_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + # Drop FIRST element in the causal axis to undo encoder's padding, while keeping the length 1 + 2 * n. + # For example, if the input is [0, 1, 2], after interpolation, the output is [0, 0, 1, 1, 2, 2]. + # The causal convolution will pad the first element as [-, -, 0, 0, 1, 1, 2, 2], + # So the output elements rely on the following windows: + # 0: [-,-,0] + # 1: [-,0,0] + # 2: [0,0,1] + # 3: [0,1,1] + # 4: [1,1,2] + # 5: [1,2,2] + # Notice that the first and second elements in the output rely only on the first element in the input, + # while all other elements rely on two elements in the input. + # So we can drop the first element to undo the padding (rather than the last element). + # This is a no-op for non-causal convolutions. + match self.causality_axis: + case CausalityAxis.NONE: + pass # x remains unchanged + case CausalityAxis.HEIGHT: + x = x[:, :, 1:, :] + case CausalityAxis.WIDTH: + x = x[:, :, :, 1:] + case CausalityAxis.WIDTH_COMPATIBILITY: + pass # x remains unchanged + case _: + raise ValueError(f"Invalid causality_axis: {self.causality_axis}") + + return x + + +class Downsample(nn.Module): + """ + A downsampling layer that can use either a strided convolution + or average pooling. Supports standard and causal padding for the + convolutional mode. + """ + + def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.WIDTH): + super().__init__() + self.with_conv = with_conv + self.causality_axis = causality_axis + + if self.causality_axis != CausalityAxis.NONE and not self.with_conv: + raise ValueError("causality is only supported when `with_conv=True`.") + + if self.with_conv: + # Do time downsampling here + # no asymmetric padding in torch conv, must do it ourselves + self.conv = ops.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, x): + if self.with_conv: + # (pad_left, pad_right, pad_top, pad_bottom) + match self.causality_axis: + case CausalityAxis.NONE: + pad = (0, 1, 0, 1) + case CausalityAxis.WIDTH: + pad = (2, 0, 0, 1) + case CausalityAxis.HEIGHT: + pad = (0, 1, 2, 0) + case CausalityAxis.WIDTH_COMPATIBILITY: + pad = (1, 0, 0, 1) + case _: + raise ValueError(f"Invalid causality_axis: {self.causality_axis}") + + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + # This branch is only taken if with_conv=False, which implies causality_axis is NONE. + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + norm_type="group", + causality_axis: CausalityAxis = CausalityAxis.HEIGHT, + ): + super().__init__() + self.causality_axis = causality_axis + + if self.causality_axis != CausalityAxis.NONE and norm_type == "group": + raise ValueError("Causal ResnetBlock with GroupNorm is not supported.") + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels, normtype=norm_type) + self.non_linearity = nn.SiLU() + self.conv1 = make_conv2d(in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + if temb_channels > 0: + self.temb_proj = ops.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, normtype=norm_type) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = make_conv2d(out_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = make_conv2d( + in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis + ) + else: + self.nin_shortcut = make_conv2d( + in_channels, out_channels, kernel_size=1, stride=1, causality_axis=causality_axis + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = self.non_linearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(self.non_linearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = self.non_linearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class AttnBlock(nn.Module): + def __init__(self, in_channels, norm_type="group"): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels, normtype=norm_type) + self.q = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.k = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.v = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.proj_out = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w).contiguous() + q = q.permute(0, 2, 1).contiguous() # b,hw,c + k = k.reshape(b, c, h * w).contiguous() # b,c,hw + w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w).contiguous() + w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v, w_).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w).contiguous() + + h_ = self.proj_out(h_) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla", norm_type="group"): + # Convert string to enum if needed + attn_type = AttentionType.str_to_enum(attn_type) + + if attn_type != AttentionType.NONE: + logging.info(f"making attention of type '{attn_type.value}' with {in_channels} in_channels") + else: + logging.info(f"making identity attention with {in_channels} in_channels") + + match attn_type: + case AttentionType.VANILLA: + return AttnBlock(in_channels, norm_type=norm_type) + case AttentionType.NONE: + return nn.Identity(in_channels) + case AttentionType.LINEAR: + raise NotImplementedError(f"Attention type {attn_type.value} is not supported yet.") + case _: + raise ValueError(f"Unknown attention type: {attn_type}") + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + attn_type="vanilla", + mid_block_add_attention=True, + norm_type="group", + causality_axis=CausalityAxis.WIDTH.value, + **ignore_kwargs, + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.z_channels = z_channels + self.double_z = double_z + self.norm_type = norm_type + # Convert string to enum if needed (for config loading) + causality_axis = CausalityAxis.str_to_enum(causality_axis) + self.attn_type = AttentionType.str_to_enum(attn_type) + + # downsampling + self.conv_in = make_conv2d( + in_channels, + self.ch, + kernel_size=3, + stride=1, + causality_axis=causality_axis, + ) + + self.non_linearity = nn.SiLU() + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + + for _ in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)) + + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv, causality_axis=causality_axis) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + if mid_block_add_attention: + self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type) + else: + self.mid.attn_1 = nn.Identity() + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + + # end + self.norm_out = Normalize(block_in, normtype=self.norm_type) + self.conv_out = make_conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + causality_axis=causality_axis, + ) + + def forward(self, x): + """ + Forward pass through the encoder. + + Args: + x: Input tensor of shape [batch, channels, time, n_mels] + + Returns: + Encoded latent representation + """ + feature_maps = [self.conv_in(x)] + + # Process each resolution level (from high to low resolution) + for resolution_level in range(self.num_resolutions): + # Apply residual blocks at current resolution level + for block_idx in range(self.num_res_blocks): + # Apply ResNet block with optional timestep embedding + current_features = self.down[resolution_level].block[block_idx](feature_maps[-1], temb=None) + + # Apply attention if configured for this resolution level + if len(self.down[resolution_level].attn) > 0: + current_features = self.down[resolution_level].attn[block_idx](current_features) + + # Store processed features + feature_maps.append(current_features) + + # Downsample spatial dimensions (except at the final resolution level) + if resolution_level != self.num_resolutions - 1: + downsampled_features = self.down[resolution_level].downsample(feature_maps[-1]) + feature_maps.append(downsampled_features) + + # === MIDDLE PROCESSING PHASE === + # Take the lowest resolution features for middle processing + bottleneck_features = feature_maps[-1] + + # Apply first middle ResNet block + bottleneck_features = self.mid.block_1(bottleneck_features, temb=None) + + # Apply middle attention block + bottleneck_features = self.mid.attn_1(bottleneck_features) + + # Apply second middle ResNet block + bottleneck_features = self.mid.block_2(bottleneck_features, temb=None) + + # === OUTPUT PHASE === + # Normalize the bottleneck features + output_features = self.norm_out(bottleneck_features) + + # Apply non-linearity (SiLU activation) + output_features = self.non_linearity(output_features) + + # Final convolution to produce latent representation + # [batch, channels, time, n_mels] -> [batch, 2 * z_channels if double_z else z_channels, time, n_mels] + return self.conv_out(output_features) + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + attn_type="vanilla", + mid_block_add_attention=True, + norm_type="group", + causality_axis=CausalityAxis.WIDTH.value, + **ignorekwargs, + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.out_ch = out_ch + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + self.norm_type = norm_type + self.z_channels = z_channels + # Convert string to enum if needed (for config loading) + causality_axis = CausalityAxis.str_to_enum(causality_axis) + self.attn_type = AttentionType.str_to_enum(attn_type) + + # compute block_in and curr_res at lowest res + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + + # z to block_in + self.conv_in = make_conv2d(z_channels, block_in, kernel_size=3, stride=1, causality_axis=causality_axis) + + self.non_linearity = nn.SiLU() + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + if mid_block_add_attention: + self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type) + else: + self.mid.attn_1 = nn.Identity() + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for _ in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv, causality_axis=causality_axis) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in, normtype=self.norm_type) + self.conv_out = make_conv2d(block_in, out_ch, kernel_size=3, stride=1, causality_axis=causality_axis) + + def _adjust_output_shape(self, decoded_output, target_shape): + """ + Adjust output shape to match target dimensions for variable-length audio. + + This function handles the common case where decoded audio spectrograms need to be + resized to match a specific target shape. + + Args: + decoded_output: Tensor of shape (batch, channels, time, frequency) + target_shape: Target shape tuple (batch, channels, time, frequency) + + Returns: + Tensor adjusted to match target_shape exactly + """ + # Current output shape: (batch, channels, time, frequency) + _, _, current_time, current_freq = decoded_output.shape + _, target_channels, target_time, target_freq = target_shape + + # Step 1: Crop first to avoid exceeding target dimensions + decoded_output = decoded_output[ + :, :target_channels, : min(current_time, target_time), : min(current_freq, target_freq) + ] + + # Step 2: Calculate padding needed for time and frequency dimensions + time_padding_needed = target_time - decoded_output.shape[2] + freq_padding_needed = target_freq - decoded_output.shape[3] + + # Step 3: Apply padding if needed + if time_padding_needed > 0 or freq_padding_needed > 0: + # PyTorch padding format: (pad_left, pad_right, pad_top, pad_bottom) + # For audio: pad_left/right = frequency, pad_top/bottom = time + padding = ( + 0, + max(freq_padding_needed, 0), # frequency padding (left, right) + 0, + max(time_padding_needed, 0), # time padding (top, bottom) + ) + decoded_output = F.pad(decoded_output, padding) + + # Step 4: Final safety crop to ensure exact target shape + decoded_output = decoded_output[:, :target_channels, :target_time, :target_freq] + + return decoded_output + + def get_config(self): + return { + "ch": self.ch, + "out_ch": self.out_ch, + "ch_mult": self.ch_mult, + "num_res_blocks": self.num_res_blocks, + "in_channels": self.in_channels, + "resolution": self.resolution, + "z_channels": self.z_channels, + } + + def forward(self, latent_features, target_shape=None): + """ + Decode latent features back to audio spectrograms. + + Args: + latent_features: Encoded latent representation of shape (batch, channels, height, width) + target_shape: Optional target output shape (batch, channels, time, frequency) + If provided, output will be cropped/padded to match this shape + + Returns: + Reconstructed audio spectrogram of shape (batch, channels, time, frequency) + """ + assert target_shape is not None, "Target shape is required for CausalAudioAutoencoder Decoder" + + # Transform latent features to decoder's internal feature dimension + hidden_features = self.conv_in(latent_features) + + # Middle processing + hidden_features = self.mid.block_1(hidden_features, temb=None) + hidden_features = self.mid.attn_1(hidden_features) + hidden_features = self.mid.block_2(hidden_features, temb=None) + + # Upsampling + # Progressively increase spatial resolution from lowest to highest + for resolution_level in reversed(range(self.num_resolutions)): + # Apply residual blocks at current resolution level + for block_index in range(self.num_res_blocks + 1): + hidden_features = self.up[resolution_level].block[block_index](hidden_features, temb=None) + + if len(self.up[resolution_level].attn) > 0: + hidden_features = self.up[resolution_level].attn[block_index](hidden_features) + + if resolution_level != 0: + hidden_features = self.up[resolution_level].upsample(hidden_features) + + # Output + if self.give_pre_end: + # Return intermediate features before final processing (for debugging/analysis) + decoded_output = hidden_features + else: + # Standard output path: normalize, activate, and convert to output channels + # Final normalization layer + hidden_features = self.norm_out(hidden_features) + + # Apply SiLU (Swish) activation function + hidden_features = self.non_linearity(hidden_features) + + # Final convolution to map to output channels (typically 2 for stereo audio) + decoded_output = self.conv_out(hidden_features) + + # Optional tanh activation to bound output values to [-1, 1] range + if self.tanh_out: + decoded_output = torch.tanh(decoded_output) + + # Adjust shape for audio data + if target_shape is not None: + decoded_output = self._adjust_output_shape(decoded_output, target_shape) + + return decoded_output + + +class processor(nn.Module): + def __init__(self): + super().__init__() + self.register_buffer("std-of-means", torch.empty(128)) + self.register_buffer("mean-of-means", torch.empty(128)) + + def un_normalize(self, x): + return (x * self.get_buffer("std-of-means").to(x)) + self.get_buffer("mean-of-means").to(x) + + def normalize(self, x): + return (x - self.get_buffer("mean-of-means").to(x)) / self.get_buffer("std-of-means").to(x) + + +class CausalAudioAutoencoder(nn.Module): + def __init__(self, config=None): + super().__init__() + + if config is None: + config = self._guess_config() + + # Extract encoder and decoder configs from the new format + model_config = config.get("model", {}).get("params", {}) + variables_config = config.get("variables", {}) + + self.sampling_rate = variables_config.get( + "sampling_rate", + model_config.get("sampling_rate", config.get("sampling_rate", 16000)), + ) + encoder_config = model_config.get("encoder", model_config.get("ddconfig", {})) + decoder_config = model_config.get("decoder", encoder_config) + + # Load mel spectrogram parameters + self.mel_bins = encoder_config.get("mel_bins", 64) + self.mel_hop_length = model_config.get("preprocessing", {}).get("stft", {}).get("hop_length", 160) + self.n_fft = model_config.get("preprocessing", {}).get("stft", {}).get("filter_length", 1024) + + # Store causality configuration at VAE level (not just in encoder internals) + causality_axis_value = encoder_config.get("causality_axis", CausalityAxis.WIDTH.value) + self.causality_axis = CausalityAxis.str_to_enum(causality_axis_value) + self.is_causal = self.causality_axis == CausalityAxis.HEIGHT + + self.encoder = Encoder(**encoder_config) + self.decoder = Decoder(**decoder_config) + + self.per_channel_statistics = processor() + + def _guess_config(self): + encoder_config = { + # Required parameters - based on ltx-video-av-1679000 model metadata + "ch": 128, + "out_ch": 8, + "ch_mult": [1, 2, 4], # Based on metadata: [1, 2, 4] not [1, 2, 4, 8] + "num_res_blocks": 2, + "attn_resolutions": [], # Based on metadata: empty list, no attention + "dropout": 0.0, + "resamp_with_conv": True, + "in_channels": 2, # stereo + "resolution": 256, + "z_channels": 8, + "double_z": True, + "attn_type": "vanilla", + "mid_block_add_attention": False, # Based on metadata: false + "norm_type": "pixel", + "causality_axis": "height", # Based on metadata + "mel_bins": 64, # Based on metadata: mel_bins = 64 + } + + decoder_config = { + # Inherits encoder config, can override specific params + **encoder_config, + "out_ch": 2, # Stereo audio output (2 channels) + "give_pre_end": False, + "tanh_out": False, + } + + config = { + "_class_name": "CausalAudioAutoencoder", + "sampling_rate": 16000, + "model": { + "params": { + "encoder": encoder_config, + "decoder": decoder_config, + } + }, + } + + return config + + def get_config(self): + return { + "sampling_rate": self.sampling_rate, + "mel_bins": self.mel_bins, + "mel_hop_length": self.mel_hop_length, + "n_fft": self.n_fft, + "causality_axis": self.causality_axis.value, + "is_causal": self.is_causal, + } + + def encode(self, x): + return self.encoder(x) + + def decode(self, x, target_shape=None): + return self.decoder(x, target_shape=target_shape) diff --git a/comfy/ldm/lightricks/vocoders/vocoder.py b/comfy/ldm/lightricks/vocoders/vocoder.py new file mode 100644 index 000000000..b1f15f2c5 --- /dev/null +++ b/comfy/ldm/lightricks/vocoders/vocoder.py @@ -0,0 +1,213 @@ +import torch +import torch.nn.functional as F +import torch.nn as nn +import comfy.ops +import numpy as np + +ops = comfy.ops.disable_weight_init + +LRELU_SLOPE = 0.1 + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ), + ] + ) + + self.convs2 = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ] + ) + + def forward(self, x): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + xt = c2(xt) + x = xt + x + return x + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ), + ] + ) + + def forward(self, x): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c(xt) + x = xt + x + return x + + +class Vocoder(torch.nn.Module): + """ + Vocoder model for synthesizing audio from spectrograms, based on: https://github.com/jik876/hifi-gan. + + """ + + def __init__(self, config=None): + super(Vocoder, self).__init__() + + if config is None: + config = self.get_default_config() + + resblock_kernel_sizes = config.get("resblock_kernel_sizes", [3, 7, 11]) + upsample_rates = config.get("upsample_rates", [6, 5, 2, 2, 2]) + upsample_kernel_sizes = config.get("upsample_kernel_sizes", [16, 15, 8, 4, 4]) + resblock_dilation_sizes = config.get("resblock_dilation_sizes", [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) + upsample_initial_channel = config.get("upsample_initial_channel", 1024) + stereo = config.get("stereo", True) + resblock = config.get("resblock", "1") + + self.output_sample_rate = config.get("output_sample_rate") + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + in_channels = 128 if stereo else 64 + self.conv_pre = ops.Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3) + resblock_class = ResBlock1 if resblock == "1" else ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + ops.ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock_class(ch, k, d)) + + out_channels = 2 if stereo else 1 + self.conv_post = ops.Conv1d(ch, out_channels, 7, 1, padding=3) + + self.upsample_factor = np.prod([self.ups[i].stride[0] for i in range(len(self.ups))]) + + def get_default_config(self): + """Generate default configuration for the vocoder.""" + + config = { + "resblock_kernel_sizes": [3, 7, 11], + "upsample_rates": [6, 5, 2, 2, 2], + "upsample_kernel_sizes": [16, 15, 8, 4, 4], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "upsample_initial_channel": 1024, + "stereo": True, + "resblock": "1", + } + + return config + + def forward(self, x): + """ + Forward pass of the vocoder. + + Args: + x: Input spectrogram tensor. Can be: + - 3D: (batch_size, channels, time_steps) for mono + - 4D: (batch_size, 2, channels, time_steps) for stereo + + Returns: + Audio tensor of shape (batch_size, out_channels, audio_length) + """ + if x.dim() == 4: # stereo + assert x.shape[1] == 2, "Input must have 2 channels for stereo" + x = torch.cat((x[:, 0, :, :], x[:, 1, :, :]), dim=1) + x = self.conv_pre(x) + for i in range(self.num_upsamples): + x = F.leaky_relu(x, LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x diff --git a/comfy/model_base.py b/comfy/model_base.py index c4f3c0639..49efd700b 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -20,6 +20,7 @@ import comfy.ldm.hunyuan3dv2_1 import comfy.ldm.hunyuan3dv2_1.hunyuandit import torch import logging +import comfy.ldm.lightricks.av_model from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep from comfy.ldm.cascade.stage_c import StageC from comfy.ldm.cascade.stage_b import StageB @@ -946,7 +947,7 @@ class GenmoMochi(BaseModel): class LTXV(BaseModel): def __init__(self, model_config, model_type=ModelType.FLUX, device=None): - super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) @@ -977,6 +978,60 @@ class LTXV(BaseModel): def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): return latent_image +class LTXAV(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLUX, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.av_model.LTXAVModel) #TODO + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) + + denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + + audio_denoise_mask = None + if denoise_mask is not None and "latent_shapes" in kwargs: + denoise_mask = utils.unpack_latents(denoise_mask, kwargs["latent_shapes"]) + if len(denoise_mask) > 1: + audio_denoise_mask = denoise_mask[1] + denoise_mask = denoise_mask[0] + + if denoise_mask is not None: + out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask) + + if audio_denoise_mask is not None: + out["audio_denoise_mask"] = comfy.conds.CONDRegular(audio_denoise_mask) + + keyframe_idxs = kwargs.get("keyframe_idxs", None) + if keyframe_idxs is not None: + out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs) + + latent_shapes = kwargs.get("latent_shapes", None) + if latent_shapes is not None: + out['latent_shapes'] = comfy.conds.CONDConstant(latent_shapes) + + return out + + def process_timestep(self, timestep, x, denoise_mask=None, audio_denoise_mask=None, **kwargs): + v_timestep = timestep + a_timestep = timestep + + if denoise_mask is not None: + v_timestep = self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0] + if audio_denoise_mask is not None: + a_timestep = self.diffusion_model.a_patchifier.patchify(((audio_denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (audio_denoise_mask.ndim - 1)))[:, :1, :, :1])[0] + + return v_timestep, a_timestep + + def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): + return latent_image + class HunyuanVideo(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 539e296ed..0853b3aec 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -305,7 +305,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv dit_config = {} - dit_config["image_model"] = "ltxv" + dit_config["image_model"] = "ltxav" if f'{key_prefix}audio_adaln_single.linear.weight' in state_dict_keys else "ltxv" dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape dit_config["attention_head_dim"] = shape[0] // 32 diff --git a/comfy/sd.py b/comfy/sd.py index 7de7dd9c6..32157e18b 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1041,7 +1041,8 @@ class TEModel(Enum): MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 QWEN3_2B = 17 - JINA_CLIP_2 = 18 + GEMMA_3_12B = 18 + JINA_CLIP_2 = 19 def detect_te_model(sd): @@ -1067,6 +1068,8 @@ def detect_te_model(sd): return TEModel.BYT5_SMALL_GLYPH return TEModel.T5_BASE if 'model.layers.0.post_feedforward_layernorm.weight' in sd: + if 'model.layers.47.self_attn.q_norm.weight' in sd: + return TEModel.GEMMA_3_12B if 'model.layers.0.self_attn.q_norm.weight' in sd: return TEModel.GEMMA_3_4B return TEModel.GEMMA_2_2B @@ -1271,6 +1274,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.KANDINSKY5_IMAGE: clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage + elif clip_type == CLIPType.LTXV: + clip_target.clip = comfy.text_encoders.lt.ltxav_te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.lt.LTXAVGemmaTokenizer + tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif clip_type == CLIPType.NEWBIE: clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 1888f35ba..ee9a79001 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -836,6 +836,21 @@ class LTXV(supported_models_base.BASE): t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect)) +class LTXAV(LTXV): + unet_config = { + "image_model": "ltxav", + } + + latent_format = latent_formats.LTXAV + + def __init__(self, unet_config): + super().__init__(unet_config) + self.memory_usage_factor = 0.055 # TODO + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.LTXAV(self, device=device) + return out + class HunyuanVideo(supported_models_base.BASE): unet_config = { "image_model": "hunyuan_video", @@ -1536,6 +1551,6 @@ class Kandinsky5Image(Kandinsky5): return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index faa4e1de8..76731576b 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -7,6 +7,7 @@ import math from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management import comfy.ldm.common_dit +import comfy.clip_model from . import qwen_vl @@ -188,6 +189,31 @@ class Gemma3_4B_Config: rope_scale = [8.0, 1.0] final_norm: bool = True +@dataclass +class Gemma3_12B_Config: + vocab_size: int = 262208 + hidden_size: int = 3840 + intermediate_size: int = 15360 + num_hidden_layers: int = 48 + num_attention_heads: int = 16 + num_key_value_heads: int = 8 + max_position_embeddings: int = 131072 + rms_norm_eps: float = 1e-6 + rope_theta = [1000000.0, 10000.0] + transformer_type: str = "gemma3" + head_dim = 256 + rms_norm_add = True + mlp_activation = "gelu_pytorch_tanh" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + sliding_attention = [1024, 1024, 1024, 1024, 1024, False] + rope_scale = [8.0, 1.0] + final_norm: bool = True + vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14} + mm_tokens_per_image = 256 + class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None): super().__init__() @@ -520,6 +546,41 @@ class Llama2_(nn.Module): return x, intermediate + +class Gemma3MultiModalProjector(torch.nn.Module): + def __init__(self, config, dtype, device, operations): + super().__init__() + + self.mm_input_projection_weight = nn.Parameter( + torch.empty(config.vision_config["hidden_size"], config.hidden_size, device=device, dtype=dtype) + ) + + self.mm_soft_emb_norm = RMSNorm(config.vision_config["hidden_size"], eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + + self.patches_per_image = int(config.vision_config["image_size"] // config.vision_config["patch_size"]) + self.tokens_per_side = int(config.mm_tokens_per_image**0.5) + self.kernel_size = self.patches_per_image // self.tokens_per_side + self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size) + + def forward(self, vision_outputs: torch.Tensor): + batch_size, _, seq_length = vision_outputs.shape + + reshaped_vision_outputs = vision_outputs.transpose(1, 2) + reshaped_vision_outputs = reshaped_vision_outputs.reshape( + batch_size, seq_length, self.patches_per_image, self.patches_per_image + ) + reshaped_vision_outputs = reshaped_vision_outputs.contiguous() + + pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs) + pooled_vision_outputs = pooled_vision_outputs.flatten(2) + pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2) + + normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs) + + projected_vision_outputs = torch.matmul(normed_vision_outputs, comfy.model_management.cast_to_device(self.mm_input_projection_weight, device=normed_vision_outputs.device, dtype=normed_vision_outputs.dtype)) + return projected_vision_outputs.type_as(vision_outputs) + + class BaseLlama: def get_input_embeddings(self): return self.model.embed_tokens @@ -636,3 +697,21 @@ class Gemma3_4B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype + +class Gemma3_12B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Gemma3_12B_Config(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.multi_modal_projector = Gemma3MultiModalProjector(config, dtype, device, operations) + self.vision_model = comfy.clip_model.CLIPVision(config.vision_config, dtype, device, operations) + self.dtype = dtype + self.image_size = config.vision_config["image_size"] + + def preprocess_embed(self, embed, device): + if embed["type"] == "image": + image = comfy.clip_model.clip_preprocess(embed["data"], size=self.image_size, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True) + return self.multi_modal_projector(self.vision_model(image.to(device, dtype=torch.float32))[0]), None + return None, None diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 48ea67e67..2c2d453e8 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -1,7 +1,11 @@ from comfy import sd1_clip import os from transformers import T5TokenizerFast +from .spiece_tokenizer import SPieceTokenizer import comfy.text_encoders.genmo +from comfy.ldm.lightricks.embeddings_connector import Embeddings1DConnector +import torch +import comfy.utils class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): @@ -16,3 +20,110 @@ class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer): def ltxv_te(*args, **kwargs): return comfy.text_encoders.genmo.mochi_te(*args, **kwargs) + + +class Gemma3_12BTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} + +class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_12b", tokenizer=Gemma3_12BTokenizer) + +class Gemma3_12BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None) + if llama_scaled_fp8 is not None: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template="{}", image_embeds=None, **kwargs): + text = llama_template.format(text) + text_tokens = super().tokenize_with_weights(text, return_word_ids) + embed_count = 0 + for k in text_tokens: + tt = text_tokens[k] + for r in tt: + for i in range(len(r)): + if r[i][0] == 262144: + if image_embeds is not None and embed_count < image_embeds.shape[0]: + r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:] + embed_count += 1 + return text_tokens + +class LTXAVTEModel(torch.nn.Module): + def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): + super().__init__() + self.dtypes = set() + self.dtypes.add(dtype) + + self.gemma3_12b = Gemma3_12BModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None) + self.dtypes.add(dtype_llama) + + operations = self.gemma3_12b.operations # TODO + self.text_embedding_projection = operations.Linear(3840 * 49, 3840, bias=False, dtype=dtype, device=device) + + self.audio_embeddings_connector = Embeddings1DConnector( + split_rope=True, + double_precision_rope=True, + dtype=dtype, + device=device, + operations=operations, + ) + + self.video_embeddings_connector = Embeddings1DConnector( + split_rope=True, + double_precision_rope=True, + dtype=dtype, + device=device, + operations=operations, + ) + + def set_clip_options(self, options): + self.gemma3_12b.set_clip_options(options) + + def reset_clip_options(self): + self.gemma3_12b.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs = token_weight_pairs["gemma3_12b"] + + out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) + out_device = out.device + out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device) + out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) + out = out.reshape((out.shape[0], out.shape[1], -1)) + out = self.text_embedding_projection(out) + out_vid = self.video_embeddings_connector(out)[0] + out_audio = self.audio_embeddings_connector(out)[0] + out = torch.concat((out_vid, out_audio), dim=-1) + + return out.to(out_device), pooled + + def load_sd(self, sd): + if "model.layers.47.self_attn.q_norm.weight" in sd: + return self.gemma3_12b.load_sd(sd) + else: + sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True) + if len(sdo) == 0: + sdo = sd + + return self.load_state_dict(sdo, strict=False) + + +def ltxav_te(dtype_llama=None, llama_scaled_fp8=None): + class LTXAVTEModel_(LTXAVTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["llama_scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) + return LTXAVTEModel_ diff --git a/comfy/utils.py b/comfy/utils.py index e4162d7ac..ffa98c9b1 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1198,7 +1198,7 @@ def unpack_latents(combined_latent, latent_shapes): combined_latent = combined_latent[:, :, cut:] output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:])) else: - output_tensors = combined_latent + output_tensors = [combined_latent] return output_tensors def detect_layer_quantization(state_dict, prefix): diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index c7916443c..94ad5e8a8 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -112,7 +112,7 @@ class VAEDecodeAudio(IO.ComfyNode): std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std - return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) + return IO.NodeOutput({"waveform": audio, "sample_rate": 44100 if "sample_rate" not in samples else samples["sample_rate"]}) decode = execute # TODO: remove diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index 32be182f1..ceff657d3 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -5,7 +5,9 @@ import comfy.model_management from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel +from comfy.ldm.lightricks.latent_upsampler import LatentUpsampler import folder_paths +import json class CLIPTextEncodeHunyuanDiT(io.ComfyNode): @classmethod @@ -186,7 +188,7 @@ class LatentUpscaleModelLoader(io.ComfyNode): @classmethod def execute(cls, model_name) -> io.NodeOutput: model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name) - sd = comfy.utils.load_torch_file(model_path, safe_load=True) + sd, metadata = comfy.utils.load_torch_file(model_path, safe_load=True, return_metadata=True) if "blocks.0.block.0.conv.weight" in sd: config = { @@ -197,6 +199,8 @@ class LatentUpscaleModelLoader(io.ComfyNode): "global_residual": False, } model_type = "720p" + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) elif "up.0.block.0.conv1.conv.weight" in sd: sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()} config = { @@ -205,9 +209,12 @@ class LatentUpscaleModelLoader(io.ComfyNode): "block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))), } model_type = "1080p" - - model = HunyuanVideo15SRModel(model_type, config) - model.load_sd(sd) + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) + elif "post_upsample_res_blocks.0.conv2.bias" in sd: + config = json.loads(metadata["config"]) + model = LatentUpsampler.from_config(config).to(dtype=comfy.model_management.vae_dtype(allowed_dtypes=[torch.bfloat16, torch.float32])) + model.load_state_dict(sd) return io.NodeOutput(model) diff --git a/comfy_extras/nodes_lt.py b/comfy_extras/nodes_lt.py index 50da5f4eb..b91a22309 100644 --- a/comfy_extras/nodes_lt.py +++ b/comfy_extras/nodes_lt.py @@ -81,6 +81,59 @@ class LTXVImgToVideo(io.ComfyNode): generate = execute # TODO: remove +class LTXVImgToVideoInplace(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVImgToVideoInplace", + category="conditioning/video_models", + inputs=[ + io.Vae.Input("vae"), + io.Image.Input("image"), + io.Latent.Input("latent"), + io.Float.Input("strength", default=1.0, min=0.0, max=1.0), + io.Boolean.Input("bypass", default=False, tooltip="Bypass the conditioning.") + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, vae, image, latent, strength, bypass=False) -> io.NodeOutput: + if bypass: + return (latent,) + + samples = latent["samples"] + _, height_scale_factor, width_scale_factor = ( + vae.downscale_index_formula + ) + + batch, _, latent_frames, latent_height, latent_width = samples.shape + width = latent_width * width_scale_factor + height = latent_height * height_scale_factor + + if image.shape[1] != height or image.shape[2] != width: + pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + else: + pixels = image + encode_pixels = pixels[:, :, :, :3] + t = vae.encode(encode_pixels) + + samples[:, :, :t.shape[2]] = t + + conditioning_latent_frames_mask = torch.ones( + (batch, 1, latent_frames, 1, 1), + dtype=torch.float32, + device=samples.device, + ) + conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength + + return io.NodeOutput({"samples": samples, "noise_mask": conditioning_latent_frames_mask}) + + generate = execute # TODO: remove + + def conditioning_get_any_value(conditioning, key, default=None): for t in conditioning: if key in t[1]: @@ -106,12 +159,12 @@ def get_keyframe_idxs(cond): keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None) if keyframe_idxs is None: return None, 0 - num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0] + # keyframe_idxs contains start/end positions (last dimension), checking for unqiue values only for start + num_keyframes = torch.unique(keyframe_idxs[:, 0, :, 0]).shape[0] return keyframe_idxs, num_keyframes class LTXVAddGuide(io.ComfyNode): - NUM_PREFIX_FRAMES = 2 - PATCHIFIER = SymmetricPatchifier(1) + PATCHIFIER = SymmetricPatchifier(1, start_end=True) @classmethod def define_schema(cls): @@ -182,26 +235,35 @@ class LTXVAddGuide(io.ComfyNode): return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs}) @classmethod - def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors): - _, latent_idx = cls.get_latent_index( - cond=positive, - latent_length=latent_image.shape[2], - guide_length=guiding_latent.shape[2], - frame_idx=frame_idx, - scale_factors=scale_factors, - ) - noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0 + def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors, guide_mask=None, in_channels=128): + if latent_image.shape[1] != in_channels or guiding_latent.shape[1] != in_channels: + raise ValueError("Adding guide to a combined AV latent is not supported.") positive = cls.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors) negative = cls.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors) - mask = torch.full( - (noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]), - 1.0 - strength, - dtype=noise_mask.dtype, - device=noise_mask.device, - ) + if guide_mask is not None: + target_h = max(noise_mask.shape[3], guide_mask.shape[3]) + target_w = max(noise_mask.shape[4], guide_mask.shape[4]) + if noise_mask.shape[3] == 1 or noise_mask.shape[4] == 1: + noise_mask = noise_mask.expand(-1, -1, -1, target_h, target_w) + + if guide_mask.shape[3] == 1 or guide_mask.shape[4] == 1: + guide_mask = guide_mask.expand(-1, -1, -1, target_h, target_w) + mask = guide_mask - strength + else: + mask = torch.full( + (noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]), + 1.0 - strength, + dtype=noise_mask.dtype, + device=noise_mask.device, + ) + # This solves audio video combined latent case where latent_image has audio latent concatenated + # in channel dimension with video latent. The solution is to pad guiding latent accordingly. + if latent_image.shape[1] > guiding_latent.shape[1]: + pad_len = latent_image.shape[1] - guiding_latent.shape[1] + guiding_latent = torch.nn.functional.pad(guiding_latent, pad=(0, 0, 0, 0, 0, 0, 0, pad_len), value=0) latent_image = torch.cat([latent_image, guiding_latent], dim=2) noise_mask = torch.cat([noise_mask, mask], dim=2) return positive, negative, latent_image, noise_mask @@ -238,33 +300,17 @@ class LTXVAddGuide(io.ComfyNode): frame_idx, latent_idx = cls.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors) assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence." - num_prefix_frames = min(cls.NUM_PREFIX_FRAMES, t.shape[2]) - positive, negative, latent_image, noise_mask = cls.append_keyframe( positive, negative, frame_idx, latent_image, noise_mask, - t[:, :, :num_prefix_frames], + t, strength, scale_factors, ) - latent_idx += num_prefix_frames - - t = t[:, :, num_prefix_frames:] - if t.shape[2] == 0: - return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) - - latent_image, noise_mask = cls.replace_latent_frames( - latent_image, - noise_mask, - t, - latent_idx, - strength, - ) - return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) generate = execute # TODO: remove @@ -507,18 +553,90 @@ class LTXVPreprocess(io.ComfyNode): preprocess = execute # TODO: remove + +import comfy.nested_tensor +class LTXVConcatAVLatent(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVConcatAVLatent", + category="latent/video/ltxv", + inputs=[ + io.Latent.Input("video_latent"), + io.Latent.Input("audio_latent"), + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, video_latent, audio_latent) -> io.NodeOutput: + output = {} + output.update(video_latent) + output.update(audio_latent) + video_noise_mask = video_latent.get("noise_mask", None) + audio_noise_mask = audio_latent.get("noise_mask", None) + + if video_noise_mask is not None or audio_noise_mask is not None: + if video_noise_mask is None: + video_noise_mask = torch.ones_like(video_latent["samples"]) + if audio_noise_mask is None: + audio_noise_mask = torch.ones_like(audio_latent["samples"]) + output["noise_mask"] = comfy.nested_tensor.NestedTensor((video_noise_mask, audio_noise_mask)) + + output["samples"] = comfy.nested_tensor.NestedTensor((video_latent["samples"], audio_latent["samples"])) + + return io.NodeOutput(output) + + +class LTXVSeparateAVLatent(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVSeparateAVLatent", + category="latent/video/ltxv", + description="LTXV Separate AV Latent", + inputs=[ + io.Latent.Input("av_latent"), + ], + outputs=[ + io.Latent.Output(display_name="video_latent"), + io.Latent.Output(display_name="audio_latent"), + ], + ) + + @classmethod + def execute(cls, av_latent) -> io.NodeOutput: + latents = av_latent["samples"].unbind() + video_latent = av_latent.copy() + video_latent["samples"] = latents[0] + audio_latent = av_latent.copy() + audio_latent["samples"] = latents[1] + if "noise_mask" in av_latent: + masks = av_latent["noise_mask"] + if masks is not None: + masks = masks.unbind() + video_latent["noise_mask"] = masks[0] + audio_latent["noise_mask"] = masks[1] + return io.NodeOutput(video_latent, audio_latent) + + class LtxvExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ EmptyLTXVLatentVideo, LTXVImgToVideo, + LTXVImgToVideoInplace, ModelSamplingLTXV, LTXVConditioning, LTXVScheduler, LTXVAddGuide, LTXVPreprocess, LTXVCropGuides, + LTXVConcatAVLatent, + LTXVSeparateAVLatent, ] diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py new file mode 100644 index 000000000..b0b7000ef --- /dev/null +++ b/comfy_extras/nodes_lt_audio.py @@ -0,0 +1,183 @@ +import folder_paths +import comfy.utils +import comfy.model_management +import torch + +from comfy.ldm.lightricks.vae.audio_vae import AudioVAE +from comfy_api.latest import ComfyExtension, io + + +class LTXVAudioVAELoader(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAELoader", + display_name="LTXV Audio VAE Loader", + category="audio", + inputs=[ + io.Combo.Input( + "ckpt_name", + options=folder_paths.get_filename_list("checkpoints"), + tooltip="Audio VAE checkpoint to load.", + ) + ], + outputs=[io.Vae.Output(display_name="Audio VAE")], + ) + + @classmethod + def execute(cls, ckpt_name: str) -> io.NodeOutput: + ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) + sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True) + return io.NodeOutput(AudioVAE(sd, metadata)) + + +class LTXVAudioVAEEncode(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAEEncode", + display_name="LTXV Audio VAE Encode", + category="audio", + inputs=[ + io.Audio.Input("audio", tooltip="The audio to be encoded."), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model to use for encoding.", + ), + ], + outputs=[io.Latent.Output(display_name="Audio Latent")], + ) + + @classmethod + def execute(cls, audio, audio_vae: AudioVAE) -> io.NodeOutput: + audio_latents = audio_vae.encode(audio) + return io.NodeOutput( + { + "samples": audio_latents, + "sample_rate": int(audio_vae.sample_rate), + "type": "audio", + } + ) + + +class LTXVAudioVAEDecode(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAEDecode", + display_name="LTXV Audio VAE Decode", + category="audio", + inputs=[ + io.Latent.Input("samples", tooltip="The latent to be decoded."), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model used for decoding the latent.", + ), + ], + outputs=[io.Audio.Output(display_name="Audio")], + ) + + @classmethod + def execute(cls, samples, audio_vae: AudioVAE) -> io.NodeOutput: + audio_latent = samples["samples"] + if audio_latent.is_nested: + audio_latent = audio_latent.unbind()[-1] + audio = audio_vae.decode(audio_latent).to(audio_latent.device) + output_audio_sample_rate = audio_vae.output_sample_rate + return io.NodeOutput( + { + "waveform": audio, + "sample_rate": int(output_audio_sample_rate), + } + ) + + +class LTXVEmptyLatentAudio(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVEmptyLatentAudio", + display_name="LTXV Empty Latent Audio", + category="latent/audio", + inputs=[ + io.Int.Input( + "frames_number", + default=97, + min=1, + max=1000, + step=1, + display_mode=io.NumberDisplay.number, + tooltip="Number of frames.", + ), + io.Int.Input( + "frame_rate", + default=25, + min=1, + max=1000, + step=1, + display_mode=io.NumberDisplay.number, + tooltip="Number of frames per second.", + ), + io.Int.Input( + "batch_size", + default=1, + min=1, + max=4096, + display_mode=io.NumberDisplay.number, + tooltip="The number of latent audio samples in the batch.", + ), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model to get configuration from.", + ), + ], + outputs=[io.Latent.Output(display_name="Latent")], + ) + + @classmethod + def execute( + cls, + frames_number: int, + frame_rate: int, + batch_size: int, + audio_vae: AudioVAE, + ) -> io.NodeOutput: + """Generate empty audio latents matching the reference pipeline structure.""" + + assert audio_vae is not None, "Audio VAE model is required" + + z_channels = audio_vae.latent_channels + audio_freq = audio_vae.latent_frequency_bins + sampling_rate = int(audio_vae.sample_rate) + + num_audio_latents = audio_vae.num_of_latents_from_frames(frames_number, frame_rate) + + audio_latents = torch.zeros( + (batch_size, z_channels, num_audio_latents, audio_freq), + device=comfy.model_management.intermediate_device(), + ) + + return io.NodeOutput( + { + "samples": audio_latents, + "sample_rate": sampling_rate, + "type": "audio", + } + ) + + +class LTXVAudioExtension(ComfyExtension): + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + LTXVAudioVAELoader, + LTXVAudioVAEEncode, + LTXVAudioVAEDecode, + LTXVEmptyLatentAudio, + ] + + +async def comfy_entrypoint() -> ComfyExtension: + return LTXVAudioExtension() diff --git a/comfy_extras/nodes_lt_upsampler.py b/comfy_extras/nodes_lt_upsampler.py new file mode 100644 index 000000000..f99ba13fb --- /dev/null +++ b/comfy_extras/nodes_lt_upsampler.py @@ -0,0 +1,75 @@ +from comfy import model_management +import math + +class LTXVLatentUpsampler: + """ + Upsamples a video latent by a factor of 2. + """ + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "samples": ("LATENT",), + "upscale_model": ("LATENT_UPSCALE_MODEL",), + "vae": ("VAE",), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "upsample_latent" + CATEGORY = "latent/video" + EXPERIMENTAL = True + + def upsample_latent( + self, + samples: dict, + upscale_model, + vae, + ) -> tuple: + """ + Upsample the input latent using the provided model. + + Args: + samples (dict): Input latent samples + upscale_model (LatentUpsampler): Loaded upscale model + vae: VAE model for normalization + auto_tiling (bool): Whether to automatically tile the input for processing + + Returns: + tuple: Tuple containing the upsampled latent + """ + device = model_management.get_torch_device() + memory_required = model_management.module_size(upscale_model) + + model_dtype = next(upscale_model.parameters()).dtype + latents = samples["samples"] + input_dtype = latents.dtype + + memory_required += math.prod(latents.shape) * 3000.0 # TODO: more accurate + model_management.free_memory(memory_required, device) + + try: + upscale_model.to(device) # TODO: use the comfy model management system. + + latents = latents.to(dtype=model_dtype, device=device) + + """Upsample latents without tiling.""" + latents = vae.first_stage_model.per_channel_statistics.un_normalize(latents) + upsampled_latents = upscale_model(latents) + finally: + upscale_model.cpu() + + upsampled_latents = vae.first_stage_model.per_channel_statistics.normalize( + upsampled_latents + ) + upsampled_latents = upsampled_latents.to(dtype=input_dtype, device=model_management.intermediate_device()) + return_dict = samples.copy() + return_dict["samples"] = upsampled_latents + return_dict.pop("noise_mask", None) + return (return_dict,) + + +NODE_CLASS_MAPPINGS = { + "LTXVLatentUpsampler": LTXVLatentUpsampler, +} diff --git a/nodes.py b/nodes.py index 662907ae6..56b74ebe3 100644 --- a/nodes.py +++ b/nodes.py @@ -295,7 +295,11 @@ class VAEDecode: DESCRIPTION = "Decodes latent images back into pixel space images." def decode(self, vae, samples): - images = vae.decode(samples["samples"]) + latent = samples["samples"] + if latent.is_nested: + latent = latent.unbind()[0] + + images = vae.decode(latent) if len(images.shape) == 5: #Combine batches images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1]) return (images, ) @@ -970,7 +974,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -2331,6 +2335,8 @@ async def init_builtin_extra_nodes(): "nodes_mochi.py", "nodes_slg.py", "nodes_mahiro.py", + "nodes_lt_upsampler.py", + "nodes_lt_audio.py", "nodes_lt.py", "nodes_hooks.py", "nodes_load_3d.py", diff --git a/pyproject.toml b/pyproject.toml index 60378de1e..a7d159be9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ name = "ComfyUI" version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } -requires-python = ">=3.9" +requires-python = ">=3.10" [project.urls] homepage = "https://www.comfy.org/" From d1b9822f741843c64b2cbd8e1bcdd49794b182ce Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 23:27:31 -0800 Subject: [PATCH 22/41] Add LTXAVTextEncoderLoader node. (#11634) --- comfy_extras/nodes_lt_audio.py | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index b0b7000ef..2d3d103b4 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -169,6 +169,38 @@ class LTXVEmptyLatentAudio(io.ComfyNode): ) +class LTXAVTextEncoderLoader(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXAVTextEncoderLoader", + display_name="LTXV Audio Text Encoder Loader", + category="advanced/loaders", + description="[Recipes]\n\nltxav: gemma 3 12B", + inputs=[ + io.Combo.Input( + "text_encoder", + options=folder_paths.get_filename_list("text_encoders"), + ), + io.Combo.Input( + "ckpt_name", + options=folder_paths.get_filename_list("checkpoints"), + ) + ], + outputs=[io.Clip.Output(display_name="Audio VAE")], + ) + + @classmethod + def execute(cls, text_encoder, ckpt_name, device="default"): + clip_type = comfy.sd.CLIPType.LTXV + + clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder) + clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) + + clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) + return io.NodeOutput(clip) + + class LTXVAudioExtension(ComfyExtension): async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ @@ -176,6 +208,7 @@ class LTXVAudioExtension(ComfyExtension): LTXVAudioVAEEncode, LTXVAudioVAEDecode, LTXVEmptyLatentAudio, + LTXAVTextEncoderLoader, ] From d157c3299d6f9e1b57981bdb4931f1d7129e4e8d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 00:48:31 -0800 Subject: [PATCH 23/41] Refactor module_size function. (#11637) --- comfy/model_management.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 2501cecb7..7f5a8aee9 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -456,7 +456,7 @@ def module_size(module): sd = module.state_dict() for k in sd: t = sd[k] - module_mem += t.nelement() * t.element_size() + module_mem += t.nbytes return module_mem class LoadedModel: From 4f3f9e72a9d0c15d00c0c362b8e90f1db5af6cfb Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 02:41:23 -0800 Subject: [PATCH 24/41] Fix name. (#11638) --- comfy_extras/nodes_lt_audio.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index 2d3d103b4..26b0160d2 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -187,7 +187,7 @@ class LTXAVTextEncoderLoader(io.ComfyNode): options=folder_paths.get_filename_list("checkpoints"), ) ], - outputs=[io.Clip.Output(display_name="Audio VAE")], + outputs=[io.Clip.Output()], ) @classmethod From 6da00dd899e3ee6f2a0a8163b080a9f373395025 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 18:48:58 -0800 Subject: [PATCH 25/41] Initial ops changes to use comfy_kitchen: Initial nvfp4 checkpoint support. (#11635) --------- Co-authored-by: Jedrzej Kosinski --- .github/workflows/test-build.yml | 2 +- .github/workflows/test-launch.yml | 4 +- comfy/model_management.py | 4 +- comfy/ops.py | 164 +++-- comfy/quant_ops.py | 641 +++--------------- requirements.txt | 1 + .../comfy_quant/test_mixed_precision.py | 12 +- tests-unit/comfy_quant/test_quant_registry.py | 190 ------ 8 files changed, 223 insertions(+), 795 deletions(-) delete mode 100644 tests-unit/comfy_quant/test_quant_registry.py diff --git a/.github/workflows/test-build.yml b/.github/workflows/test-build.yml index 419873ad8..9160242e9 100644 --- a/.github/workflows/test-build.yml +++ b/.github/workflows/test-build.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] + python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"] steps: - uses: actions/checkout@v4 - name: Set up Python ${{ matrix.python-version }} diff --git a/.github/workflows/test-launch.yml b/.github/workflows/test-launch.yml index fd70aff23..ef0d3f123 100644 --- a/.github/workflows/test-launch.yml +++ b/.github/workflows/test-launch.yml @@ -32,7 +32,9 @@ jobs: working-directory: ComfyUI - name: Check for unhandled exceptions in server log run: | - if grep -qE "Exception|Error" console_output.log; then + grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': True, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" console_output.log | grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': False, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" > console_output_filtered.log + cat console_output_filtered.log + if grep -qE "Exception|Error" console_output_filtered.log; then echo "Unhandled exception/error found in server log." exit 1 fi diff --git a/comfy/model_management.py b/comfy/model_management.py index 7f5a8aee9..22f4de044 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1156,7 +1156,7 @@ def pin_memory(tensor): if not tensor.is_contiguous(): return False - size = tensor.numel() * tensor.element_size() + size = tensor.nbytes if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY: return False @@ -1183,7 +1183,7 @@ def unpin_memory(tensor): return False ptr = tensor.data_ptr() - size = tensor.numel() * tensor.element_size() + size = tensor.nbytes size_stored = PINNED_MEMORY.get(ptr, None) if size_stored is None: diff --git a/comfy/ops.py b/comfy/ops.py index 16889bb82..f5e1e9230 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -79,7 +79,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if input is not None: if dtype is None: if isinstance(input, QuantizedTensor): - dtype = input._layout_params["orig_dtype"] + dtype = input.params.orig_dtype else: dtype = input.dtype if bias_dtype is None: @@ -412,26 +412,34 @@ def fp8_linear(self, input): return None input_dtype = input.dtype + input_shape = input.shape + tensor_3d = input.ndim == 3 - if input.ndim == 3 or input.ndim == 2: - w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) - scale_weight = torch.ones((), device=input.device, dtype=torch.float32) + if tensor_3d: + input = input.reshape(-1, input_shape[2]) - scale_input = torch.ones((), device=input.device, dtype=torch.float32) - input = torch.clamp(input, min=-448, max=448, out=input) - layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} - quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) + if input.ndim != 2: + return None + w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) + scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - # Wrap weight in QuantizedTensor - this enables unified dispatch - # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! - layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype} - quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight) - o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) + scale_input = torch.ones((), device=input.device, dtype=torch.float32) + input = torch.clamp(input, min=-448, max=448, out=input) + input_fp8 = input.to(dtype).contiguous() + layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape)) + quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input) - uncast_bias_weight(self, w, bias, offload_stream) - return o + # Wrap weight in QuantizedTensor - this enables unified dispatch + # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! + layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape)) + quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight) + o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) - return None + uncast_bias_weight(self, w, bias, offload_stream) + if tensor_3d: + o = o.reshape((input_shape[0], input_shape[1], w.shape[0])) + + return o class fp8_ops(manual_cast): class Linear(manual_cast.Linear): @@ -477,7 +485,12 @@ if CUBLAS_IS_AVAILABLE: # ============================================================================== # Mixed Precision Operations # ============================================================================== -from .quant_ops import QuantizedTensor, QUANT_ALGOS +from .quant_ops import ( + QuantizedTensor, + QUANT_ALGOS, + TensorCoreFP8Layout, + get_layout_class, +) def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): @@ -497,14 +510,15 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec ) -> None: super().__init__() - if dtype is None: - dtype = MixedPrecisionOps._compute_dtype - - self.factory_kwargs = {"device": device, "dtype": dtype} + self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype} + # self.factory_kwargs = {"device": device, "dtype": dtype} self.in_features = in_features self.out_features = out_features - self._has_bias = bias + if bias: + self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs)) + else: + self.register_parameter("bias", None) self.tensor_class = None self._full_precision_mm = MixedPrecisionOps._full_precision_mm @@ -512,6 +526,16 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def reset_parameters(self): return None + def _load_scale_param(self, state_dict, prefix, param_name, device, manually_loaded_keys, dtype=None): + key = f"{prefix}{param_name}" + value = state_dict.pop(key, None) + if value is not None: + value = value.to(device=device) + if dtype is not None: + value = value.view(dtype=dtype) + manually_loaded_keys.append(key) + return value + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): @@ -529,14 +553,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec layer_conf = json.loads(layer_conf.numpy().tobytes()) if layer_conf is None: - dtype = self.factory_kwargs["dtype"] - self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False) - if dtype != MixedPrecisionOps._compute_dtype: - self.comfy_cast_weights = True - if self._has_bias: - self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype)) - else: - self.register_parameter("bias", None) + self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: self.quant_format = layer_conf.get("format", None) if not self._full_precision_mm: @@ -547,31 +564,46 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec qconfig = QUANT_ALGOS[self.quant_format] self.layout_type = qconfig["comfy_tensor_layout"] + layout_cls = get_layout_class(self.layout_type) - weight_scale_key = f"{prefix}weight_scale" - scale = state_dict.pop(weight_scale_key, None) - if scale is not None: - scale = scale.to(device) - layout_params = { - 'scale': scale, - 'orig_dtype': MixedPrecisionOps._compute_dtype, - 'block_size': qconfig.get("group_size", None), - } + # Load format-specific parameters + if self.quant_format in ["float8_e4m3fn", "float8_e5m2"]: + # FP8: single tensor scale + scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys) - if scale is not None: - manually_loaded_keys.append(weight_scale_key) + params = layout_cls.Params( + scale=scale, + orig_dtype=MixedPrecisionOps._compute_dtype, + orig_shape=(self.out_features, self.in_features), + ) + + elif self.quant_format == "nvfp4": + # NVFP4: tensor_scale (weight_scale_2) + block_scale (weight_scale) + tensor_scale = self._load_scale_param(state_dict, prefix, "weight_scale_2", device, manually_loaded_keys) + block_scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys, + dtype=torch.float8_e4m3fn) + + if tensor_scale is None or block_scale is None: + raise ValueError(f"Missing NVFP4 scales for layer {layer_name}") + + params = layout_cls.Params( + scale=tensor_scale, + block_scale=block_scale, + orig_dtype=MixedPrecisionOps._compute_dtype, + orig_shape=(self.out_features, self.in_features), + ) + else: + raise ValueError(f"Unsupported quantization format: {self.quant_format}") self.weight = torch.nn.Parameter( - QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params), + QuantizedTensor(weight.to(device=device, dtype=qconfig["storage_t"]), self.layout_type, params), requires_grad=False ) - if self._has_bias: - self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype)) - else: - self.register_parameter("bias", None) - for param_name in qconfig["parameters"]: + if param_name in {"weight_scale", "weight_scale_2"}: + continue # Already handled above + param_key = f"{prefix}{param_name}" _v = state_dict.pop(param_key, None) if _v is None: @@ -588,7 +620,15 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def state_dict(self, *args, destination=None, prefix="", **kwargs): sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) if isinstance(self.weight, QuantizedTensor): - sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale'] + layout_cls = self.weight._layout_cls + + # Check if it's any FP8 variant (E4M3 or E5M2) + if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"): + sd["{}weight_scale".format(prefix)] = self.weight._params.scale + elif layout_cls == "TensorCoreNVFP4Layout": + sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale + sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale + quant_conf = {"format": self.quant_format} if self._full_precision_mm: quant_conf["full_precision_matrix_mult"] = True @@ -607,12 +647,33 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def forward(self, input, *args, **kwargs): run_every_op() + input_shape = input.shape + tensor_3d = input.ndim == 3 + if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(input, *args, **kwargs) + if (getattr(self, 'layout_type', None) is not None and not isinstance(input, QuantizedTensor)): - input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype) - return self._forward(input, self.weight, self.bias) + + # Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others) + if tensor_3d: + input = input.reshape(-1, input_shape[2]) + + if input.ndim != 2: + # Fall back to comfy_cast_weights for non-2D tensors + return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs) + + # dtype is now implicit in the layout class + input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None)) + + output = self._forward(input, self.weight, self.bias) + + # Reshape output back to 3D if input was 3D + if tensor_3d: + output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0])) + + return output def convert_weight(self, weight, inplace=False, **kwargs): if isinstance(weight, QuantizedTensor): @@ -622,7 +683,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): if getattr(self, 'layout_type', None) is not None: - weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + # dtype is now implicit in the layout class + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True) else: weight = weight.to(self.weight.dtype) if return_weight: diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index cd96541d7..cd737726f 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -1,580 +1,133 @@ import torch import logging -from typing import Tuple, Dict + +try: + import comfy_kitchen as ck + from comfy_kitchen.tensor import ( + QuantizedTensor, + QuantizedLayout, + TensorCoreFP8Layout as _CKFp8Layout, + TensorCoreNVFP4Layout, # Direct import, no wrapper needed + register_layout_op, + register_layout_class, + get_layout_class, + ) + _CK_AVAILABLE = True + ck.registry.disable("triton") + for k, v in ck.list_backends().items(): + logging.info(f"Found comfy_kitchen backend {k}: {v}") +except ImportError as e: + logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.") + _CK_AVAILABLE = False + + class QuantizedTensor: + pass + + class _CKFp8Layout: + pass + + class TensorCoreNVFP4Layout: + pass + + def register_layout_class(name, cls): + pass + + def get_layout_class(name): + return None + import comfy.float -_LAYOUT_REGISTRY = {} -_GENERIC_UTILS = {} - - -def register_layout_op(torch_op, layout_type): - """ - Decorator to register a layout-specific operation handler. - Args: - torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default) - layout_type: Layout class (e.g., TensorCoreFP8Layout) - Example: - @register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout) - def fp8_linear(func, args, kwargs): - # FP8-specific linear implementation - ... - """ - def decorator(handler_func): - if torch_op not in _LAYOUT_REGISTRY: - _LAYOUT_REGISTRY[torch_op] = {} - _LAYOUT_REGISTRY[torch_op][layout_type] = handler_func - return handler_func - return decorator - - -def register_generic_util(torch_op): - """ - Decorator to register a generic utility that works for all layouts. - Args: - torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default) - - Example: - @register_generic_util(torch.ops.aten.detach.default) - def generic_detach(func, args, kwargs): - # Works for any layout - ... - """ - def decorator(handler_func): - _GENERIC_UTILS[torch_op] = handler_func - return handler_func - return decorator - - -def _get_layout_from_args(args): - for arg in args: - if isinstance(arg, QuantizedTensor): - return arg._layout_type - elif isinstance(arg, (list, tuple)): - for item in arg: - if isinstance(item, QuantizedTensor): - return item._layout_type - return None - - -def _move_layout_params_to_device(params, device): - new_params = {} - for k, v in params.items(): - if isinstance(v, torch.Tensor): - new_params[k] = v.to(device=device) - else: - new_params[k] = v - return new_params - - -def _copy_layout_params(params): - new_params = {} - for k, v in params.items(): - if isinstance(v, torch.Tensor): - new_params[k] = v.clone() - else: - new_params[k] = v - return new_params - -def _copy_layout_params_inplace(src, dst, non_blocking=False): - for k, v in src.items(): - if isinstance(v, torch.Tensor): - dst[k].copy_(v, non_blocking=non_blocking) - else: - dst[k] = v - -class QuantizedLayout: - """ - Base class for quantization layouts. - - A layout encapsulates the format-specific logic for quantization/dequantization - and provides a uniform interface for extracting raw tensors needed for computation. - - New quantization formats should subclass this and implement the required methods. - """ - @classmethod - def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]: - raise NotImplementedError(f"{cls.__name__} must implement quantize()") - - @staticmethod - def dequantize(qdata, **layout_params) -> torch.Tensor: - raise NotImplementedError("TensorLayout must implement dequantize()") - - @classmethod - def get_plain_tensors(cls, qtensor) -> torch.Tensor: - raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()") - - -class QuantizedTensor(torch.Tensor): - """ - Universal quantized tensor that works with any layout. - - This tensor subclass uses a pluggable layout system to support multiple - quantization formats (FP8, INT4, INT8, etc.) without code duplication. - - The layout_type determines format-specific behavior, while common operations - (detach, clone, to) are handled generically. - - Attributes: - _qdata: The quantized tensor data - _layout_type: Layout class (e.g., TensorCoreFP8Layout) - _layout_params: Dict with layout-specific params (scale, zero_point, etc.) - """ - - @staticmethod - def __new__(cls, qdata, layout_type, layout_params): - """ - Create a quantized tensor. - - Args: - qdata: The quantized data tensor - layout_type: Layout class (subclass of QuantizedLayout) - layout_params: Dict with layout-specific parameters - """ - return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False) - - def __init__(self, qdata, layout_type, layout_params): - self._qdata = qdata - self._layout_type = layout_type - self._layout_params = layout_params - - def __repr__(self): - layout_name = self._layout_type - param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2]) - return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})" - - @property - def layout_type(self): - return self._layout_type - - def __tensor_flatten__(self): - """ - Tensor flattening protocol for proper device movement. - """ - inner_tensors = ["_qdata"] - ctx = { - "layout_type": self._layout_type, - } - - tensor_params = {} - non_tensor_params = {} - for k, v in self._layout_params.items(): - if isinstance(v, torch.Tensor): - tensor_params[k] = v - else: - non_tensor_params[k] = v - - ctx["tensor_param_keys"] = list(tensor_params.keys()) - ctx["non_tensor_params"] = non_tensor_params - - for k, v in tensor_params.items(): - attr_name = f"_layout_param_{k}" - object.__setattr__(self, attr_name, v) - inner_tensors.append(attr_name) - - return inner_tensors, ctx - - @staticmethod - def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride): - """ - Tensor unflattening protocol for proper device movement. - Reconstructs the QuantizedTensor after device movement. - """ - layout_type = ctx["layout_type"] - layout_params = dict(ctx["non_tensor_params"]) - - for key in ctx["tensor_param_keys"]: - attr_name = f"_layout_param_{key}" - layout_params[key] = inner_tensors[attr_name] - - return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params) - - @classmethod - def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor': - qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs) - return cls(qdata, layout_type, layout_params) - - def dequantize(self) -> torch.Tensor: - return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params) - - @classmethod - def __torch_dispatch__(cls, func, types, args=(), kwargs=None): - kwargs = kwargs or {} - - # Step 1: Check generic utilities first (detach, clone, to, etc.) - if func in _GENERIC_UTILS: - return _GENERIC_UTILS[func](func, args, kwargs) - - # Step 2: Check layout-specific handlers (linear, matmul, etc.) - layout_type = _get_layout_from_args(args) - if layout_type and func in _LAYOUT_REGISTRY: - handler = _LAYOUT_REGISTRY[func].get(layout_type) - if handler: - return handler(func, args, kwargs) - - # Step 3: Fallback to dequantization - if isinstance(args[0] if args else None, QuantizedTensor): - logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}") - return cls._dequant_and_fallback(func, args, kwargs) - - @classmethod - def _dequant_and_fallback(cls, func, args, kwargs): - def dequant_arg(arg): - if isinstance(arg, QuantizedTensor): - return arg.dequantize() - elif isinstance(arg, (list, tuple)): - return type(arg)(dequant_arg(a) for a in arg) - return arg - - new_args = dequant_arg(args) - new_kwargs = dequant_arg(kwargs) - return func(*new_args, **new_kwargs) - - def data_ptr(self): - return self._qdata.data_ptr() - - def is_pinned(self): - return self._qdata.is_pinned() - - def is_contiguous(self, *arg, **kwargs): - return self._qdata.is_contiguous(*arg, **kwargs) - - def storage(self): - return self._qdata.storage() - # ============================================================================== -# Generic Utilities (Layout-Agnostic Operations) +# FP8 Layouts with Comfy-Specific Extensions # ============================================================================== -def _create_transformed_qtensor(qt, transform_fn): - new_data = transform_fn(qt._qdata) - new_params = _copy_layout_params(qt._layout_params) - return QuantizedTensor(new_data, qt._layout_type, new_params) +class _TensorCoreFP8LayoutBase(_CKFp8Layout): + FP8_DTYPE = None # Must be overridden in subclass - -def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"): - if target_layout is not None and target_layout != torch.strided: - logging.warning( - f"QuantizedTensor: layout change requested to {target_layout}, " - f"but not supported. Ignoring layout." - ) - - # Handle device transfer - current_device = qt._qdata.device - if target_device is not None: - # Normalize device for comparison - if isinstance(target_device, str): - target_device = torch.device(target_device) - if isinstance(current_device, str): - current_device = torch.device(current_device) - - if target_device != current_device: - logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}") - new_q_data = qt._qdata.to(device=target_device) - new_params = _move_layout_params_to_device(qt._layout_params, target_device) - if target_dtype is not None: - new_params["orig_dtype"] = target_dtype - new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params) - logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}") - return new_qt - - logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original") - return qt - - -@register_generic_util(torch.ops.aten.detach.default) -def generic_detach(func, args, kwargs): - """Detach operation - creates a detached copy of the quantized tensor.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _create_transformed_qtensor(qt, lambda x: x.detach()) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.clone.default) -def generic_clone(func, args, kwargs): - """Clone operation - creates a deep copy of the quantized tensor.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _create_transformed_qtensor(qt, lambda x: x.clone()) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten._to_copy.default) -def generic_to_copy(func, args, kwargs): - """Device/dtype transfer operation - handles .to(device) calls.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _handle_device_transfer( - qt, - target_device=kwargs.get('device', None), - target_dtype=kwargs.get('dtype', None), - op_name="_to_copy" - ) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.to.dtype_layout) -def generic_to_dtype_layout(func, args, kwargs): - """Handle .to(device) calls using the dtype_layout variant.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _handle_device_transfer( - qt, - target_device=kwargs.get('device', None), - target_dtype=kwargs.get('dtype', None), - target_layout=kwargs.get('layout', None), - op_name="to" - ) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.copy_.default) -def generic_copy_(func, args, kwargs): - qt_dest = args[0] - src = args[1] - non_blocking = args[2] if len(args) > 2 else False - if isinstance(qt_dest, QuantizedTensor): - if isinstance(src, QuantizedTensor): - # Copy from another quantized tensor - qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking) - qt_dest._layout_type = src._layout_type - orig_dtype = qt_dest._layout_params["orig_dtype"] - _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking) - qt_dest._layout_params["orig_dtype"] = orig_dtype - else: - # Copy from regular tensor - just copy raw data - qt_dest._qdata.copy_(src) - return qt_dest - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.to.dtype) -def generic_to_dtype(func, args, kwargs): - """Handle .to(dtype) calls - dtype conversion only.""" - src = args[0] - if isinstance(src, QuantizedTensor): - # For dtype-only conversion, just change the orig_dtype, no real cast is needed - target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype') - src._layout_params["orig_dtype"] = target_dtype - return src - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default) -def generic_has_compatible_shallow_copy_type(func, args, kwargs): - return True - - -@register_generic_util(torch.ops.aten.empty_like.default) -def generic_empty_like(func, args, kwargs): - """Empty_like operation - creates an empty tensor with the same quantized structure.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - # Create empty tensor with same shape and dtype as the quantized data - hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"]) - new_qdata = torch.empty_like(qt._qdata, **kwargs) - - # Handle device transfer for layout params - target_device = kwargs.get('device', new_qdata.device) - new_params = _move_layout_params_to_device(qt._layout_params, target_device) - - # Update orig_dtype if dtype is specified - new_params['orig_dtype'] = hp_dtype - - return QuantizedTensor(new_qdata, qt._layout_type, new_params) - return func(*args, **kwargs) - -# ============================================================================== -# FP8 Layout + Operation Handlers -# ============================================================================== -class TensorCoreFP8Layout(QuantizedLayout): - """ - Storage format: - - qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2) - - scale: Scalar tensor (float32) for dequantization - - orig_dtype: Original dtype before quantization (for casting back) - """ @classmethod - def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): + def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False): + if cls.FP8_DTYPE is None: + raise NotImplementedError(f"{cls.__name__} must define FP8_DTYPE") + orig_dtype = tensor.dtype + orig_shape = tuple(tensor.shape) if isinstance(scale, str) and scale == "recalculate": - scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max + scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(cls.FP8_DTYPE).max if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small tensor_info = torch.finfo(tensor.dtype) scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max)) - if scale is not None: - if not isinstance(scale, torch.Tensor): - scale = torch.tensor(scale) - scale = scale.to(device=tensor.device, dtype=torch.float32) + if scale is None: + scale = torch.ones((), device=tensor.device, dtype=torch.float32) + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale, device=tensor.device, dtype=torch.float32) + if stochastic_rounding > 0: if inplace_ops: tensor *= (1.0 / scale).to(tensor.dtype) else: tensor = tensor * (1.0 / scale).to(tensor.dtype) + qdata = comfy.float.stochastic_rounding(tensor, dtype=cls.FP8_DTYPE, seed=stochastic_rounding) else: - scale = torch.ones((), device=tensor.device, dtype=torch.float32) + qdata = ck.quantize_per_tensor_fp8(tensor, scale, cls.FP8_DTYPE) - if stochastic_rounding > 0: - tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) - else: - lp_amax = torch.finfo(dtype).max - torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor) - tensor = tensor.to(dtype, memory_format=torch.contiguous_format) + params = cls.Params(scale=scale.float(), orig_dtype=orig_dtype, orig_shape=orig_shape) + return qdata, params - layout_params = { - 'scale': scale, - 'orig_dtype': orig_dtype - } - return tensor, layout_params - @staticmethod - def dequantize(qdata, scale, orig_dtype, **kwargs): - plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype) - plain_tensor.mul_(scale) - return plain_tensor +class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase): + FP8_DTYPE = torch.float8_e4m3fn - @classmethod - def get_plain_tensors(cls, qtensor): - return qtensor._qdata, qtensor._layout_params['scale'] + +class TensorCoreFP8E5M2Layout(_TensorCoreFP8LayoutBase): + FP8_DTYPE = torch.float8_e5m2 + + +# Backward compatibility alias - default to E4M3 +TensorCoreFP8Layout = TensorCoreFP8E4M3Layout + + +# ============================================================================== +# Registry +# ============================================================================== + +register_layout_class("TensorCoreFP8Layout", TensorCoreFP8Layout) +register_layout_class("TensorCoreFP8E4M3Layout", TensorCoreFP8E4M3Layout) +register_layout_class("TensorCoreFP8E5M2Layout", TensorCoreFP8E5M2Layout) +register_layout_class("TensorCoreNVFP4Layout", TensorCoreNVFP4Layout) QUANT_ALGOS = { "float8_e4m3fn": { "storage_t": torch.float8_e4m3fn, "parameters": {"weight_scale", "input_scale"}, - "comfy_tensor_layout": "TensorCoreFP8Layout", + "comfy_tensor_layout": "TensorCoreFP8E4M3Layout", + }, + "float8_e5m2": { + "storage_t": torch.float8_e5m2, + "parameters": {"weight_scale", "input_scale"}, + "comfy_tensor_layout": "TensorCoreFP8E5M2Layout", + }, + "nvfp4": { + "storage_t": torch.uint8, + "parameters": {"weight_scale", "weight_scale_2", "input_scale"}, + "comfy_tensor_layout": "TensorCoreNVFP4Layout", + "group_size": 16, }, } -LAYOUTS = { - "TensorCoreFP8Layout": TensorCoreFP8Layout, -} +# ============================================================================== +# Re-exports for backward compatibility +# ============================================================================== -@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout") -def fp8_linear(func, args, kwargs): - input_tensor = args[0] - weight = args[1] - bias = args[2] if len(args) > 2 else None - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) - - out_dtype = kwargs.get("out_dtype") - if out_dtype is None: - out_dtype = input_tensor._layout_params['orig_dtype'] - - weight_t = plain_weight.t() - - tensor_2d = False - if len(plain_input.shape) == 2: - tensor_2d = True - plain_input = plain_input.unsqueeze(1) - - input_shape = plain_input.shape - if len(input_shape) != 3: - return None - - try: - output = torch._scaled_mm( - plain_input.reshape(-1, input_shape[2]).contiguous(), - weight_t, - bias=bias, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype, - ) - - if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 - output = output[0] - - if not tensor_2d: - output = output.reshape((-1, input_shape[1], weight.shape[0])) - - if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: - output_scale = scale_a * scale_b - output_params = { - 'scale': output_scale, - 'orig_dtype': input_tensor._layout_params['orig_dtype'] - } - return QuantizedTensor(output, "TensorCoreFP8Layout", output_params) - else: - return output - - except Exception as e: - raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}") - - # Case 2: DQ Fallback - if isinstance(weight, QuantizedTensor): - weight = weight.dequantize() - if isinstance(input_tensor, QuantizedTensor): - input_tensor = input_tensor.dequantize() - - return torch.nn.functional.linear(input_tensor, weight, bias) - -def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None): - if out_dtype is None: - out_dtype = input_tensor._layout_params['orig_dtype'] - - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) - - output = torch._scaled_mm( - plain_input.contiguous(), - plain_weight, - bias=bias, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype, - ) - - if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 - output = output[0] - return output - -@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout") -def fp8_addmm(func, args, kwargs): - input_tensor = args[1] - weight = args[2] - bias = args[0] - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None)) - - a = list(args) - if isinstance(args[0], QuantizedTensor): - a[0] = args[0].dequantize() - if isinstance(args[1], QuantizedTensor): - a[1] = args[1].dequantize() - if isinstance(args[2], QuantizedTensor): - a[2] = args[2].dequantize() - - return func(*a, **kwargs) - -@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout") -def fp8_mm(func, args, kwargs): - input_tensor = args[0] - weight = args[1] - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None)) - - a = list(args) - if isinstance(args[0], QuantizedTensor): - a[0] = args[0].dequantize() - if isinstance(args[1], QuantizedTensor): - a[1] = args[1].dequantize() - return func(*a, **kwargs) - -@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout") -@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout") -def fp8_func(func, args, kwargs): - input_tensor = args[0] - if isinstance(input_tensor, QuantizedTensor): - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - ar = list(args) - ar[0] = plain_input - return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params) - return func(*args, **kwargs) +__all__ = [ + "QuantizedTensor", + "QuantizedLayout", + "TensorCoreFP8Layout", + "TensorCoreFP8E4M3Layout", + "TensorCoreFP8E5M2Layout", + "TensorCoreNVFP4Layout", + "QUANT_ALGOS", + "register_layout_op", +] diff --git a/requirements.txt b/requirements.txt index 3a05799eb..0ee152032 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,6 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 +comfy-kitchen>=0.2.0 #non essential dependencies: kornia>=0.7.1 diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 3a54941e6..7b2eac940 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -103,18 +103,18 @@ class TestMixedPrecisionOps(unittest.TestCase): # Verify weights are wrapped in QuantizedTensor self.assertIsInstance(model.layer1.weight, QuantizedTensor) - self.assertEqual(model.layer1.weight._layout_type, "TensorCoreFP8Layout") + self.assertEqual(model.layer1.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Layer 2 should NOT be quantized self.assertNotIsInstance(model.layer2.weight, QuantizedTensor) # Layer 3 should be quantized self.assertIsInstance(model.layer3.weight, QuantizedTensor) - self.assertEqual(model.layer3.weight._layout_type, "TensorCoreFP8Layout") + self.assertEqual(model.layer3.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Verify scales were loaded - self.assertEqual(model.layer1.weight._layout_params['scale'].item(), 2.0) - self.assertEqual(model.layer3.weight._layout_params['scale'].item(), 1.5) + self.assertEqual(model.layer1.weight._params.scale.item(), 2.0) + self.assertEqual(model.layer3.weight._params.scale.item(), 1.5) # Forward pass input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) @@ -154,8 +154,8 @@ class TestMixedPrecisionOps(unittest.TestCase): # Verify layer1.weight is a QuantizedTensor with scale preserved self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor) - self.assertEqual(state_dict2["layer1.weight"]._layout_params['scale'].item(), 3.0) - self.assertEqual(state_dict2["layer1.weight"]._layout_type, "TensorCoreFP8Layout") + self.assertEqual(state_dict2["layer1.weight"]._params.scale.item(), 3.0) + self.assertEqual(state_dict2["layer1.weight"]._layout_cls, "TensorCoreFP8E4M3Layout") # Verify non-quantized layers are standard tensors self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor) diff --git a/tests-unit/comfy_quant/test_quant_registry.py b/tests-unit/comfy_quant/test_quant_registry.py deleted file mode 100644 index 9cb54ede8..000000000 --- a/tests-unit/comfy_quant/test_quant_registry.py +++ /dev/null @@ -1,190 +0,0 @@ -import unittest -import torch -import sys -import os - -# Add comfy to path -sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) - -def has_gpu(): - return torch.cuda.is_available() - -from comfy.cli_args import args -if not has_gpu(): - args.cpu = True - -from comfy.quant_ops import QuantizedTensor, TensorCoreFP8Layout - - -class TestQuantizedTensor(unittest.TestCase): - """Test the QuantizedTensor subclass with FP8 layout""" - - def test_creation(self): - """Test creating a QuantizedTensor with TensorCoreFP8Layout""" - fp8_data = torch.randn(256, 128, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(2.0) - layout_params = {'scale': scale, 'orig_dtype': torch.bfloat16} - - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - self.assertIsInstance(qt, QuantizedTensor) - self.assertEqual(qt.shape, (256, 128)) - self.assertEqual(qt.dtype, torch.float8_e4m3fn) - self.assertEqual(qt._layout_params['scale'], scale) - self.assertEqual(qt._layout_params['orig_dtype'], torch.bfloat16) - self.assertEqual(qt._layout_type, "TensorCoreFP8Layout") - - def test_dequantize(self): - """Test explicit dequantization""" - - fp8_data = torch.ones(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(3.0) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - dequantized = qt.dequantize() - - self.assertEqual(dequantized.dtype, torch.float32) - self.assertTrue(torch.allclose(dequantized, torch.ones(10, 20) * 3.0, rtol=0.1)) - - def test_from_float(self): - """Test creating QuantizedTensor from float tensor""" - float_tensor = torch.randn(64, 32, dtype=torch.float32) - scale = torch.tensor(1.5) - - qt = QuantizedTensor.from_float( - float_tensor, - "TensorCoreFP8Layout", - scale=scale, - dtype=torch.float8_e4m3fn - ) - - self.assertIsInstance(qt, QuantizedTensor) - self.assertEqual(qt.dtype, torch.float8_e4m3fn) - self.assertEqual(qt.shape, (64, 32)) - - # Verify dequantization gives approximately original values - dequantized = qt.dequantize() - mean_rel_error = ((dequantized - float_tensor).abs() / (float_tensor.abs() + 1e-6)).mean() - self.assertLess(mean_rel_error, 0.1) - - -class TestGenericUtilities(unittest.TestCase): - """Test generic utility operations""" - - def test_detach(self): - """Test detach operation on quantized tensor""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Detach should return a new QuantizedTensor - qt_detached = qt.detach() - - self.assertIsInstance(qt_detached, QuantizedTensor) - self.assertEqual(qt_detached.shape, qt.shape) - self.assertEqual(qt_detached._layout_type, "TensorCoreFP8Layout") - - def test_clone(self): - """Test clone operation on quantized tensor""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Clone should return a new QuantizedTensor - qt_cloned = qt.clone() - - self.assertIsInstance(qt_cloned, QuantizedTensor) - self.assertEqual(qt_cloned.shape, qt.shape) - self.assertEqual(qt_cloned._layout_type, "TensorCoreFP8Layout") - - # Verify it's a deep copy - self.assertIsNot(qt_cloned._qdata, qt._qdata) - - @unittest.skipUnless(has_gpu(), "GPU not available") - def test_to_device(self): - """Test device transfer""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Moving to same device should work (CPU to CPU) - qt_cpu = qt.to('cpu') - - self.assertIsInstance(qt_cpu, QuantizedTensor) - self.assertEqual(qt_cpu.device.type, 'cpu') - self.assertEqual(qt_cpu._layout_params['scale'].device.type, 'cpu') - - -class TestTensorCoreFP8Layout(unittest.TestCase): - """Test the TensorCoreFP8Layout implementation""" - - def test_quantize(self): - """Test quantization method""" - float_tensor = torch.randn(32, 64, dtype=torch.float32) - scale = torch.tensor(1.5) - - qdata, layout_params = TensorCoreFP8Layout.quantize( - float_tensor, - scale=scale, - dtype=torch.float8_e4m3fn - ) - - self.assertEqual(qdata.dtype, torch.float8_e4m3fn) - self.assertEqual(qdata.shape, float_tensor.shape) - self.assertIn('scale', layout_params) - self.assertIn('orig_dtype', layout_params) - self.assertEqual(layout_params['orig_dtype'], torch.float32) - - def test_dequantize(self): - """Test dequantization method""" - float_tensor = torch.ones(10, 20, dtype=torch.float32) * 3.0 - scale = torch.tensor(1.0) - - qdata, layout_params = TensorCoreFP8Layout.quantize( - float_tensor, - scale=scale, - dtype=torch.float8_e4m3fn - ) - - dequantized = TensorCoreFP8Layout.dequantize(qdata, **layout_params) - - # Should approximately match original - self.assertTrue(torch.allclose(dequantized, float_tensor, rtol=0.1, atol=0.1)) - - -class TestFallbackMechanism(unittest.TestCase): - """Test fallback for unsupported operations""" - - def test_unsupported_op_dequantizes(self): - """Test that unsupported operations fall back to dequantization""" - # Set seed for reproducibility - torch.manual_seed(42) - - # Create quantized tensor - a_fp32 = torch.randn(10, 20, dtype=torch.float32) - scale = torch.tensor(1.0) - a_q = QuantizedTensor.from_float( - a_fp32, - "TensorCoreFP8Layout", - scale=scale, - dtype=torch.float8_e4m3fn - ) - - # Call an operation that doesn't have a registered handler - # For example, torch.abs - result = torch.abs(a_q) - - # Should work via fallback (dequantize → abs → return) - self.assertNotIsInstance(result, QuantizedTensor) - expected = torch.abs(a_fp32) - # FP8 introduces quantization error, so use loose tolerance - mean_error = (result - expected).abs().mean() - self.assertLess(mean_error, 0.05, f"Mean error {mean_error:.4f} is too large") - - -if __name__ == "__main__": - unittest.main() From 6ef85c49151cf8c4d6bf5e7ccfc566b8d0681cbd Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 19:50:35 -0800 Subject: [PATCH 26/41] Use rope functions from comfy kitchen. (#11647) --- comfy/ldm/flux/math.py | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 6a22df8bc..f9597de5b 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,6 +4,7 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management +import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -13,7 +14,6 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x - def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,13 +28,20 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) -def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) +try: + import comfy.quant_ops + apply_rope = comfy.quant_ops.ck.apply_rope + apply_rope1 = comfy.quant_ops.ck.apply_rope1 +except: + logging.warning("No comfy kitchen, using old apply_rope functions.") + def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - return x_out.reshape(*x.shape).type_as(x) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) -def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) + return x_out.reshape(*x.shape).type_as(x) + + def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) From 161800241117fae7af90e0c938d0cf8cb2f2ddb1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 20:07:39 -0800 Subject: [PATCH 27/41] Revert "Use rope functions from comfy kitchen. (#11647)" (#11648) This reverts commit 6ef85c49151cf8c4d6bf5e7ccfc566b8d0681cbd. --- comfy/ldm/flux/math.py | 23 ++++++++--------------- 1 file changed, 8 insertions(+), 15 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index f9597de5b..6a22df8bc 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,7 +4,6 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management -import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -14,6 +13,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x + def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,20 +28,13 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) +def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) -try: - import comfy.quant_ops - apply_rope = comfy.quant_ops.ck.apply_rope - apply_rope1 = comfy.quant_ops.ck.apply_rope1 -except: - logging.warning("No comfy kitchen, using old apply_rope functions.") - def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) + return x_out.reshape(*x.shape).type_as(x) - return x_out.reshape(*x.shape).type_as(x) - - def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) +def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) From e14f3b661069971163ddc56036b0f486933b9162 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 6 Jan 2026 14:37:11 +0800 Subject: [PATCH 28/41] chore: update workflow templates to v0.7.66 (#11652) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 0ee152032..9c9c0e29e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.65 +comfyui-workflow-templates==0.7.66 comfyui-embedded-docs==0.3.1 torch torchsde From 96e0d0924e027248733bc6e0b8102dcdc8acde33 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 11:43:24 -0800 Subject: [PATCH 29/41] Add helpful message to portable. (#11671) --- .../advanced/run_nvidia_gpu_disable_api_nodes.bat | 2 +- .ci/windows_nvidia_base_files/run_nvidia_gpu.bat | 2 +- .../run_nvidia_gpu_fast_fp16_accumulation.bat | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat index ed00583b6..4501ef9a1 100644 --- a/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat +++ b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat @@ -1,3 +1,3 @@ ..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat index 4898a424f..6487ac7ce 100755 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat @@ -1,3 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat index 32611e4af..01c5bb33b 100644 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat @@ -1,3 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause From 6ffc159bdd56d1ad73e954081def6a7f163e7a7f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 12:53:43 -0800 Subject: [PATCH 30/41] Update comfy-kitchen version to 0.2.1 (#11672) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9c9c0e29e..22cb50e2d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.0 +comfy-kitchen>=0.2.1 #non essential dependencies: kornia>=0.7.1 From c3c3e93c5bb3034175c17ef8beeb8fe8626c66ab Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 13:57:50 -0800 Subject: [PATCH 31/41] Use rope functions from comfy kitchen. (#11674) --- comfy/ldm/flux/math.py | 23 +++++++++++++++-------- requirements.txt | 2 +- 2 files changed, 16 insertions(+), 9 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 6a22df8bc..f9597de5b 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,6 +4,7 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management +import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -13,7 +14,6 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x - def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,13 +28,20 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) -def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) +try: + import comfy.quant_ops + apply_rope = comfy.quant_ops.ck.apply_rope + apply_rope1 = comfy.quant_ops.ck.apply_rope1 +except: + logging.warning("No comfy kitchen, using old apply_rope functions.") + def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - return x_out.reshape(*x.shape).type_as(x) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) -def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) + return x_out.reshape(*x.shape).type_as(x) + + def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) diff --git a/requirements.txt b/requirements.txt index 22cb50e2d..7798cb179 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.1 +comfy-kitchen>=0.2.2 #non essential dependencies: kornia>=0.7.1 From c3566c0d765200068d26d0888f035504a50012f2 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Wed, 7 Jan 2026 06:28:29 +0800 Subject: [PATCH 32/41] chore: update workflow templates to v0.7.67 (#11667) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 7798cb179..caad0026a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.66 +comfyui-workflow-templates==0.7.67 comfyui-embedded-docs==0.3.1 torch torchsde From 023cf13721cac256c323e2226319b766d07b1f36 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 14:33:03 -0800 Subject: [PATCH 33/41] Fix lowvram issue with ltxv2 text encoder. (#11675) --- comfy/ldm/lightricks/embeddings_connector.py | 2 +- comfy/text_encoders/lt.py | 4 +++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/ldm/lightricks/embeddings_connector.py b/comfy/ldm/lightricks/embeddings_connector.py index f7a43f3c3..06f5ada89 100644 --- a/comfy/ldm/lightricks/embeddings_connector.py +++ b/comfy/ldm/lightricks/embeddings_connector.py @@ -276,7 +276,7 @@ class Embeddings1DConnector(nn.Module): max(1024, hidden_states.shape[1]) / self.num_learnable_registers ) learnable_registers = torch.tile( - self.learnable_registers, (num_registers_duplications, 1) + self.learnable_registers.to(hidden_states), (num_registers_duplications, 1) ) hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 2c2d453e8..e5964e42b 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -86,17 +86,19 @@ class LTXAVTEModel(torch.nn.Module): ) def set_clip_options(self, options): + self.execution_device = options.get("execution_device", self.execution_device) self.gemma3_12b.set_clip_options(options) def reset_clip_options(self): self.gemma3_12b.reset_clip_options() + self.execution_device = None def encode_token_weights(self, token_weight_pairs): token_weight_pairs = token_weight_pairs["gemma3_12b"] out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) out_device = out.device - out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device) + out = out.movedim(1, -1).to(self.execution_device) out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) out = out.reshape((out.shape[0], out.shape[1], -1)) out = self.text_embedding_projection(out) From 6e9ee55cdd9e0eca6b5144063575b983f3311762 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 14:41:27 -0800 Subject: [PATCH 34/41] Disable ltxav previews. (#11676) --- comfy/latent_formats.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 9bbe30b53..cb4f52ce1 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -408,7 +408,9 @@ class LTXV(LatentFormat): self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512] class LTXAV(LTXV): - pass + def __init__(self): + self.latent_rgb_factors = None + self.latent_rgb_factors_bias = None class HunyuanVideo(LatentFormat): latent_channels = 16 From 2c03884f5fb7fa213161dfe1e9a09a8e8c4b6062 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 15:07:26 -0800 Subject: [PATCH 35/41] Skip fp4 matrix mult on devices that don't support it. (#11677) --- comfy/model_management.py | 10 ++++++++++ comfy/ops.py | 21 +++++++++++++++++---- 2 files changed, 27 insertions(+), 4 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 22f4de044..928282092 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1504,6 +1504,16 @@ def supports_fp8_compute(device=None): return True +def supports_nvfp4_compute(device=None): + if not is_nvidia(): + return False + + props = torch.cuda.get_device_properties(device) + if props.major < 10: + return False + + return True + def extended_fp16_support(): # TODO: check why some models work with fp16 on newer torch versions but not on older if torch_version_numeric < (2, 7): diff --git a/comfy/ops.py b/comfy/ops.py index f5e1e9230..8f9fdce36 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -493,11 +493,12 @@ from .quant_ops import ( ) -def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): +def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False, disabled=[]): class MixedPrecisionOps(manual_cast): _quant_config = quant_config _compute_dtype = compute_dtype _full_precision_mm = full_precision_mm + _disabled = disabled class Linear(torch.nn.Module, CastWeightBiasOp): def __init__( @@ -522,6 +523,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.tensor_class = None self._full_precision_mm = MixedPrecisionOps._full_precision_mm + self._full_precision_mm_config = False def reset_parameters(self): return None @@ -556,8 +558,12 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: self.quant_format = layer_conf.get("format", None) + self._full_precision_mm_config = layer_conf.get("full_precision_matrix_mult", False) if not self._full_precision_mm: - self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False) + self._full_precision_mm = self._full_precision_mm_config + + if self.quant_format in MixedPrecisionOps._disabled: + self._full_precision_mm = True if self.quant_format is None: raise ValueError(f"Unknown quantization format for layer {layer_name}") @@ -630,7 +636,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale quant_conf = {"format": self.quant_format} - if self._full_precision_mm: + if self._full_precision_mm_config: quant_conf["full_precision_matrix_mult"] = True sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) return sd @@ -711,10 +717,17 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None): fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular + nvfp4_compute = comfy.model_management.supports_nvfp4_compute(load_device) if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config: logging.info("Using mixed precision operations") - return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute) + disabled = set() + if not nvfp4_compute: + disabled.add("nvfp4") + if not fp8_compute: + disabled.add("float8_e4m3fn") + disabled.add("float8_e5m2") + return mixed_precision_ops(model_config.quant_config, compute_dtype, disabled=disabled) if ( fp8_compute and From edee33f55ea27a1931475d3ea788fd6e9a81677b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 19:13:43 -0800 Subject: [PATCH 36/41] Disable comfy kitchen cuda if pytorch cuda less than 13 (#11681) --- comfy/quant_ops.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index cd737726f..5a17bc6f5 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -13,6 +13,13 @@ try: get_layout_class, ) _CK_AVAILABLE = True + if torch.version.cuda is None: + ck.registry.disable("cuda") + else: + cuda_version = tuple(map(int, str(torch.version.cuda).split('.'))) + if cuda_version < (13,): + ck.registry.disable("cuda") + ck.registry.disable("triton") for k, v in ck.list_backends().items(): logging.info(f"Found comfy_kitchen backend {k}: {v}") From c5cfb34c07048350f472a9a4f1ccbf75a56ed38f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 20:51:45 -0800 Subject: [PATCH 37/41] Update comfy-kitchen version to 0.2.3 (#11685) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index caad0026a..bc8346bcf 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.2 +comfy-kitchen>=0.2.3 #non essential dependencies: kornia>=0.7.1 From ce0000c4f2a7dba12324585dddb784b43e3cd3d0 Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Tue, 6 Jan 2026 21:57:31 -0800 Subject: [PATCH 38/41] Force sequential execution in CI test jobs (#11687) Added max-parallel setting to enforce sequential execution in test jobs. --- .github/workflows/test-ci.yml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index adfc5dd32..63df2dc3a 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -20,6 +20,7 @@ jobs: test-stable: strategy: fail-fast: false + max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux, windows] # os: [macos, linux] @@ -74,6 +75,7 @@ jobs: test-unix-nightly: strategy: fail-fast: false + max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux] os: [linux] From 79e94544bd7ec0cc7a4e5e6167907e7d781c4b76 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 7 Jan 2026 08:04:50 +0200 Subject: [PATCH 39/41] feat(api-nodes): add WAN2.6 ReferenceToVideo (#11644) --- comfy_api_nodes/nodes_wan.py | 160 +++++++++++++++++++++++++ comfy_api_nodes/util/upload_helpers.py | 2 +- 2 files changed, 161 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 1675fd863..3e04786a9 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -13,7 +13,9 @@ from comfy_api_nodes.util import ( poll_op, sync_op, tensor_to_base64_string, + upload_video_to_comfyapi, validate_audio_duration, + validate_video_duration, ) @@ -41,6 +43,12 @@ class Image2VideoInputField(BaseModel): audio_url: str | None = Field(None) +class Reference2VideoInputField(BaseModel): + prompt: str = Field(...) + negative_prompt: str | None = Field(None) + reference_video_urls: list[str] = Field(...) + + class Txt2ImageParametersField(BaseModel): size: str = Field(...) n: int = Field(1, description="Number of images to generate.") # we support only value=1 @@ -76,6 +84,14 @@ class Image2VideoParametersField(BaseModel): shot_type: str = Field("single") +class Reference2VideoParametersField(BaseModel): + size: str = Field(...) + duration: int = Field(5, ge=5, le=15) + shot_type: str = Field("single") + seed: int = Field(..., ge=0, le=2147483647) + watermark: bool = Field(False) + + class Text2ImageTaskCreationRequest(BaseModel): model: str = Field(...) input: Text2ImageInputField = Field(...) @@ -100,6 +116,12 @@ class Image2VideoTaskCreationRequest(BaseModel): parameters: Image2VideoParametersField = Field(...) +class Reference2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + input: Reference2VideoInputField = Field(...) + parameters: Reference2VideoParametersField = Field(...) + + class TaskCreationOutputField(BaseModel): task_id: str = Field(...) task_status: str = Field(...) @@ -721,6 +743,143 @@ class WanImageToVideoApi(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) +class WanReferenceVideoApi(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="WanReferenceVideoApi", + display_name="Wan Reference to Video", + category="api node/video/Wan", + description="Use the character and voice from input videos, combined with a prompt, " + "to generate a new video that maintains character consistency.", + inputs=[ + IO.Combo.Input("model", options=["wan2.6-r2v"]), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese. " + "Use identifiers such as `character1` and `character2` to refer to the reference characters.", + ), + IO.String.Input( + "negative_prompt", + multiline=True, + default="", + tooltip="Negative prompt describing what to avoid.", + ), + IO.Autogrow.Input( + "reference_videos", + template=IO.Autogrow.TemplateNames( + IO.Video.Input("reference_video"), + names=["character1", "character2", "character3"], + min=1, + ), + ), + IO.Combo.Input( + "size", + options=[ + "720p: 1:1 (960x960)", + "720p: 16:9 (1280x720)", + "720p: 9:16 (720x1280)", + "720p: 4:3 (1088x832)", + "720p: 3:4 (832x1088)", + "1080p: 1:1 (1440x1440)", + "1080p: 16:9 (1920x1080)", + "1080p: 9:16 (1080x1920)", + "1080p: 4:3 (1632x1248)", + "1080p: 3:4 (1248x1632)", + ], + ), + IO.Int.Input( + "duration", + default=5, + min=5, + max=10, + step=5, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts.", + ), + IO.Boolean.Input( + "watermark", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + negative_prompt: str, + reference_videos: IO.Autogrow.Type, + size: str, + duration: int, + seed: int, + shot_type: str, + watermark: bool, + ): + reference_video_urls = [] + for i in reference_videos: + validate_video_duration(reference_videos[i], min_duration=2, max_duration=30) + for i in reference_videos: + reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i])) + width, height = RES_IN_PARENS.search(size).groups() + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Reference2VideoTaskCreationRequest( + model=model, + input=Reference2VideoInputField( + prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls + ), + parameters=Reference2VideoParametersField( + size=f"{width}*{height}", + duration=duration, + shot_type=shot_type, + watermark=watermark, + seed=seed, + ), + ), + ) + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), + response_model=VideoTaskStatusResponse, + status_extractor=lambda x: x.output.task_status, + poll_interval=6, + max_poll_attempts=280, + ) + return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) + + class WanApiExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -729,6 +888,7 @@ class WanApiExtension(ComfyExtension): WanImageToImageApi, WanTextToVideoApi, WanImageToVideoApi, + WanReferenceVideoApi, ] diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index b8d33f4d1..f1ed7fe9c 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -119,7 +119,7 @@ async def upload_video_to_comfyapi( raise ValueError(f"Could not verify video duration from source: {e}") from e upload_mime_type = f"video/{container.value.lower()}" - filename = f"uploaded_video.{container.value.lower()}" + filename = f"{uuid.uuid4()}.{container.value.lower()}" # Convert VideoInput to BytesIO using specified container/codec video_bytes_io = BytesIO() From b7d7cc1d496afe3c82279eec74c4d47399aab8ea Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 22:39:06 -0800 Subject: [PATCH 40/41] Fix fp8 fast issue. (#11688) --- comfy/ops.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 8f9fdce36..cd536e22d 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -427,12 +427,12 @@ def fp8_linear(self, input): input = torch.clamp(input, min=-448, max=448, out=input) input_fp8 = input.to(dtype).contiguous() layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape)) - quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input) + quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input) # Wrap weight in QuantizedTensor - this enables unified dispatch # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape)) - quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight) + quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight) o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) uncast_bias_weight(self, w, bias, offload_stream) From fc0cb10bcbee6e73ed3caf34c27f7bde4559a07f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 04:07:31 -0500 Subject: [PATCH 41/41] ComfyUI v0.8.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1ed60fe5c..750673f08 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.7.0" +__version__ = "0.8.0" diff --git a/pyproject.toml b/pyproject.toml index a7d159be9..951c2c978 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.7.0" +version = "0.8.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10"