This commit is contained in:
Jukka Seppänen 2026-01-24 21:07:22 -05:00 committed by GitHub
commit 0ef5b22172
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 54 additions and 15 deletions

View File

@ -222,6 +222,7 @@ class Flux2(LatentFormat):
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
self.taesd_decoder_name = "taef2_decoder"
def process_in(self, latent):
return latent

View File

@ -351,7 +351,7 @@ class VAE:
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
elif "taesd_decoder.1.weight" in sd:
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels, use_midblock_gn = True if "taesd_decoder.3.pool.0.weight" in sd else False)
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
self.first_stage_model = StageA()
self.downscale_ratio = 4

View File

@ -17,28 +17,36 @@ class Clamp(nn.Module):
return torch.tanh(x / 3) * 3
class Block(nn.Module):
def __init__(self, n_in, n_out):
def __init__(self, n_in, n_out, use_midblock_gn=False):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
self.pool = None
if use_midblock_gn:
conv1x1, n_gn = lambda n_in, n_out: comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False), n_in*4
self.pool = nn.Sequential(conv1x1(n_in, n_gn), comfy.ops.disable_weight_init.GroupNorm(4, n_gn), nn.ReLU(inplace=True), conv1x1(n_gn, n_in))
def forward(self, x):
if self.pool is not None:
x = x + self.pool(x)
return self.fuse(self.conv(x) + self.skip(x))
def Encoder(latent_channels=4):
def Encoder(latent_channels=4, use_midblock_gn=False):
mb_kw = dict(use_midblock_gn=use_midblock_gn)
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw),
conv(64, latent_channels),
)
def Decoder(latent_channels=4):
def Decoder(latent_channels=4, use_midblock_gn=False):
mb_kw = dict(use_midblock_gn=use_midblock_gn)
return nn.Sequential(
Clamp(), conv(latent_channels, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), conv(64, 3),
@ -48,17 +56,30 @@ class TAESD(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4):
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4, use_midblock_gn=False):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
self.taesd_encoder = Encoder(latent_channels=latent_channels)
self.taesd_decoder = Decoder(latent_channels=latent_channels)
self.latent_channels = latent_channels
self.use_midblock_gn = use_midblock_gn
self.taesd_encoder = Encoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn)
self.taesd_decoder = Decoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn)
if encoder_path is not None:
self.taesd_encoder, self.latent_channels = self._load_model(encoder_path, Encoder)
if decoder_path is not None:
self.taesd_decoder, self.latent_channels = self._load_model(decoder_path, Decoder)
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
if encoder_path is not None:
self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
if decoder_path is not None:
self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
def _load_model(self, path, model_class):
"""Load a TAESD encoder or decoder from a file."""
sd = comfy.utils.load_torch_file(path, safe_load=True)
latent_channels = sd["1.weight"].shape[1]
model = model_class(latent_channels=latent_channels, use_midblock_gn="3.pool.0.weight" in sd)
model.load_state_dict(sd)
return model, latent_channels
@staticmethod
def scale_latents(x):
@ -71,9 +92,15 @@ class TAESD(nn.Module):
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def decode(self, x):
if x.shape[1] == self.latent_channels * 4:
x = x.reshape(x.shape[0], self.latent_channels, 2, 2, x.shape[-2], x.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(x.shape[0], self.latent_channels, x.shape[-2] * 2, x.shape[-1] * 2)
x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
x_sample = x_sample.sub(0.5).mul(2)
return x_sample
def encode(self, x):
return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
x_sample = (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
if self.latent_channels == 32 and self.use_midblock_gn: # Only taef2 for Flux2 currently, pack latents: [B, C, H, W] -> [B, C*4, H//2, W//2]
x_sample = x_sample.reshape(x_sample.shape[0], self.latent_channels, x_sample.shape[-2] // 2, 2, x_sample.shape[-1] // 2, 2).permute(0, 1, 3, 5, 2, 4).reshape(x_sample.shape[0], self.latent_channels * 4, x_sample.shape[-2] // 2, x_sample.shape[-1] // 2)
return x_sample

View File

@ -724,7 +724,7 @@ class LoraLoaderModelOnly(LoraLoader):
class VAELoader:
video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5", "taeltx_2"]
image_taes = ["taesd", "taesdxl", "taesd3", "taef1"]
image_taes = ["taesd", "taesdxl", "taesd3", "taef1", "taef2"]
@staticmethod
def vae_list(s):
vaes = folder_paths.get_filename_list("vae")
@ -737,6 +737,8 @@ class VAELoader:
sd3_taesd_dec = False
f1_taesd_enc = False
f1_taesd_dec = False
f2_taesd_enc = False
f2_taesd_dec = False
for v in approx_vaes:
if v.startswith("taesd_decoder."):
@ -755,6 +757,10 @@ class VAELoader:
f1_taesd_dec = True
elif v.startswith("taef1_decoder."):
f1_taesd_enc = True
elif v.startswith("taef2_encoder."):
f2_taesd_dec = True
elif v.startswith("taef2_decoder."):
f2_taesd_enc = True
else:
for tae in s.video_taes:
if v.startswith(tae):
@ -768,6 +774,8 @@ class VAELoader:
vaes.append("taesd3")
if f1_taesd_dec and f1_taesd_enc:
vaes.append("taef1")
if f2_taesd_dec and f2_taesd_enc:
vaes.append("taef2")
vaes.append("pixel_space")
return vaes
@ -799,6 +807,9 @@ class VAELoader:
elif name == "taef1":
sd["vae_scale"] = torch.tensor(0.3611)
sd["vae_shift"] = torch.tensor(0.1159)
elif name == "taef2":
sd["vae_scale"] = torch.tensor(1.0)
sd["vae_shift"] = torch.tensor(0.0)
return sd
@classmethod