Merge branch 'comfyanonymous:master' into master

This commit is contained in:
Simon 2025-12-30 23:42:06 +01:00 committed by GitHub
commit 0f0717c1a8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 583 additions and 394 deletions

View File

@ -212,6 +212,8 @@ Python 3.14 works but you may encounter issues with the torch compile node. The
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
### Instructions:
Git clone this repo.

View File

@ -188,6 +188,12 @@ class IndexListContextHandler(ContextHandlerABC):
audio_cond = cond_value.cond
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
# Handle vace_context (temporal dim is 3)
elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
vace_cond = cond_value.cond
if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim):
sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list)
new_cond_item[cond_key] = cond_value._copy_with(sliced_vace)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \

View File

@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
def default_noise_sampler(x, seed=None):
if seed is not None:
if x.device == torch.device("cpu"):
seed += 1
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
else:

View File

@ -491,7 +491,8 @@ class NextDiT(nn.Module):
for layer_id in range(n_layers)
]
)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# This norm final is in the lumina 2.0 code but isn't actually used for anything.
# self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings)
if self.pad_tokens_multiple is not None:

View File

@ -1019,8 +1019,8 @@ NUM_STREAMS = 0
if args.async_offload is not None:
NUM_STREAMS = args.async_offload
else:
# Enable by default on Nvidia
if is_nvidia():
# Enable by default on Nvidia and AMD
if is_nvidia() or is_amd():
NUM_STREAMS = 2
if args.disable_async_offload:
@ -1126,6 +1126,16 @@ if not args.disable_pinned_memory:
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
def discard_cuda_async_error():
try:
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
def pin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
@ -1158,6 +1168,9 @@ def pin_memory(tensor):
PINNED_MEMORY[ptr] = size
TOTAL_PINNED_MEMORY += size
return True
else:
logging.warning("Pin error.")
discard_cuda_async_error()
return False
@ -1186,6 +1199,9 @@ def unpin_memory(tensor):
if len(PINNED_MEMORY) == 0:
TOTAL_PINNED_MEMORY = 0
return True
else:
logging.warning("Unpin error.")
discard_cuda_async_error()
return False

View File

@ -28,9 +28,8 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr
prune_dict, shallow_clone_class)
from ._resources import Resources, ResourcesLocal
from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL
from ._util import MESH, VOXEL, SVG as _SVG
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
class FolderType(str, Enum):
input = "input"
@ -656,7 +655,7 @@ class Video(ComfyTypeIO):
@comfytype(io_type="SVG")
class SVG(ComfyTypeIO):
Type = Any # TODO: SVG class is defined in comfy_extras/nodes_images.py, causing circular reference; should be moved to somewhere else before referenced directly in v3
Type = _SVG
@comfytype(io_type="LORA_MODEL")
class LoraModel(ComfyTypeIO):

View File

@ -1,5 +1,6 @@
from .video_types import VideoContainer, VideoCodec, VideoComponents
from .geometry_types import VOXEL, MESH
from .image_types import SVG
__all__ = [
# Utility Types
@ -8,4 +9,5 @@ __all__ = [
"VideoComponents",
"VOXEL",
"MESH",
"SVG",
]

View File

@ -0,0 +1,18 @@
from io import BytesIO
class SVG:
"""Stores SVG representations via a list of BytesIO objects."""
def __init__(self, data: list[BytesIO]):
self.data = data
def combine(self, other: 'SVG') -> 'SVG':
return SVG(self.data + other.data)
@staticmethod
def combine_all(svgs: list['SVG']) -> 'SVG':
all_svgs_list: list[BytesIO] = []
for svg_item in svgs:
all_svgs_list.extend(svg_item.data)
return SVG(all_svgs_list)

View File

@ -133,6 +133,7 @@ class GeminiImageGenerateContentRequest(BaseModel):
systemInstruction: GeminiSystemInstructionContent | None = Field(None)
tools: list[GeminiTool] | None = Field(None)
videoMetadata: GeminiVideoMetadata | None = Field(None)
uploadImagesToStorage: bool = Field(True)
class GeminiGenerateContentRequest(BaseModel):

View File

@ -102,3 +102,12 @@ class ImageToVideoWithAudioRequest(BaseModel):
prompt: str = Field(...)
mode: str = Field("pro")
sound: str = Field(..., description="'on' or 'off'")
class MotionControlRequest(BaseModel):
prompt: str = Field(...)
image_url: str = Field(...)
video_url: str = Field(...)
keep_original_sound: str = Field(...)
character_orientation: str = Field(...)
mode: str = Field(..., description="'pro' or 'std'")

View File

@ -229,6 +229,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
IO.Hidden.unique_id,
],
is_api_node=True,
is_deprecated=True,
)
@classmethod
@ -269,7 +270,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceSeedreamNode",
display_name="ByteDance Seedream 4",
display_name="ByteDance Seedream 4.5",
category="api node/image/ByteDance",
description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.",
inputs=[

View File

@ -34,6 +34,7 @@ from comfy_api_nodes.util import (
ApiEndpoint,
audio_to_base64_string,
bytesio_to_image_tensor,
download_url_to_image_tensor,
get_number_of_images,
sync_op,
tensor_to_base64_string,
@ -141,9 +142,11 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
)
parts = []
for part in response.candidates[0].content.parts:
if part_type == "text" and hasattr(part, "text") and part.text:
if part_type == "text" and part.text:
parts.append(part)
elif hasattr(part, "inlineData") and part.inlineData and part.inlineData.mimeType == part_type:
elif part.inlineData and part.inlineData.mimeType == part_type:
parts.append(part)
elif part.fileData and part.fileData.mimeType == part_type:
parts.append(part)
# Skip parts that don't match the requested type
return parts
@ -163,12 +166,15 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
return "\n".join([part.text for part in parts])
def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image:
async def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image:
image_tensors: list[Input.Image] = []
parts = get_parts_by_type(response, "image/png")
for part in parts:
image_data = base64.b64decode(part.inlineData.data)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
if part.inlineData:
image_data = base64.b64decode(part.inlineData.data)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
else:
returned_image = await download_url_to_image_tensor(part.fileData.fileUri)
image_tensors.append(returned_image)
if len(image_tensors) == 0:
return torch.zeros((1, 1024, 1024, 4))
@ -596,7 +602,7 @@ class GeminiImage(IO.ComfyNode):
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role=GeminiRole.user, parts=parts),
@ -610,7 +616,7 @@ class GeminiImage(IO.ComfyNode):
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response))
return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response))
class GeminiImage2(IO.ComfyNode):
@ -729,7 +735,7 @@ class GeminiImage2(IO.ComfyNode):
response = await sync_op(
cls,
ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role=GeminiRole.user, parts=parts),
@ -743,7 +749,7 @@ class GeminiImage2(IO.ComfyNode):
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response))
return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response))
class GeminiExtension(ComfyExtension):

View File

@ -51,6 +51,7 @@ from comfy_api_nodes.apis import (
)
from comfy_api_nodes.apis.kling_api import (
ImageToVideoWithAudioRequest,
MotionControlRequest,
OmniImageParamImage,
OmniParamImage,
OmniParamVideo,
@ -858,7 +859,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
tooltip="A text prompt describing the video content. "
"This can include both positive and negative descriptions.",
),
IO.Combo.Input("duration", options=["5", "10"]),
IO.Int.Input("duration", default=5, min=3, max=10, display_mode=IO.NumberDisplay.slider),
IO.Image.Input("first_frame"),
IO.Image.Input(
"end_frame",
@ -897,6 +898,10 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
validate_string(prompt, min_length=1, max_length=2500)
if end_frame is not None and reference_images is not None:
raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.")
if duration not in (5, 10) and end_frame is None and reference_images is None:
raise ValueError(
"Duration is only supported for 5 or 10 seconds if there is no end frame or reference images."
)
validate_image_dimensions(first_frame, min_width=300, min_height=300)
validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1))
image_list: list[OmniParamImage] = [
@ -2159,6 +2164,91 @@ class ImageToVideoWithAudio(IO.ComfyNode):
return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url))
class MotionControl(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="KlingMotionControl",
display_name="Kling Motion Control",
category="api node/video/Kling",
inputs=[
IO.String.Input("prompt", multiline=True),
IO.Image.Input("reference_image"),
IO.Video.Input(
"reference_video",
tooltip="Motion reference video used to drive movement/expression.\n"
"Duration limits depend on character_orientation:\n"
" - image: 310s (max 10s)\n"
" - video: 330s (max 30s)",
),
IO.Boolean.Input("keep_original_sound", default=True),
IO.Combo.Input(
"character_orientation",
options=["video", "image"],
tooltip="Controls where the character's facing/orientation comes from.\n"
"video: movements, expressions, camera moves, and orientation "
"follow the motion reference video (other details via prompt).\n"
"image: movements and expressions still follow the motion reference video, "
"but the character orientation matches the reference image (camera/other details via prompt).",
),
IO.Combo.Input("mode", options=["pro", "std"]),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
reference_image: Input.Image,
reference_video: Input.Video,
keep_original_sound: bool,
character_orientation: str,
mode: str,
) -> IO.NodeOutput:
validate_string(prompt, max_length=2500)
validate_image_dimensions(reference_image, min_width=340, min_height=340)
validate_image_aspect_ratio(reference_image, (1, 2.5), (2.5, 1))
if character_orientation == "image":
validate_video_duration(reference_video, min_duration=3, max_duration=10)
else:
validate_video_duration(reference_video, min_duration=3, max_duration=30)
validate_video_dimensions(reference_video, min_width=340, min_height=340, max_width=3850, max_height=3850)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/kling/v1/videos/motion-control", method="POST"),
response_model=TaskStatusResponse,
data=MotionControlRequest(
prompt=prompt,
image_url=(await upload_images_to_comfyapi(cls, reference_image))[0],
video_url=await upload_video_to_comfyapi(cls, reference_video),
keep_original_sound="yes" if keep_original_sound else "no",
character_orientation=character_orientation,
mode=mode,
),
)
if response.code:
raise RuntimeError(
f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}"
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/kling/v1/videos/motion-control/{response.data.task_id}"),
response_model=TaskStatusResponse,
status_extractor=lambda r: (r.data.task_status if r.data else None),
)
return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url))
class KlingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
@ -2184,6 +2274,7 @@ class KlingExtension(ComfyExtension):
OmniProImageNode,
TextToVideoWithAudio,
ImageToVideoWithAudio,
MotionControl,
]

View File

@ -168,6 +168,8 @@ class VeoVideoGenerationNode(IO.ComfyNode):
# Only add generateAudio for Veo 3 models
if model.find("veo-2.0") == -1:
parameters["generateAudio"] = generate_audio
# force "enhance_prompt" to True for Veo3 models
parameters["enhancePrompt"] = True
initial_response = await sync_op(
cls,
@ -291,7 +293,7 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
IO.Boolean.Input(
"enhance_prompt",
default=True,
tooltip="Whether to enhance the prompt with AI assistance",
tooltip="This parameter is deprecated and ignored.",
optional=True,
),
IO.Combo.Input(

View File

@ -430,9 +430,9 @@ def _display_text(
if status:
display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}")
if price is not None:
p = f"{float(price):,.4f}".rstrip("0").rstrip(".")
p = f"{float(price) * 211:,.1f}".rstrip("0").rstrip(".")
if p != "0":
display_lines.append(f"Price: ${p}")
display_lines.append(f"Price: {p} credits")
if text is not None:
display_lines.append(text)
if display_lines:

View File

@ -9,6 +9,7 @@ import comfy.utils
import node_helpers
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
import re
class BasicScheduler(io.ComfyNode):
@ -760,8 +761,12 @@ class SamplerCustom(io.ComfyNode):
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
x0_out = model.model.process_latent_out(x0_output["x0"].cpu())
if samples.is_nested:
latent_shapes = [x.shape for x in samples.unbind()]
x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes))
out_denoised = latent.copy()
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
out_denoised["samples"] = x0_out
else:
out_denoised = out
return io.NodeOutput(out, out_denoised)
@ -948,8 +953,12 @@ class SamplerCustomAdvanced(io.ComfyNode):
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
x0_out = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
if samples.is_nested:
latent_shapes = [x.shape for x in samples.unbind()]
x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes))
out_denoised = latent.copy()
out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
out_denoised["samples"] = x0_out
else:
out_denoised = out
return io.NodeOutput(out, out_denoised)
@ -1005,6 +1014,25 @@ class AddNoise(io.ComfyNode):
add_noise = execute
class ManualSigmas(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ManualSigmas",
category="_for_testing/custom_sampling",
is_experimental=True,
inputs=[
io.String.Input("sigmas", default="1, 0.5", multiline=False)
],
outputs=[io.Sigmas.Output()]
)
@classmethod
def execute(cls, sigmas) -> io.NodeOutput:
sigmas = re.findall(r"[-+]?(?:\d*\.*\d+)", sigmas)
sigmas = [float(i) for i in sigmas]
sigmas = torch.FloatTensor(sigmas)
return io.NodeOutput(sigmas)
class CustomSamplersExtension(ComfyExtension):
@override
@ -1044,6 +1072,7 @@ class CustomSamplersExtension(ComfyExtension):
DisableNoise,
AddNoise,
SamplerCustomAdvanced,
ManualSigmas,
]

View File

@ -667,16 +667,19 @@ class ResizeImagesByLongerEdgeNode(ImageProcessingNode):
@classmethod
def _process(cls, image, longer_edge):
img = tensor_to_pil(image)
w, h = img.size
if w > h:
new_w = longer_edge
new_h = int(h * (longer_edge / w))
else:
new_h = longer_edge
new_w = int(w * (longer_edge / h))
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
return pil_to_tensor(img)
resized_images = []
for image_i in image:
img = tensor_to_pil(image_i)
w, h = img.size
if w > h:
new_w = longer_edge
new_h = int(h * (longer_edge / w))
else:
new_h = longer_edge
new_w = int(w * (longer_edge / h))
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
resized_images.append(pil_to_tensor(img))
return torch.cat(resized_images, dim=0)
class CenterCropImagesNode(ImageProcessingNode):

View File

@ -2,280 +2,231 @@ from __future__ import annotations
import nodes
import folder_paths
from comfy.cli_args import args
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np
import json
import os
import re
from io import BytesIO
from inspect import cleandoc
import torch
import comfy.utils
from comfy.comfy_types import FileLocator, IO
from server import PromptServer
from comfy_api.latest import ComfyExtension, IO, UI
from typing_extensions import override
SVG = IO.SVG.Type # TODO: temporary solution for backward compatibility, will be removed later.
MAX_RESOLUTION = nodes.MAX_RESOLUTION
class ImageCrop:
class ImageCrop(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
def define_schema(cls):
return IO.Schema(
node_id="ImageCrop",
display_name="Image Crop",
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/transform"
def crop(self, image, width, height, x, y):
@classmethod
def execute(cls, image, width, height, x, y) -> IO.NodeOutput:
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:,y:to_y, x:to_x, :]
return (img,)
return IO.NodeOutput(img)
class RepeatImageBatch:
crop = execute # TODO: remove
class RepeatImageBatch(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
def define_schema(cls):
return IO.Schema(
node_id="RepeatImageBatch",
category="image/batch",
inputs=[
IO.Image.Input("image"),
IO.Int.Input("amount", default=1, min=1, max=4096),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/batch"
def repeat(self, image, amount):
@classmethod
def execute(cls, image, amount) -> IO.NodeOutput:
s = image.repeat((amount, 1,1,1))
return (s,)
return IO.NodeOutput(s)
class ImageFromBatch:
repeat = execute # TODO: remove
class ImageFromBatch(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}),
"length": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "frombatch"
def define_schema(cls):
return IO.Schema(
node_id="ImageFromBatch",
category="image/batch",
inputs=[
IO.Image.Input("image"),
IO.Int.Input("batch_index", default=0, min=0, max=4095),
IO.Int.Input("length", default=1, min=1, max=4096),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/batch"
def frombatch(self, image, batch_index, length):
@classmethod
def execute(cls, image, batch_index, length) -> IO.NodeOutput:
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return (s,)
return IO.NodeOutput(s)
frombatch = execute # TODO: remove
class ImageAddNoise:
class ImageAddNoise(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
def define_schema(cls):
return IO.Schema(
node_id="ImageAddNoise",
category="image",
inputs=[
IO.Image.Input("image"),
IO.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
IO.Float.Input("strength", default=0.5, min=0.0, max=1.0, step=0.01),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image"
def repeat(self, image, seed, strength):
@classmethod
def execute(cls, image, seed, strength) -> IO.NodeOutput:
generator = torch.manual_seed(seed)
s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0)
return (s,)
return IO.NodeOutput(s)
class SaveAnimatedWEBP:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
repeat = execute # TODO: remove
methods = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"lossless": ("BOOLEAN", {"default": True}),
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
"method": (list(s.methods.keys()),),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
method = self.methods.get(method)
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results: list[FileLocator] = []
pil_images = []
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
if extra_pnginfo is not None:
inital_exif = 0x010f
for x in extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
c = len(pil_images)
for i in range(0, c, num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
animated = num_frames != 1
return { "ui": { "images": results, "animated": (animated,) } }
class SaveAnimatedPNG:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
class SaveAnimatedWEBP(IO.ComfyNode):
COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
def define_schema(cls):
return IO.Schema(
node_id="SaveAnimatedWEBP",
category="image/animation",
inputs=[
IO.Image.Input("images"),
IO.String.Input("filename_prefix", default="ComfyUI"),
IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
IO.Boolean.Input("lossless", default=True),
IO.Int.Input("quality", default=80, min=0, max=100),
IO.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
RETURN_TYPES = ()
FUNCTION = "save_images"
@classmethod
def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> IO.NodeOutput:
return IO.NodeOutput(
ui=UI.ImageSaveHelper.get_save_animated_webp_ui(
images=images,
filename_prefix=filename_prefix,
cls=cls,
fps=fps,
lossless=lossless,
quality=quality,
method=cls.COMPRESS_METHODS.get(method)
)
)
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
pil_images = []
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
return { "ui": { "images": results, "animated": (True,)} }
class SVG:
"""
Stores SVG representations via a list of BytesIO objects.
"""
def __init__(self, data: list[BytesIO]):
self.data = data
def combine(self, other: 'SVG') -> 'SVG':
return SVG(self.data + other.data)
@staticmethod
def combine_all(svgs: list['SVG']) -> 'SVG':
all_svgs_list: list[BytesIO] = []
for svg_item in svgs:
all_svgs_list.extend(svg_item.data)
return SVG(all_svgs_list)
save_images = execute # TODO: remove
class ImageStitch:
class SaveAnimatedPNG(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="SaveAnimatedPNG",
category="image/animation",
inputs=[
IO.Image.Input("images"),
IO.String.Input("filename_prefix", default="ComfyUI"),
IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
IO.Int.Input("compress_level", default=4, min=0, max=9),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> IO.NodeOutput:
return IO.NodeOutput(
ui=UI.ImageSaveHelper.get_save_animated_png_ui(
images=images,
filename_prefix=filename_prefix,
cls=cls,
fps=fps,
compress_level=compress_level,
)
)
save_images = execute # TODO: remove
class ImageStitch(IO.ComfyNode):
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"direction": (["right", "down", "left", "up"], {"default": "right"}),
"match_image_size": ("BOOLEAN", {"default": True}),
"spacing_width": (
"INT",
{"default": 0, "min": 0, "max": 1024, "step": 2},
),
"spacing_color": (
["white", "black", "red", "green", "blue"],
{"default": "white"},
),
},
"optional": {
"image2": ("IMAGE",),
},
}
def define_schema(cls):
return IO.Schema(
node_id="ImageStitch",
display_name="Image Stitch",
description="Stitches image2 to image1 in the specified direction.\n"
"If image2 is not provided, returns image1 unchanged.\n"
"Optional spacing can be added between images.",
category="image/transform",
inputs=[
IO.Image.Input("image1"),
IO.Combo.Input("direction", options=["right", "down", "left", "up"], default="right"),
IO.Boolean.Input("match_image_size", default=True),
IO.Int.Input("spacing_width", default=0, min=0, max=1024, step=2),
IO.Combo.Input("spacing_color", options=["white", "black", "red", "green", "blue"], default="white"),
IO.Image.Input("image2", optional=True),
],
outputs=[IO.Image.Output()],
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stitch"
CATEGORY = "image/transform"
DESCRIPTION = """
Stitches image2 to image1 in the specified direction.
If image2 is not provided, returns image1 unchanged.
Optional spacing can be added between images.
"""
def stitch(
self,
@classmethod
def execute(
cls,
image1,
direction,
match_image_size,
spacing_width,
spacing_color,
image2=None,
):
) -> IO.NodeOutput:
if image2 is None:
return (image1,)
return IO.NodeOutput(image1)
# Handle batch size differences
if image1.shape[0] != image2.shape[0]:
@ -412,36 +363,30 @@ Optional spacing can be added between images.
images.insert(1, spacing)
concat_dim = 2 if direction in ["left", "right"] else 1
return (torch.cat(images, dim=concat_dim),)
return IO.NodeOutput(torch.cat(images, dim=concat_dim))
stitch = execute # TODO: remove
class ResizeAndPadImage(IO.ComfyNode):
class ResizeAndPadImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"target_width": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"target_height": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"padding_color": (["white", "black"],),
"interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],),
}
}
def define_schema(cls):
return IO.Schema(
node_id="ResizeAndPadImage",
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.Int.Input("target_width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("target_height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Combo.Input("padding_color", options=["white", "black"]),
IO.Combo.Input("interpolation", options=["area", "bicubic", "nearest-exact", "bilinear", "lanczos"]),
],
outputs=[IO.Image.Output()],
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "resize_and_pad"
CATEGORY = "image/transform"
def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation):
@classmethod
def execute(cls, image, target_width, target_height, padding_color, interpolation) -> IO.NodeOutput:
batch_size, orig_height, orig_width, channels = image.shape
scale_w = target_width / orig_width
@ -469,52 +414,47 @@ class ResizeAndPadImage:
padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized
output = padded.permute(0, 2, 3, 1)
return (output,)
return IO.NodeOutput(output)
class SaveSVGNode:
"""
Save SVG files on disk.
"""
resize_and_pad = execute # TODO: remove
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
RETURN_TYPES = ()
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "save_svg"
CATEGORY = "image/save" # Changed
OUTPUT_NODE = True
class SaveSVGNode(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"svg": ("SVG",), # Changed
"filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO"
}
}
def define_schema(cls):
return IO.Schema(
node_id="SaveSVGNode",
description="Save SVG files on disk.",
category="image/save",
inputs=[
IO.SVG.Input("svg"),
IO.String.Input(
"filename_prefix",
default="svg/ComfyUI",
tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list()
@classmethod
def execute(cls, svg: IO.SVG.Type, filename_prefix="svg/ComfyUI") -> IO.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
results: list[UI.SavedResult] = []
# Prepare metadata JSON
metadata_dict = {}
if prompt is not None:
metadata_dict["prompt"] = prompt
if extra_pnginfo is not None:
metadata_dict.update(extra_pnginfo)
if cls.hidden.prompt is not None:
metadata_dict["prompt"] = cls.hidden.prompt
if cls.hidden.extra_pnginfo is not None:
metadata_dict.update(cls.hidden.extra_pnginfo)
# Convert metadata to JSON string
metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None
for batch_number, svg_bytes in enumerate(svg.data):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.svg"
@ -544,57 +484,64 @@ class SaveSVGNode:
with open(os.path.join(full_output_folder, file), 'wb') as svg_file:
svg_file.write(svg_content.encode('utf-8'))
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
results.append(UI.SavedResult(filename=file, subfolder=subfolder, type=IO.FolderType.output))
counter += 1
return { "ui": { "images": results } }
return IO.NodeOutput(ui={"images": results})
class GetImageSize:
save_svg = execute # TODO: remove
class GetImageSize(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"hidden": {
"unique_id": "UNIQUE_ID",
}
}
def define_schema(cls):
return IO.Schema(
node_id="GetImageSize",
display_name="Get Image Size",
description="Returns width and height of the image, and passes it through unchanged.",
category="image",
inputs=[
IO.Image.Input("image"),
],
outputs=[
IO.Int.Output(display_name="width"),
IO.Int.Output(display_name="height"),
IO.Int.Output(display_name="batch_size"),
],
hidden=[IO.Hidden.unique_id],
)
RETURN_TYPES = (IO.INT, IO.INT, IO.INT)
RETURN_NAMES = ("width", "height", "batch_size")
FUNCTION = "get_size"
CATEGORY = "image"
DESCRIPTION = """Returns width and height of the image, and passes it through unchanged."""
def get_size(self, image, unique_id=None) -> tuple[int, int]:
@classmethod
def execute(cls, image) -> IO.NodeOutput:
height = image.shape[1]
width = image.shape[2]
batch_size = image.shape[0]
# Send progress text to display size on the node
if unique_id:
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id)
if cls.hidden.unique_id:
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", cls.hidden.unique_id)
return width, height, batch_size
return IO.NodeOutput(width, height, batch_size)
get_size = execute # TODO: remove
class ImageRotate(IO.ComfyNode):
class ImageRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": (IO.IMAGE,),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "rotate"
def define_schema(cls):
return IO.Schema(
node_id="ImageRotate",
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.Combo.Input("rotation", options=["none", "90 degrees", "180 degrees", "270 degrees"]),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/transform"
def rotate(self, image, rotation):
@classmethod
def execute(cls, image, rotation) -> IO.NodeOutput:
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
@ -604,41 +551,57 @@ class ImageRotate:
rotate_by = 3
image = torch.rot90(image, k=rotate_by, dims=[2, 1])
return (image,)
return IO.NodeOutput(image)
rotate = execute # TODO: remove
class ImageFlip(IO.ComfyNode):
class ImageFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": (IO.IMAGE,),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "flip"
def define_schema(cls):
return IO.Schema(
node_id="ImageFlip",
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.Combo.Input("flip_method", options=["x-axis: vertically", "y-axis: horizontally"]),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/transform"
def flip(self, image, flip_method):
@classmethod
def execute(cls, image, flip_method) -> IO.NodeOutput:
if flip_method.startswith("x"):
image = torch.flip(image, dims=[1])
elif flip_method.startswith("y"):
image = torch.flip(image, dims=[2])
return (image,)
return IO.NodeOutput(image)
class ImageScaleToMaxDimension:
upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"]
flip = execute # TODO: remove
class ImageScaleToMaxDimension(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"upscale_method": (s.upscale_methods,),
"largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
def define_schema(cls):
return IO.Schema(
node_id="ImageScaleToMaxDimension",
category="image/upscaling",
inputs=[
IO.Image.Input("image"),
IO.Combo.Input(
"upscale_method",
options=["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"],
),
IO.Int.Input("largest_size", default=512, min=0, max=MAX_RESOLUTION, step=1),
],
outputs=[IO.Image.Output()],
)
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, largest_size):
@classmethod
def execute(cls, image, upscale_method, largest_size) -> IO.NodeOutput:
height = image.shape[1]
width = image.shape[2]
@ -655,20 +618,30 @@ class ImageScaleToMaxDimension:
samples = image.movedim(-1, 1)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1, -1)
return (s,)
return IO.NodeOutput(s)
NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop,
"RepeatImageBatch": RepeatImageBatch,
"ImageFromBatch": ImageFromBatch,
"ImageAddNoise": ImageAddNoise,
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode,
"ImageStitch": ImageStitch,
"ResizeAndPadImage": ResizeAndPadImage,
"GetImageSize": GetImageSize,
"ImageRotate": ImageRotate,
"ImageFlip": ImageFlip,
"ImageScaleToMaxDimension": ImageScaleToMaxDimension,
}
upscale = execute # TODO: remove
class ImagesExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
ImageCrop,
RepeatImageBatch,
ImageFromBatch,
ImageAddNoise,
SaveAnimatedWEBP,
SaveAnimatedPNG,
SaveSVGNode,
ImageStitch,
ResizeAndPadImage,
GetImageSize,
ImageRotate,
ImageFlip,
ImageScaleToMaxDimension,
]
async def comfy_entrypoint() -> ImagesExtension:
return ImagesExtension()

View File

@ -3,7 +3,9 @@ import comfy.utils
import math
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
import comfy.model_management
import torch
import nodes
class TextEncodeQwenImageEdit(io.ComfyNode):
@classmethod
@ -104,12 +106,37 @@ class TextEncodeQwenImageEditPlus(io.ComfyNode):
return io.NodeOutput(conditioning)
class EmptyQwenImageLayeredLatentImage(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyQwenImageLayeredLatentImage",
display_name="Empty Qwen Image Layered Latent",
category="latent/qwen",
inputs=[
io.Int.Input("width", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("layers", default=3, min=0, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, width, height, layers, batch_size=1) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, layers + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent})
class QwenExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextEncodeQwenImageEdit,
TextEncodeQwenImageEditPlus,
EmptyQwenImageLayeredLatentImage,
]

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.5.1"
__version__ = "0.6.0"

View File

@ -1 +1 @@
comfyui_manager==4.0.3b7
comfyui_manager==4.0.4

View File

@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.5.1"
version = "0.6.0"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.34.9
comfyui-workflow-templates==0.7.60
comfyui-frontend-package==1.35.9
comfyui-workflow-templates==0.7.64
comfyui-embedded-docs==0.3.1
torch
torchsde

View File

@ -25,7 +25,7 @@ class TestImageStitch:
result = node.stitch(image1, "right", True, 0, "white", image2=None)
assert len(result) == 1
assert len(result.result) == 1
assert torch.equal(result[0], image1)
def test_basic_horizontal_stitch_right(self):