Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2024-12-24 15:06:02 +03:00 committed by GitHub
commit 0f7b4f063d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 95 additions and 27 deletions

View File

@ -259,6 +259,9 @@ class VAE:
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.downscale_index_formula = None
self.upscale_index_formula = None
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@ -338,6 +341,7 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
self.upscale_index_formula = (lambda a: max(0, a * 6), 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 5) / 6)), 8, 8)
self.working_dtypes = [torch.float16, torch.float32]
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: #lightricks ltxv
@ -353,6 +357,7 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.upscale_index_formula = (lambda a: max(0, a * 8), 32, 32)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd:
@ -360,6 +365,7 @@ class VAE:
ddconfig["conv3d"] = True
ddconfig["time_compress"] = 4
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (lambda a: max(0, a * 4), 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.latent_dim = 3
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
@ -426,7 +432,7 @@ class VAE:
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, index_formulas=self.upscale_index_formula, output_device=self.output_device))
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
@ -479,7 +485,7 @@ class VAE:
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
return pixel_samples
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None):
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
dims = samples.ndim - 2
@ -497,6 +503,12 @@ class VAE:
elif dims == 2:
output = self.decode_tiled_(samples, **args)
elif dims == 3:
if overlap_t is None:
args["overlap"] = (1, overlap, overlap)
else:
args["overlap"] = (overlap_t, overlap, overlap)
if tile_t is not None:
args["tile_t"] = tile_t
output = self.decode_tiled_3d(samples, **args)
return output.movedim(1, -1)
@ -575,6 +587,12 @@ class VAE:
except:
return self.downscale_ratio
def temporal_compression_decode(self):
try:
return round(self.upscale_ratio[0](8192) / 8192)
except:
return None
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model

View File

@ -822,7 +822,7 @@ def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return rows * cols
@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", downscale=False, pbar=None):
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", downscale=False, index_formulas=None, pbar=None):
dims = len(tile)
if not (isinstance(upscale_amount, (tuple, list))):
@ -831,6 +831,12 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
if not (isinstance(overlap, (tuple, list))):
overlap = [overlap] * dims
if index_formulas is None:
index_formulas = upscale_amount
if not (isinstance(index_formulas, (tuple, list))):
index_formulas = [index_formulas] * dims
def get_upscale(dim, val):
up = upscale_amount[dim]
if callable(up):
@ -845,10 +851,26 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
else:
return val / up
def get_upscale_pos(dim, val):
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return up * val
def get_downscale_pos(dim, val):
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return val / up
if downscale:
get_scale = get_downscale
get_pos = get_downscale_pos
else:
get_scale = get_upscale
get_pos = get_upscale_pos
def mult_list_upscale(a):
out = []
@ -881,7 +903,7 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
pos = max(0, min(s.shape[d + 2] - overlap[d], it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(get_scale(d, pos)))
upscaled.append(round(get_pos(d, pos)))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)

60
main.py
View File

@ -150,9 +150,10 @@ def cuda_malloc_warning():
if cuda_malloc_warning:
logging.warning("\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
def prompt_worker(q, server):
def prompt_worker(q, server_instance):
current_time: float = 0.0
e = execution.PromptExecutor(server, lru_size=args.cache_lru)
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
@ -167,7 +168,7 @@ def prompt_worker(q, server):
item, item_id = queue_item
execution_start_time = time.perf_counter()
prompt_id = item[1]
server.last_prompt_id = prompt_id
server_instance.last_prompt_id = prompt_id
e.execute(item[2], prompt_id, item[3], item[4])
need_gc = True
@ -177,8 +178,8 @@ def prompt_worker(q, server):
status_str='success' if e.success else 'error',
completed=e.success,
messages=e.status_messages))
if server.client_id is not None:
server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id)
if server_instance.client_id is not None:
server_instance.send_sync("executing", {"node": None, "prompt_id": prompt_id}, server_instance.client_id)
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
@ -205,21 +206,23 @@ def prompt_worker(q, server):
last_gc_collect = current_time
need_gc = False
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
async def run(server_instance, address='', port=8188, verbose=True, call_on_start=None):
addresses = []
for addr in address.split(","):
addresses.append((addr, port))
await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop())
await asyncio.gather(server_instance.start_multi_address(addresses, call_on_start), server_instance.publish_loop())
def hijack_progress(server):
def hijack_progress(server_instance):
def hook(value, total, preview_image):
comfy.model_management.throw_exception_if_processing_interrupted()
progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}
progress = {"value": value, "max": total, "prompt_id": server_instance.last_prompt_id, "node": server_instance.last_node_id}
server.send_sync("progress", progress, server.client_id)
server_instance.send_sync("progress", progress, server_instance.client_id)
if preview_image is not None:
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
server_instance.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server_instance.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
@ -229,7 +232,11 @@ def cleanup_temp():
shutil.rmtree(temp_dir, ignore_errors=True)
if __name__ == "__main__":
def start_comfyui(asyncio_loop=None):
"""
Starts the ComfyUI server using the provided asyncio event loop or creates a new one.
Returns the event loop, server instance, and a function to start the server asynchronously.
"""
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
logging.info(f"Setting temp directory to: {temp_dir}")
@ -243,19 +250,20 @@ if __name__ == "__main__":
except:
pass
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server = server.PromptServer(loop)
q = execution.PromptQueue(server)
if not asyncio_loop:
asyncio_loop = asyncio.new_event_loop()
asyncio.set_event_loop(asyncio_loop)
prompt_server = server.PromptServer(asyncio_loop)
q = execution.PromptQueue(prompt_server)
nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes)
cuda_malloc_warning()
server.add_routes()
hijack_progress(server)
prompt_server.add_routes()
hijack_progress(prompt_server)
threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start()
threading.Thread(target=prompt_worker, daemon=True, args=(q, prompt_server,)).start()
if args.quick_test_for_ci:
exit(0)
@ -272,9 +280,19 @@ if __name__ == "__main__":
webbrowser.open(f"{scheme}://{address}:{port}")
call_on_start = startup_server
async def start_all():
await prompt_server.setup()
await run(prompt_server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start)
# Returning these so that other code can integrate with the ComfyUI loop and server
return asyncio_loop, prompt_server, start_all
if __name__ == "__main__":
# Running directly, just start ComfyUI.
event_loop, _, start_all_func = start_comfyui()
try:
loop.run_until_complete(server.setup())
loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start))
event_loop.run_until_complete(start_all_func())
except KeyboardInterrupt:
logging.info("\nStopped server")

View File

@ -293,17 +293,27 @@ class VAEDecodeTiled:
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 32}),
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to decode at a time."}),
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
def decode(self, vae, samples, tile_size, overlap=64):
def decode(self, vae, samples, tile_size, overlap=64, temporal_size=64, temporal_overlap=8):
if tile_size < overlap * 4:
overlap = tile_size // 4
temporal_compression = vae.temporal_compression_decode()
if temporal_compression is not None:
temporal_size = max(2, temporal_size // temporal_compression)
temporal_overlap = min(1, temporal_size // 2, temporal_overlap // temporal_compression)
else:
temporal_size = None
temporal_overlap = None
compression = vae.spacial_compression_decode()
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression)
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression, tile_t=temporal_size, overlap_t=temporal_overlap)
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )