mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-17 00:43:48 +08:00
ModelPatcherDynamic: force load non leaf weights (#12433)
The current behaviour of the default ModelPatcher is to .to a model only if its fully loaded, which is how random non-leaf weights get loaded in non-LowVRAM conditions. The however means they never get loaded in dynamic_vram. In the dynamic_vram case, force load them to the GPU.
This commit is contained in:
parent
4a93a62371
commit
117e214354
@ -679,18 +679,19 @@ class ModelPatcher:
|
|||||||
for key in list(self.pinned):
|
for key in list(self.pinned):
|
||||||
self.unpin_weight(key)
|
self.unpin_weight(key)
|
||||||
|
|
||||||
def _load_list(self, prio_comfy_cast_weights=False):
|
def _load_list(self, prio_comfy_cast_weights=False, default_device=None):
|
||||||
loading = []
|
loading = []
|
||||||
for n, m in self.model.named_modules():
|
for n, m in self.model.named_modules():
|
||||||
params = []
|
default = False
|
||||||
skip = False
|
params = { name: param for name, param in m.named_parameters(recurse=False) }
|
||||||
for name, param in m.named_parameters(recurse=False):
|
|
||||||
params.append(name)
|
|
||||||
for name, param in m.named_parameters(recurse=True):
|
for name, param in m.named_parameters(recurse=True):
|
||||||
if name not in params:
|
if name not in params:
|
||||||
skip = True # skip random weights in non leaf modules
|
default = True # default random weights in non leaf modules
|
||||||
break
|
break
|
||||||
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
if default and default_device is not None:
|
||||||
|
for param in params.values():
|
||||||
|
param.data = param.data.to(device=default_device)
|
||||||
|
if not default and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
||||||
module_mem = comfy.model_management.module_size(m)
|
module_mem = comfy.model_management.module_size(m)
|
||||||
module_offload_mem = module_mem
|
module_offload_mem = module_mem
|
||||||
if hasattr(m, "comfy_cast_weights"):
|
if hasattr(m, "comfy_cast_weights"):
|
||||||
@ -1495,7 +1496,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
|||||||
#with pin and unpin syncrhonization which can be expensive for small weights
|
#with pin and unpin syncrhonization which can be expensive for small weights
|
||||||
#with a high layer rate (e.g. autoregressive LLMs).
|
#with a high layer rate (e.g. autoregressive LLMs).
|
||||||
#prioritize the non-comfy weights (note the order reverse).
|
#prioritize the non-comfy weights (note the order reverse).
|
||||||
loading = self._load_list(prio_comfy_cast_weights=True)
|
loading = self._load_list(prio_comfy_cast_weights=True, default_device=device_to)
|
||||||
loading.sort(reverse=True)
|
loading.sort(reverse=True)
|
||||||
|
|
||||||
for x in loading:
|
for x in loading:
|
||||||
@ -1579,7 +1580,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
|||||||
return 0 if vbar is None else vbar.free_memory(memory_to_free)
|
return 0 if vbar is None else vbar.free_memory(memory_to_free)
|
||||||
|
|
||||||
def partially_unload_ram(self, ram_to_unload):
|
def partially_unload_ram(self, ram_to_unload):
|
||||||
loading = self._load_list(prio_comfy_cast_weights=True)
|
loading = self._load_list(prio_comfy_cast_weights=True, default_device=self.offload_device)
|
||||||
for x in loading:
|
for x in loading:
|
||||||
_, _, _, _, m, _ = x
|
_, _, _, _, m, _ = x
|
||||||
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)
|
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user