mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-21 12:00:49 +08:00
Merge 09c250184d into da2bfb5b0a
This commit is contained in:
commit
15774125bd
@ -1,6 +1,12 @@
|
|||||||
from __future__ import annotations
|
# graph.py — grouped/batched scheduler on top of the updated ExecutionList
|
||||||
from typing import Type, Literal
|
# Implements model-class batching to reduce device/context swaps while preserving
|
||||||
|
# the new execution_cache behavior added upstream.
|
||||||
|
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
from typing import Type, Literal, Optional
|
||||||
|
|
||||||
|
import os
|
||||||
import nodes
|
import nodes
|
||||||
import asyncio
|
import asyncio
|
||||||
import inspect
|
import inspect
|
||||||
@ -10,15 +16,19 @@ from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, InputType
|
|||||||
# NOTE: ExecutionBlocker code got moved to graph_utils.py to prevent torch being imported too soon during unit tests
|
# NOTE: ExecutionBlocker code got moved to graph_utils.py to prevent torch being imported too soon during unit tests
|
||||||
ExecutionBlocker = ExecutionBlocker
|
ExecutionBlocker = ExecutionBlocker
|
||||||
|
|
||||||
|
|
||||||
class DependencyCycleError(Exception):
|
class DependencyCycleError(Exception):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
class NodeInputError(Exception):
|
class NodeInputError(Exception):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
class NodeNotFoundError(Exception):
|
class NodeNotFoundError(Exception):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
class DynamicPrompt:
|
class DynamicPrompt:
|
||||||
def __init__(self, original_prompt):
|
def __init__(self, original_prompt):
|
||||||
# The original prompt provided by the user
|
# The original prompt provided by the user
|
||||||
@ -62,6 +72,7 @@ class DynamicPrompt:
|
|||||||
def get_original_prompt(self):
|
def get_original_prompt(self):
|
||||||
return self.original_prompt
|
return self.original_prompt
|
||||||
|
|
||||||
|
|
||||||
def get_input_info(
|
def get_input_info(
|
||||||
class_def: Type[ComfyNodeABC],
|
class_def: Type[ComfyNodeABC],
|
||||||
input_name: str,
|
input_name: str,
|
||||||
@ -99,6 +110,7 @@ def get_input_info(
|
|||||||
extra_info = {}
|
extra_info = {}
|
||||||
return input_type, input_category, extra_info
|
return input_type, input_category, extra_info
|
||||||
|
|
||||||
|
|
||||||
class TopologicalSort:
|
class TopologicalSort:
|
||||||
def __init__(self, dynprompt):
|
def __init__(self, dynprompt):
|
||||||
self.dynprompt = dynprompt
|
self.dynprompt = dynprompt
|
||||||
@ -165,6 +177,7 @@ class TopologicalSort:
|
|||||||
assert node_id in self.blockCount, "Can't add external block to a node that isn't pending"
|
assert node_id in self.blockCount, "Can't add external block to a node that isn't pending"
|
||||||
self.externalBlocks += 1
|
self.externalBlocks += 1
|
||||||
self.blockCount[node_id] += 1
|
self.blockCount[node_id] += 1
|
||||||
|
|
||||||
def unblock():
|
def unblock():
|
||||||
self.externalBlocks -= 1
|
self.externalBlocks -= 1
|
||||||
self.blockCount[node_id] -= 1
|
self.blockCount[node_id] -= 1
|
||||||
@ -186,31 +199,44 @@ class TopologicalSort:
|
|||||||
def is_empty(self):
|
def is_empty(self):
|
||||||
return len(self.pendingNodes) == 0
|
return len(self.pendingNodes) == 0
|
||||||
|
|
||||||
|
|
||||||
class ExecutionList(TopologicalSort):
|
class ExecutionList(TopologicalSort):
|
||||||
"""
|
"""
|
||||||
ExecutionList implements a topological dissolve of the graph. After a node is staged for execution,
|
ExecutionList implements a topological dissolve of the graph with batching.
|
||||||
it can still be returned to the graph after having further dependencies added.
|
After a node is staged for execution, it can still be returned to the graph
|
||||||
|
after having further dependencies added.
|
||||||
|
|
||||||
|
Batching: we favor running nodes of the same class_type back-to-back
|
||||||
|
to reduce device/context thrash (e.g., model swaps). Within a batch we still
|
||||||
|
apply UX-friendly priorities (output/async early, VAEDecode→preview, etc.).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, dynprompt, output_cache):
|
def __init__(self, dynprompt, output_cache):
|
||||||
super().__init__(dynprompt)
|
super().__init__(dynprompt)
|
||||||
self.output_cache = output_cache
|
self.output_cache = output_cache
|
||||||
self.staged_node_id = None
|
self.staged_node_id: Optional[str] = None
|
||||||
|
|
||||||
|
# Upstream execution cache (kept intact)
|
||||||
self.execution_cache = {}
|
self.execution_cache = {}
|
||||||
self.execution_cache_listeners = {}
|
self.execution_cache_listeners = {}
|
||||||
|
|
||||||
|
# Batching state
|
||||||
|
self._current_group_class: Optional[str] = None
|
||||||
|
|
||||||
|
# ----------------------------- cache ---------------------------------
|
||||||
def is_cached(self, node_id):
|
def is_cached(self, node_id):
|
||||||
return self.output_cache.get(node_id) is not None
|
return self.output_cache.get(node_id) is not None
|
||||||
|
|
||||||
def cache_link(self, from_node_id, to_node_id):
|
def cache_link(self, from_node_id, to_node_id):
|
||||||
if not to_node_id in self.execution_cache:
|
if to_node_id not in self.execution_cache:
|
||||||
self.execution_cache[to_node_id] = {}
|
self.execution_cache[to_node_id] = {}
|
||||||
self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id)
|
self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id)
|
||||||
if not from_node_id in self.execution_cache_listeners:
|
if from_node_id not in self.execution_cache_listeners:
|
||||||
self.execution_cache_listeners[from_node_id] = set()
|
self.execution_cache_listeners[from_node_id] = set()
|
||||||
self.execution_cache_listeners[from_node_id].add(to_node_id)
|
self.execution_cache_listeners[from_node_id].add(to_node_id)
|
||||||
|
|
||||||
def get_cache(self, from_node_id, to_node_id):
|
def get_cache(self, from_node_id, to_node_id):
|
||||||
if not to_node_id in self.execution_cache:
|
if to_node_id not in self.execution_cache:
|
||||||
return None
|
return None
|
||||||
value = self.execution_cache[to_node_id].get(from_node_id)
|
value = self.execution_cache[to_node_id].get(from_node_id)
|
||||||
if value is None:
|
if value is None:
|
||||||
@ -229,16 +255,93 @@ class ExecutionList(TopologicalSort):
|
|||||||
super().add_strong_link(from_node_id, from_socket, to_node_id)
|
super().add_strong_link(from_node_id, from_socket, to_node_id)
|
||||||
self.cache_link(from_node_id, to_node_id)
|
self.cache_link(from_node_id, to_node_id)
|
||||||
|
|
||||||
|
# --------------------------- group utils ------------------------------
|
||||||
|
def _pick_largest_group(self, node_list):
|
||||||
|
"""Return the class_type with the most representatives in node_list.
|
||||||
|
Ties are resolved deterministically by class name."""
|
||||||
|
counts = {}
|
||||||
|
for nid in node_list:
|
||||||
|
ctype = self.dynprompt.get_node(nid)["class_type"]
|
||||||
|
counts[ctype] = counts.get(ctype, 0) + 1
|
||||||
|
# max by (count, class_name) for deterministic tie-break
|
||||||
|
return max(counts.items(), key=lambda kv: (kv[1], kv[0]))[0]
|
||||||
|
|
||||||
|
def _filter_by_group(self, node_list, group_cls):
|
||||||
|
"""Keep only nodes that belong to the given class."""
|
||||||
|
return [nid for nid in node_list if self.dynprompt.get_node(nid)["class_type"] == group_cls]
|
||||||
|
|
||||||
|
# ------------------------- node classification ------------------------
|
||||||
|
def _is_output(self, node_id):
|
||||||
|
class_type = self.dynprompt.get_node(node_id)["class_type"]
|
||||||
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
||||||
|
return getattr(class_def, 'OUTPUT_NODE', False) is True
|
||||||
|
|
||||||
|
def _is_async(self, node_id):
|
||||||
|
class_type = self.dynprompt.get_node(node_id)["class_type"]
|
||||||
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
||||||
|
return inspect.iscoroutinefunction(getattr(class_def, class_def.FUNCTION))
|
||||||
|
|
||||||
|
# ------------------------- UX within a batch --------------------------
|
||||||
|
def _pick_in_batch_with_ux(self, candidates):
|
||||||
|
"""
|
||||||
|
Original UX heuristics, but applied *within* the current batch.
|
||||||
|
"""
|
||||||
|
# 1) Output nodes ASAP
|
||||||
|
for nid in candidates:
|
||||||
|
if self._is_output(nid):
|
||||||
|
return nid
|
||||||
|
# 1b) Async nodes early to overlap
|
||||||
|
for nid in candidates:
|
||||||
|
if self._is_async(nid):
|
||||||
|
return nid
|
||||||
|
# 2) decoder-before-preview pattern (within the batch)
|
||||||
|
for nid in candidates:
|
||||||
|
for blocked in self.blocking[nid]:
|
||||||
|
if self._is_output(blocked):
|
||||||
|
return nid
|
||||||
|
# 3) VAELoader -> VAEDecode -> preview (within the batch)
|
||||||
|
for nid in candidates:
|
||||||
|
for blocked in self.blocking[nid]:
|
||||||
|
for blocked2 in self.blocking[blocked]:
|
||||||
|
if self._is_output(blocked2):
|
||||||
|
return nid
|
||||||
|
# 4) Otherwise, first candidate
|
||||||
|
return candidates[0]
|
||||||
|
|
||||||
|
# ------------------------- batch-aware picking ------------------------
|
||||||
|
def ux_friendly_pick_node(self, available):
|
||||||
|
"""
|
||||||
|
Choose which ready node to execute next, honoring the current batch.
|
||||||
|
When the current batch runs dry, switch to the largest ready group.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Ensure current batch is still present; otherwise pick a new largest group.
|
||||||
|
has_current = (
|
||||||
|
self._current_group_class is not None and
|
||||||
|
any(self.dynprompt.get_node(nid)["class_type"] == self._current_group_class for nid in available)
|
||||||
|
)
|
||||||
|
if not has_current:
|
||||||
|
new_group = self._pick_largest_group(available)
|
||||||
|
self._current_group_class = new_group
|
||||||
|
|
||||||
|
# Restrict to nodes of the current batch
|
||||||
|
candidates = self._filter_by_group(available, self._current_group_class)
|
||||||
|
return self._pick_in_batch_with_ux(candidates)
|
||||||
|
|
||||||
|
# --------------------------- staging / run ----------------------------
|
||||||
async def stage_node_execution(self):
|
async def stage_node_execution(self):
|
||||||
assert self.staged_node_id is None
|
assert self.staged_node_id is None
|
||||||
if self.is_empty():
|
if self.is_empty():
|
||||||
return None, None, None
|
return None, None, None
|
||||||
|
|
||||||
available = self.get_ready_nodes()
|
available = self.get_ready_nodes()
|
||||||
|
|
||||||
|
# If nothing ready but there are external blockers, wait for unblocks.
|
||||||
while len(available) == 0 and self.externalBlocks > 0:
|
while len(available) == 0 and self.externalBlocks > 0:
|
||||||
# Wait for an external block to be released
|
|
||||||
await self.unblockedEvent.wait()
|
await self.unblockedEvent.wait()
|
||||||
self.unblockedEvent.clear()
|
self.unblockedEvent.clear()
|
||||||
available = self.get_ready_nodes()
|
available = self.get_ready_nodes()
|
||||||
|
|
||||||
if len(available) == 0:
|
if len(available) == 0:
|
||||||
cycled_nodes = self.get_nodes_in_cycle()
|
cycled_nodes = self.get_nodes_in_cycle()
|
||||||
# Because cycles composed entirely of static nodes are caught during initial validation,
|
# Because cycles composed entirely of static nodes are caught during initial validation,
|
||||||
@ -259,59 +362,25 @@ class ExecutionList(TopologicalSort):
|
|||||||
}
|
}
|
||||||
return None, error_details, ex
|
return None, error_details, ex
|
||||||
|
|
||||||
|
# Batch-aware pick
|
||||||
self.staged_node_id = self.ux_friendly_pick_node(available)
|
self.staged_node_id = self.ux_friendly_pick_node(available)
|
||||||
return self.staged_node_id, None, None
|
return self.staged_node_id, None, None
|
||||||
|
|
||||||
def ux_friendly_pick_node(self, node_list):
|
|
||||||
# If an output node is available, do that first.
|
|
||||||
# Technically this has no effect on the overall length of execution, but it feels better as a user
|
|
||||||
# for a PreviewImage to display a result as soon as it can
|
|
||||||
# Some other heuristics could probably be used here to improve the UX further.
|
|
||||||
def is_output(node_id):
|
|
||||||
class_type = self.dynprompt.get_node(node_id)["class_type"]
|
|
||||||
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
||||||
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
# If an available node is async, do that first.
|
|
||||||
# This will execute the asynchronous function earlier, reducing the overall time.
|
|
||||||
def is_async(node_id):
|
|
||||||
class_type = self.dynprompt.get_node(node_id)["class_type"]
|
|
||||||
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
||||||
return inspect.iscoroutinefunction(getattr(class_def, class_def.FUNCTION))
|
|
||||||
|
|
||||||
for node_id in node_list:
|
|
||||||
if is_output(node_id) or is_async(node_id):
|
|
||||||
return node_id
|
|
||||||
|
|
||||||
#This should handle the VAEDecode -> preview case
|
|
||||||
for node_id in node_list:
|
|
||||||
for blocked_node_id in self.blocking[node_id]:
|
|
||||||
if is_output(blocked_node_id):
|
|
||||||
return node_id
|
|
||||||
|
|
||||||
#This should handle the VAELoader -> VAEDecode -> preview case
|
|
||||||
for node_id in node_list:
|
|
||||||
for blocked_node_id in self.blocking[node_id]:
|
|
||||||
for blocked_node_id1 in self.blocking[blocked_node_id]:
|
|
||||||
if is_output(blocked_node_id1):
|
|
||||||
return node_id
|
|
||||||
|
|
||||||
#TODO: this function should be improved
|
|
||||||
return node_list[0]
|
|
||||||
|
|
||||||
def unstage_node_execution(self):
|
def unstage_node_execution(self):
|
||||||
|
# If a node execution resolves to PENDING, return it to the pool
|
||||||
|
# but keep the current batch so we continue batching next time.
|
||||||
assert self.staged_node_id is not None
|
assert self.staged_node_id is not None
|
||||||
self.staged_node_id = None
|
self.staged_node_id = None
|
||||||
|
|
||||||
def complete_node_execution(self):
|
def complete_node_execution(self):
|
||||||
node_id = self.staged_node_id
|
node_id = self.staged_node_id
|
||||||
self.pop_node(node_id)
|
self.pop_node(node_id)
|
||||||
|
# Maintain current batch; it will switch automatically when empty.
|
||||||
self.execution_cache.pop(node_id, None)
|
self.execution_cache.pop(node_id, None)
|
||||||
self.execution_cache_listeners.pop(node_id, None)
|
self.execution_cache_listeners.pop(node_id, None)
|
||||||
self.staged_node_id = None
|
self.staged_node_id = None
|
||||||
|
|
||||||
|
# ------------------------- cycle detection ----------------------------
|
||||||
def get_nodes_in_cycle(self):
|
def get_nodes_in_cycle(self):
|
||||||
# We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle.
|
# We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle.
|
||||||
# We're skipping some of the performance optimizations from the original TopologicalSort to keep
|
# We're skipping some of the performance optimizations from the original TopologicalSort to keep
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user