offload support, bug fixes, remove mixins

This commit is contained in:
lspindler 2025-11-11 17:19:50 +01:00
parent 5ebcab3c7d
commit 1642459b57
2 changed files with 51 additions and 25 deletions

View File

@ -77,6 +77,9 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
# will add async-offload support to your cast and improve performance. # will add async-offload support to your cast and improve performance.
if input is not None: if input is not None:
if dtype is None: if dtype is None:
if isinstance(input, QuantizedTensor):
dtype = input._layout_params["orig_dtype"]
else:
dtype = input.dtype dtype = input.dtype
if bias_dtype is None: if bias_dtype is None:
bias_dtype = dtype bias_dtype = dtype
@ -534,18 +537,7 @@ if CUBLAS_IS_AVAILABLE:
# ============================================================================== # ==============================================================================
# Mixed Precision Operations # Mixed Precision Operations
# ============================================================================== # ==============================================================================
from .quant_ops import QuantizedTensor from .quant_ops import QuantizedTensor, QUANT_ALGOS
QUANT_FORMAT_MIXINS = {
"float8_e4m3fn": {
"dtype": torch.float8_e4m3fn,
"layout_type": "TensorCoreFP8Layout",
"parameters": {
"weight_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
"input_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
}
}
}
class MixedPrecisionOps(disable_weight_init): class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} _layer_quant_config = {}
@ -596,23 +588,24 @@ class MixedPrecisionOps(disable_weight_init):
if quant_format is None: if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}") raise ValueError(f"Unknown quantization format for layer {layer_name}")
mixin = QUANT_FORMAT_MIXINS[quant_format] qconfig = QUANT_ALGOS[quant_format]
self.layout_type = mixin["layout_type"] self.layout_type = qconfig["comfy_tensor_layout"]
scale_key = f"{prefix}weight_scale" weight_scale_key = f"{prefix}weight_scale"
layout_params = { layout_params = {
'scale': state_dict.pop(scale_key, None), 'scale': state_dict.pop(weight_scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype 'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
} }
if layout_params['scale'] is not None: if layout_params['scale'] is not None:
manually_loaded_keys.append(scale_key) manually_loaded_keys.append(weight_scale_key)
self.weight = torch.nn.Parameter( self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=mixin["dtype"]), self.layout_type, layout_params), QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
requires_grad=False requires_grad=False
) )
for param_name, param_value in mixin["parameters"].items(): for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}" param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None) _v = state_dict.pop(param_key, None)
if _v is None: if _v is None:
@ -643,7 +636,7 @@ class MixedPrecisionOps(disable_weight_init):
if (getattr(self, 'layout_type', None) is not None and if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)): not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, fp8_dtype=self.weight.dtype) input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias) return self._forward(input, self.weight, self.bias)

View File

@ -74,6 +74,12 @@ def _copy_layout_params(params):
new_params[k] = v new_params[k] = v
return new_params return new_params
def _copy_layout_params_inplace(src, dst, non_blocking=False):
for k, v in src.items():
if isinstance(v, torch.Tensor):
dst[k].copy_(v, non_blocking=non_blocking)
else:
dst[k] = v
class QuantizedLayout: class QuantizedLayout:
""" """
@ -318,13 +324,13 @@ def generic_to_dtype_layout(func, args, kwargs):
def generic_copy_(func, args, kwargs): def generic_copy_(func, args, kwargs):
qt_dest = args[0] qt_dest = args[0]
src = args[1] src = args[1]
non_blocking = args[2] if len(args) > 2 else False
if isinstance(qt_dest, QuantizedTensor): if isinstance(qt_dest, QuantizedTensor):
if isinstance(src, QuantizedTensor): if isinstance(src, QuantizedTensor):
# Copy from another quantized tensor # Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata) qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
qt_dest._layout_type = src._layout_type qt_dest._layout_type = src._layout_type
qt_dest._layout_params = _copy_layout_params(src._layout_params) _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
else: else:
# Copy from regular tensor - just copy raw data # Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src) qt_dest._qdata.copy_(src)
@ -336,6 +342,26 @@ def generic_copy_(func, args, kwargs):
def generic_has_compatible_shallow_copy_type(func, args, kwargs): def generic_has_compatible_shallow_copy_type(func, args, kwargs):
return True return True
@register_generic_util(torch.ops.aten.empty_like.default)
def generic_empty_like(func, args, kwargs):
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
# Create empty tensor with same shape and dtype as the quantized data
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
new_qdata = torch.empty_like(qt._qdata, **kwargs)
# Handle device transfer for layout params
target_device = kwargs.get('device', new_qdata.device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
# Update orig_dtype if dtype is specified
new_params['orig_dtype'] = hp_dtype
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
return func(*args, **kwargs)
# ============================================================================== # ==============================================================================
# FP8 Layout + Operation Handlers # FP8 Layout + Operation Handlers
# ============================================================================== # ==============================================================================
@ -378,6 +404,13 @@ class TensorCoreFP8Layout(QuantizedLayout):
def get_plain_tensors(cls, qtensor): def get_plain_tensors(cls, qtensor):
return qtensor._qdata, qtensor._layout_params['scale'] return qtensor._qdata, qtensor._layout_params['scale']
QUANT_ALGOS = {
"float8_e4m3fn": {
"storage_t": torch.float8_e4m3fn,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8Layout",
},
}
LAYOUTS = { LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout, "TensorCoreFP8Layout": TensorCoreFP8Layout,