mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
179c2d35c8
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.3.52"
|
||||
__version__ = "0.3.56"
|
||||
|
||||
@ -299,6 +299,17 @@ paths:
|
||||
responses:
|
||||
'200':
|
||||
description: OK
|
||||
requestBody:
|
||||
required: false
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
prompt_id:
|
||||
type: string
|
||||
description: |
|
||||
The prompt to interrupt.
|
||||
/free:
|
||||
# from 6d281b4ff4ad3918a4f3b4ca4a8b547a2ba3bf80
|
||||
post:
|
||||
|
||||
@ -52,6 +52,7 @@ class PerformanceFeature(enum.Enum):
|
||||
Fp16Accumulation = "fp16_accumulation"
|
||||
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
||||
CublasOps = "cublas_ops"
|
||||
AutoTune = "autotune"
|
||||
|
||||
|
||||
class Configuration(dict):
|
||||
|
||||
@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
all_intermediate = None
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
if intermediate_output == "all":
|
||||
all_intermediate = []
|
||||
intermediate_output = None
|
||||
elif intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
|
||||
if all_intermediate is not None:
|
||||
intermediate = torch.cat(all_intermediate, dim=1)
|
||||
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
|
||||
@ -41,12 +41,14 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
|
||||
|
||||
|
||||
IMAGE_ENCODERS = {
|
||||
"clip_vision_model": clip_model.CLIPVisionModelProjection,
|
||||
"siglip_vision_model": clip_model.CLIPVisionModelProjection,
|
||||
"dinov2": dino2.Dinov2Model,
|
||||
}
|
||||
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config: dict | str):
|
||||
if isinstance(json_config, dict):
|
||||
@ -63,7 +65,13 @@ class ClipVisionModel():
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
||||
model_type = config.get("model_type", "clip_vision_model")
|
||||
model_class = IMAGE_ENCODERS.get(model_type)
|
||||
if model_type == "siglip_vision_model":
|
||||
self.return_all_hidden_states = True
|
||||
else:
|
||||
self.return_all_hidden_states = False
|
||||
|
||||
self.load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
self.dtype = model_management.text_encoder_dtype(self.load_device)
|
||||
@ -81,11 +89,16 @@ class ClipVisionModel():
|
||||
def encode_image(self, image, crop=True):
|
||||
load_models_gpu([self.patcher])
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
|
||||
|
||||
outputs = Output()
|
||||
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device())
|
||||
outputs["image_embeds"] = out[2].to(model_management.intermediate_device())
|
||||
if self.return_all_hidden_states:
|
||||
all_hs = out[1].to(model_management.intermediate_device())
|
||||
outputs["penultimate_hidden_states"] = all_hs[:, -2]
|
||||
outputs["all_hidden_states"] = all_hs
|
||||
else:
|
||||
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device())
|
||||
outputs["mm_projected"] = out[3]
|
||||
return outputs
|
||||
|
||||
@ -24,6 +24,8 @@ os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
||||
os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"
|
||||
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
||||
os.environ['DO_NOT_TRACK'] = '1'
|
||||
if os.name == "nt":
|
||||
os.environ['MIMALLOC_PURGE_DELAY'] = '0'
|
||||
|
||||
this_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -769,6 +769,33 @@ class PromptServer(ExecutorToClientProgress):
|
||||
|
||||
@routes.post("/interrupt")
|
||||
async def post_interrupt(request):
|
||||
try:
|
||||
json_data = await request.json()
|
||||
except json.JSONDecodeError:
|
||||
json_data = {}
|
||||
|
||||
# Check if a specific prompt_id was provided for targeted interruption
|
||||
prompt_id = json_data.get('prompt_id')
|
||||
if prompt_id:
|
||||
currently_running, _ = self.prompt_queue.get_current_queue()
|
||||
|
||||
# Check if the prompt_id matches any currently running prompt
|
||||
should_interrupt = False
|
||||
for item in currently_running:
|
||||
# item structure: (number, prompt_id, prompt, extra_data, outputs_to_execute)
|
||||
if item[1] == prompt_id:
|
||||
logger.debug(f"Interrupting prompt {prompt_id}")
|
||||
should_interrupt = True
|
||||
break
|
||||
|
||||
if should_interrupt:
|
||||
interruption.interrupt_current_processing()
|
||||
else:
|
||||
logger.debug(f"Prompt {prompt_id} is not currently running, skipping interrupt")
|
||||
else:
|
||||
# No prompt_id provided, do a global interrupt
|
||||
logger.debug("Global interrupt (no prompt_id specified)")
|
||||
|
||||
interruption.interrupt_current_processing()
|
||||
return web.Response(status=200)
|
||||
|
||||
|
||||
@ -172,6 +172,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
|
||||
return sigmas
|
||||
|
||||
|
||||
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
|
||||
return torch.expm1(h)
|
||||
|
||||
|
||||
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
|
||||
return (torch.expm1(h) - h) / h
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
||||
@ -862,6 +872,11 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""DPM-Solver++(3M) SDE."""
|
||||
@ -934,6 +949,16 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
if len(sigmas) <= 1:
|
||||
@ -1578,13 +1603,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
@ -1592,55 +1616,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
fac = 1 / (2 * r)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
continue
|
||||
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = lambda_s + r * h
|
||||
fac = 1 / (2 * r)
|
||||
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
|
||||
sigma_s_1 = sigma_fn(lambda_s_1)
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r < 1
|
||||
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
|
||||
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
segment_factor = (r - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
|
||||
x = x + sde_noise * sigmas[i + 1] * s_noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1. / 3, r_2=2. / 3):
|
||||
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
@ -1652,45 +1674,49 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
continue
|
||||
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = lambda_s + r_1 * h
|
||||
lambda_s_2 = lambda_s + r_2 * h
|
||||
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
|
||||
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
|
||||
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r_1 < r_2 < 1
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
|
||||
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
|
||||
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
|
||||
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
|
||||
if inject_noise:
|
||||
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
segment_factor = (r_1 - r_2) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
|
||||
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
|
||||
# Step 3
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
b3 = ei_h_phi_2(-h_eta) / r_2
|
||||
b1 = ei_h_phi_1(-h_eta) - b3
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
|
||||
segment_factor = (r_2 - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
x = x + sde_noise * sigmas[i + 1] * s_noise
|
||||
return x
|
||||
|
||||
|
||||
|
||||
@ -108,6 +108,7 @@ class Flux(nn.Module):
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
@ -122,6 +123,14 @@ class Flux(nn.Module):
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if "post_input" in patches:
|
||||
for p in patches["post_input"]:
|
||||
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
|
||||
img = out["img"]
|
||||
txt = out["txt"]
|
||||
img_ids = out["img_ids"]
|
||||
txt_ids = out["txt_ids"]
|
||||
|
||||
if img_ids is not None:
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
@ -160,7 +169,7 @@ class Flux(nn.Module):
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
img[:, :add.shape[1]] += add
|
||||
|
||||
if img.dtype == torch.float16:
|
||||
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@ -191,7 +200,7 @@ class Flux(nn.Module):
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1]:, ...] += add
|
||||
img[:, txt.shape[1]: txt.shape[1] + add.shape[1], ...] += add
|
||||
|
||||
img = img[:, txt.shape[1]:, ...]
|
||||
|
||||
@ -235,12 +244,18 @@ class Flux(nn.Module):
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
|
||||
ref_latents_method = kwargs.get("ref_latents_method", "offset")
|
||||
for ref in ref_latents:
|
||||
if index_ref_method:
|
||||
if ref_latents_method == "index":
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
elif ref_latents_method == "uxo":
|
||||
index = 0
|
||||
h_offset = h_len * patch_size + h
|
||||
w_offset = w_len * patch_size + w
|
||||
h += ref.shape[-2]
|
||||
w += ref.shape[-1]
|
||||
else:
|
||||
index = 1
|
||||
h_offset = 0
|
||||
|
||||
@ -459,7 +459,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
hidden_states += add
|
||||
hidden_states[:, :add.shape[1]] += add
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
@ -4,7 +4,7 @@ import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import repeat
|
||||
from einops import rearrange
|
||||
|
||||
from ..modules.attention import optimized_attention
|
||||
from ..flux.layers import EmbedND
|
||||
@ -153,7 +153,10 @@ def repeat_e(e, x):
|
||||
repeats = x.size(1) // e.size(1)
|
||||
if repeats == 1:
|
||||
return e
|
||||
if repeats * e.size(1) == x.size(1):
|
||||
return torch.repeat_interleave(e, repeats, dim=1)
|
||||
else:
|
||||
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
|
||||
|
||||
|
||||
class WanAttentionBlock(nn.Module):
|
||||
@ -573,6 +576,28 @@ class WanModel(torch.nn.Module):
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
|
||||
if steps_t is None:
|
||||
steps_t = t_len
|
||||
if steps_h is None:
|
||||
steps_h = h_len
|
||||
if steps_w is None:
|
||||
steps_w = w_len
|
||||
|
||||
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
return freqs
|
||||
|
||||
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
||||
return WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
@ -584,26 +609,16 @@ class WanModel(torch.nn.Module):
|
||||
bs, c, t, h, w = x.shape
|
||||
x = pad_to_patch_size(x, self.patch_size)
|
||||
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
|
||||
t_len = t
|
||||
if time_dim_concat is not None:
|
||||
time_dim_concat = pad_to_patch_size(time_dim_concat, self.patch_size)
|
||||
x = torch.cat([x, time_dim_concat], dim=2)
|
||||
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
|
||||
t_len = x.shape[2]
|
||||
|
||||
if self.ref_conv is not None and "reference_latent" in kwargs:
|
||||
t_len += 1
|
||||
|
||||
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
@ -839,3 +854,468 @@ class CameraWanModel(WanModel):
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
|
||||
class CausalConv1d(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
chan_in,
|
||||
chan_out,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
pad_mode='replicate',
|
||||
operations=None,
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.pad_mode = pad_mode
|
||||
padding = (kernel_size - 1, 0) # T
|
||||
self.time_causal_padding = padding
|
||||
|
||||
self.conv = operations.Conv1d(
|
||||
chan_in,
|
||||
chan_out,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
**kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MotionEncoder_tc(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_dim: int,
|
||||
hidden_dim: int,
|
||||
num_heads=int,
|
||||
need_global=True,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,):
|
||||
factory_kwargs = {"dtype": dtype, "device": device}
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.need_global = need_global
|
||||
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
|
||||
if need_global:
|
||||
self.conv1_global = CausalConv1d(
|
||||
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
|
||||
self.norm1 = operations.LayerNorm(
|
||||
hidden_dim // 4,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
**factory_kwargs)
|
||||
self.act = nn.SiLU()
|
||||
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
|
||||
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
|
||||
|
||||
if need_global:
|
||||
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
|
||||
|
||||
self.norm1 = operations.LayerNorm(
|
||||
hidden_dim // 4,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
**factory_kwargs)
|
||||
|
||||
self.norm2 = operations.LayerNorm(
|
||||
hidden_dim // 2,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
**factory_kwargs)
|
||||
|
||||
self.norm3 = operations.LayerNorm(
|
||||
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
|
||||
|
||||
def forward(self, x):
|
||||
x = rearrange(x, 'b t c -> b c t')
|
||||
x_ori = x.clone()
|
||||
b, c, t = x.shape
|
||||
x = self.conv1_local(x)
|
||||
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
|
||||
x = self.norm1(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, 'b t c -> b c t')
|
||||
x = self.conv2(x)
|
||||
x = rearrange(x, 'b c t -> b t c')
|
||||
x = self.norm2(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, 'b t c -> b c t')
|
||||
x = self.conv3(x)
|
||||
x = rearrange(x, 'b c t -> b t c')
|
||||
x = self.norm3(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
||||
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
|
||||
x = torch.cat([x, padding], dim=-2)
|
||||
x_local = x.clone()
|
||||
|
||||
if not self.need_global:
|
||||
return x_local
|
||||
|
||||
x = self.conv1_global(x_ori)
|
||||
x = rearrange(x, 'b c t -> b t c')
|
||||
x = self.norm1(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, 'b t c -> b c t')
|
||||
x = self.conv2(x)
|
||||
x = rearrange(x, 'b c t -> b t c')
|
||||
x = self.norm2(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, 'b t c -> b c t')
|
||||
x = self.conv3(x)
|
||||
x = rearrange(x, 'b c t -> b t c')
|
||||
x = self.norm3(x)
|
||||
x = self.act(x)
|
||||
x = self.final_linear(x)
|
||||
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
||||
|
||||
return x, x_local
|
||||
|
||||
|
||||
class CausalAudioEncoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim=5120,
|
||||
num_layers=25,
|
||||
out_dim=2048,
|
||||
video_rate=8,
|
||||
num_token=4,
|
||||
need_global=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None):
|
||||
super().__init__()
|
||||
self.encoder = MotionEncoder_tc(
|
||||
in_dim=dim,
|
||||
hidden_dim=out_dim,
|
||||
num_heads=num_token,
|
||||
need_global=need_global, dtype=dtype, device=device, operations=operations)
|
||||
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
|
||||
|
||||
self.weights = torch.nn.Parameter(weight)
|
||||
self.act = torch.nn.SiLU()
|
||||
|
||||
def forward(self, features):
|
||||
# features B * num_layers * dim * video_length
|
||||
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
|
||||
weights_sum = weights.sum(dim=1, keepdims=True)
|
||||
weighted_feat = ((features * weights) / weights_sum).sum(
|
||||
dim=1) # b dim f
|
||||
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
|
||||
res = self.encoder(weighted_feat) # b f n dim
|
||||
return res # b f n dim
|
||||
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
output_dim = output_dim or embedding_dim * 2
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
|
||||
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, temb):
|
||||
temb = self.linear(self.silu(temb))
|
||||
shift, scale = temb.chunk(2, dim=1)
|
||||
shift = shift[:, None, :]
|
||||
scale = scale[:, None, :]
|
||||
x = self.norm(x) * (1 + scale) + shift
|
||||
return x
|
||||
|
||||
|
||||
class AudioInjector_WAN(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim=2048,
|
||||
num_heads=32,
|
||||
inject_layer=[0, 27],
|
||||
root_net=None,
|
||||
enable_adain=False,
|
||||
adain_dim=2048,
|
||||
adain_mode=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None):
|
||||
super().__init__()
|
||||
self.enable_adain = enable_adain
|
||||
self.adain_mode = adain_mode
|
||||
self.injected_block_id = {}
|
||||
audio_injector_id = 0
|
||||
for inject_id in inject_layer:
|
||||
self.injected_block_id[inject_id] = audio_injector_id
|
||||
audio_injector_id += 1
|
||||
|
||||
self.injector = nn.ModuleList([
|
||||
WanT2VCrossAttention(
|
||||
dim=dim,
|
||||
num_heads=num_heads,
|
||||
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
|
||||
) for _ in range(audio_injector_id)
|
||||
])
|
||||
self.injector_pre_norm_feat = nn.ModuleList([
|
||||
operations.LayerNorm(
|
||||
dim,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6, dtype=dtype, device=device
|
||||
) for _ in range(audio_injector_id)
|
||||
])
|
||||
self.injector_pre_norm_vec = nn.ModuleList([
|
||||
operations.LayerNorm(
|
||||
dim,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6, dtype=dtype, device=device
|
||||
) for _ in range(audio_injector_id)
|
||||
])
|
||||
if enable_adain:
|
||||
self.injector_adain_layers = nn.ModuleList([
|
||||
AdaLayerNorm(
|
||||
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(audio_injector_id)
|
||||
])
|
||||
if adain_mode != "attn_norm":
|
||||
self.injector_adain_output_layers = nn.ModuleList(
|
||||
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
|
||||
|
||||
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
|
||||
audio_attn_id = self.injected_block_id.get(block_id, None)
|
||||
if audio_attn_id is None:
|
||||
return x
|
||||
|
||||
num_frames = audio_emb.shape[1]
|
||||
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
|
||||
if self.enable_adain and self.adain_mode == "attn_norm":
|
||||
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
|
||||
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
|
||||
attn_hidden_states = adain_hidden_states
|
||||
else:
|
||||
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
|
||||
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
|
||||
attn_audio_emb = audio_emb
|
||||
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
|
||||
residual_out = rearrange(
|
||||
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
|
||||
x[:, :seq_len] = x[:, :seq_len] + residual_out
|
||||
return x
|
||||
|
||||
|
||||
class FramePackMotioner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
inner_dim=1024,
|
||||
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
|
||||
zip_frame_buckets=[
|
||||
1, 2, 16
|
||||
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
|
||||
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None):
|
||||
super().__init__()
|
||||
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
|
||||
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
|
||||
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
|
||||
self.zip_frame_buckets = zip_frame_buckets
|
||||
|
||||
self.inner_dim = inner_dim
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.drop_mode = drop_mode
|
||||
|
||||
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
|
||||
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
|
||||
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
|
||||
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
|
||||
if overlap_frame > 0:
|
||||
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
|
||||
|
||||
if add_last_motion < 2 and self.drop_mode != "drop":
|
||||
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
|
||||
padd_lat[:, :, -zero_end_frame:] = 0
|
||||
|
||||
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
|
||||
|
||||
# patchfy
|
||||
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
|
||||
clean_latents_2x = self.proj_2x(clean_latents_2x)
|
||||
l_2x_shape = clean_latents_2x.shape
|
||||
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
||||
clean_latents_4x = self.proj_4x(clean_latents_4x)
|
||||
l_4x_shape = clean_latents_4x.shape
|
||||
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
||||
|
||||
if add_last_motion < 2 and self.drop_mode == "drop":
|
||||
clean_latents_post = clean_latents_post[:, :
|
||||
0] if add_last_motion < 2 else clean_latents_post
|
||||
clean_latents_2x = clean_latents_2x[:, :
|
||||
0] if add_last_motion < 1 else clean_latents_2x
|
||||
|
||||
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
|
||||
|
||||
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
|
||||
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
||||
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
||||
|
||||
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
|
||||
return motion_lat, rope
|
||||
|
||||
|
||||
class WanModel_S2V(WanModel):
|
||||
def __init__(self,
|
||||
model_type='s2v',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
audio_dim=1024,
|
||||
num_audio_token=4,
|
||||
enable_adain=True,
|
||||
cond_dim=16,
|
||||
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
|
||||
adain_mode="attn_norm",
|
||||
framepack_drop_mode="padd",
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
|
||||
|
||||
self.casual_audio_encoder = CausalAudioEncoder(
|
||||
dim=audio_dim,
|
||||
out_dim=self.dim,
|
||||
num_token=num_audio_token,
|
||||
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
if cond_dim > 0:
|
||||
self.cond_encoder = operations.Conv3d(
|
||||
cond_dim,
|
||||
self.dim,
|
||||
kernel_size=self.patch_size,
|
||||
stride=self.patch_size, device=device, dtype=dtype)
|
||||
|
||||
self.audio_injector = AudioInjector_WAN(
|
||||
dim=self.dim,
|
||||
num_heads=self.num_heads,
|
||||
inject_layer=audio_inject_layers,
|
||||
root_net=self,
|
||||
enable_adain=enable_adain,
|
||||
adain_dim=self.dim,
|
||||
adain_mode=adain_mode,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
self.frame_packer = FramePackMotioner(
|
||||
inner_dim=self.dim,
|
||||
num_heads=self.num_heads,
|
||||
zip_frame_buckets=[1, 2, 16],
|
||||
drop_mode=framepack_drop_mode,
|
||||
dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
audio_embed=None,
|
||||
reference_latent=None,
|
||||
control_video=None,
|
||||
reference_motion=None,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
if audio_embed is not None:
|
||||
num_embeds = x.shape[-3] * 4
|
||||
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
|
||||
else:
|
||||
audio_emb = None
|
||||
|
||||
# embeddings
|
||||
bs, _, time, height, width = x.shape
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
if control_video is not None:
|
||||
x = x + self.cond_encoder(control_video)
|
||||
|
||||
if t.ndim == 1:
|
||||
t = t.unsqueeze(1).repeat(1, x.shape[2])
|
||||
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
seq_len = x.size(1)
|
||||
|
||||
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
|
||||
x = x + cond_mask_weight[0]
|
||||
|
||||
if reference_latent is not None:
|
||||
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
|
||||
ref = ref.flatten(2).transpose(1, 2)
|
||||
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=max(30, time + 9), device=x.device, dtype=x.dtype)
|
||||
ref = ref + cond_mask_weight[1]
|
||||
x = torch.cat([x, ref], dim=1)
|
||||
freqs = torch.cat([freqs, freqs_ref], dim=1)
|
||||
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
|
||||
del ref, freqs_ref
|
||||
|
||||
if reference_motion is not None:
|
||||
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
|
||||
motion_encoded = motion_encoded + cond_mask_weight[2]
|
||||
x = torch.cat([x, motion_encoded], dim=1)
|
||||
freqs = torch.cat([freqs, freqs_motion], dim=1)
|
||||
|
||||
t = torch.repeat_interleave(t, 2, dim=1)
|
||||
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
|
||||
del motion_encoded, freqs_motion
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
||||
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
||||
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context)
|
||||
if audio_emb is not None:
|
||||
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
@ -272,6 +272,10 @@ def model_lora_keys_unet(model, key_map=None):
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to # simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # onetrainer
|
||||
for k in sdk:
|
||||
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
|
||||
if k.endswith(".weight") and ".linear1." in k:
|
||||
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
|
||||
|
||||
if isinstance(model, model_base.GenmoMochi):
|
||||
for k in sdk:
|
||||
|
||||
@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
def convert_lora_wan_fun(sd): #Wan Fun loras
|
||||
return state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
|
||||
|
||||
def convert_uso_lora(sd):
|
||||
sd_out = {}
|
||||
for k in sd:
|
||||
tensor = sd[k]
|
||||
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
|
||||
.replace(".up.weight", ".lora_up.weight")
|
||||
.replace(".qkv_lora2.", ".txt_attn.qkv.")
|
||||
.replace(".qkv_lora1.", ".img_attn.qkv.")
|
||||
.replace(".proj_lora1.", ".img_attn.proj.")
|
||||
.replace(".proj_lora2.", ".txt_attn.proj.")
|
||||
.replace(".qkv_lora.", ".linear1_qkv.")
|
||||
.replace(".proj_lora.", ".linear2.")
|
||||
.replace(".processor.", ".")
|
||||
)
|
||||
sd_out[k_to] = tensor
|
||||
return sd_out
|
||||
|
||||
|
||||
def convert_lora(sd):
|
||||
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
|
||||
return convert_lora_bfl_control(sd)
|
||||
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
|
||||
return convert_lora_wan_fun(sd)
|
||||
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
|
||||
return convert_uso_lora(sd)
|
||||
return sd
|
||||
|
||||
@ -169,7 +169,8 @@ class BaseModel(torch.nn.Module):
|
||||
logger.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
self.memory_usage_factor_conds = ()
|
||||
self.training = False
|
||||
self.memory_usage_shape_process = {}
|
||||
self.training = False # todo: does this break the training nodes?
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
return WrapperExecutor.new_class_executor(
|
||||
@ -373,7 +374,14 @@ class BaseModel(torch.nn.Module):
|
||||
input_shapes = [input_shape]
|
||||
for c in self.memory_usage_factor_conds:
|
||||
shape = cond_shapes.get(c, None)
|
||||
if shape is not None and len(shape) > 0:
|
||||
if shape is not None:
|
||||
if c in self.memory_usage_shape_process:
|
||||
out = []
|
||||
for s in shape:
|
||||
out.append(self.memory_usage_shape_process[c](s))
|
||||
shape = out
|
||||
|
||||
if len(shape) > 0:
|
||||
input_shapes += shape
|
||||
|
||||
if model_management.xformers_enabled() or model_management.pytorch_attention_flash_attention():
|
||||
@ -1147,9 +1155,10 @@ class WAN21(BaseModel):
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
latent_dim = self.latent_format.latent_channels
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
for i in range(0, image.shape[1], 16):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
for i in range(0, image.shape[1], latent_dim):
|
||||
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if extra_channels != image.shape[1] + 4:
|
||||
@ -1247,18 +1256,50 @@ class WAN21_Camera(WAN21):
|
||||
return out
|
||||
|
||||
|
||||
class WAN22(BaseModel):
|
||||
class WAN22_S2V(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
|
||||
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
|
||||
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
audio_embed = kwargs.get("audio_embed", None)
|
||||
if audio_embed is not None:
|
||||
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
|
||||
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
|
||||
|
||||
reference_motion = kwargs.get("reference_motion", None)
|
||||
if reference_motion is not None:
|
||||
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
|
||||
|
||||
control_video = kwargs.get("control_video", None)
|
||||
if control_video is not None:
|
||||
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
|
||||
reference_motion = kwargs.get("reference_motion", None)
|
||||
if reference_motion is not None:
|
||||
out['reference_motion'] = reference_motion.shape
|
||||
return out
|
||||
|
||||
class WAN22(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=WanModel)
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=WanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = conds.CONDRegular(cross_attn)
|
||||
|
||||
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
denoise_mask = kwargs.get("denoise_mask", None)
|
||||
if denoise_mask is not None:
|
||||
out["denoise_mask"] = conds.CONDRegular(denoise_mask)
|
||||
return out
|
||||
|
||||
@ -374,6 +374,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["model_type"] = "camera"
|
||||
else:
|
||||
dit_config["model_type"] = "camera_2.2"
|
||||
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "s2v"
|
||||
else:
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
|
||||
@ -488,6 +488,9 @@ class ModelPatcher(ModelManageable):
|
||||
def set_model_double_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "double_block")
|
||||
|
||||
def set_model_post_input_patch(self, patch):
|
||||
self.set_model_patch(patch, "post_input")
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
|
||||
@ -69,6 +69,9 @@ except Exception as exc_info:
|
||||
cast_to = model_management.cast_to # TODO: remove once no more references
|
||||
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
|
||||
|
||||
|
||||
9
comfy/samplers.py
Normal file → Executable file
9
comfy/samplers.py
Normal file → Executable file
@ -22,12 +22,14 @@ from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .model_base import BaseModel
|
||||
from .model_management_types import ModelOptions
|
||||
from .model_patcher import ModelPatcher
|
||||
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES
|
||||
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES, KSAMPLER_NAMES
|
||||
from .context_windows import ContextHandlerABC
|
||||
from .utils import common_upscale
|
||||
from .patcher_extension import WrapperExecutor, get_all_wrappers, WrappersMP
|
||||
from .component_model import module_property
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
_module_properties = module_property.create_module_properties()
|
||||
|
||||
|
||||
def add_area_dims(area, num_dims):
|
||||
@ -769,6 +771,11 @@ class Sampler:
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
|
||||
@_module_properties.getter()
|
||||
def _KSAMPLER_NAMES():
|
||||
return KSAMPLER_NAMES
|
||||
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
self.sampler_function = sampler_function
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from . import diffusers_convert
|
||||
@ -749,7 +751,8 @@ class Flux(supported_models_base.BASE):
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 2.4
|
||||
# TODO: debug why flux mem usage is so weird on windows.
|
||||
memory_usage_factor = 3.1 if os.name == 'nt' else 2.4
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
@ -1155,6 +1158,19 @@ class WAN21_Vace(WAN21_T2V):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_S2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "s2v",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN22_S2V(self, device=device)
|
||||
return out
|
||||
|
||||
|
||||
class WAN22_T2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
@ -1370,6 +1386,6 @@ class QwenImage(supported_models_base.BASE):
|
||||
return supported_models_base.ClipTarget(qwen_image.QwenImageTokenizer, qwen_image.te(**hunyuan_detect))
|
||||
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -98,6 +98,9 @@ class LoKrAdapter(WeightAdapterBase):
|
||||
(mat1, mat2, alpha, None, None, None, None, None, None)
|
||||
)
|
||||
|
||||
def to_train(self):
|
||||
return LokrDiff(self.weights)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
|
||||
@ -8,6 +8,7 @@ import av
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import math
|
||||
import torch
|
||||
from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
@ -282,8 +283,6 @@ class VideoFromComponents(VideoInput):
|
||||
if self.__components.audio:
|
||||
audio_sample_rate = int(self.__components.audio['sample_rate'])
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
|
||||
audio_stream.sample_rate = audio_sample_rate
|
||||
audio_stream.format = 'fltp'
|
||||
|
||||
# Encode video
|
||||
for i, frame in enumerate(self.__components.images):
|
||||
@ -298,27 +297,12 @@ class VideoFromComponents(VideoInput):
|
||||
output.mux(packet)
|
||||
|
||||
if audio_stream and self.__components.audio:
|
||||
# Encode audio
|
||||
samples_per_frame = int(audio_sample_rate / frame_rate)
|
||||
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
|
||||
for i in range(num_frames):
|
||||
start = i * samples_per_frame
|
||||
end = start + samples_per_frame
|
||||
# TODO(Feature) - Add support for stereo audio
|
||||
chunk = (
|
||||
self.__components.audio["waveform"][0, 0, start:end]
|
||||
.unsqueeze(0)
|
||||
.contiguous()
|
||||
.numpy()
|
||||
)
|
||||
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
|
||||
audio_frame.sample_rate = audio_sample_rate
|
||||
audio_frame.pts = i * samples_per_frame
|
||||
for packet in audio_stream.encode(audio_frame):
|
||||
output.mux(packet)
|
||||
|
||||
# Flush audio
|
||||
for packet in audio_stream.encode(None):
|
||||
output.mux(packet)
|
||||
|
||||
waveform = self.__components.audio['waveform']
|
||||
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
|
||||
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
|
||||
frame.sample_rate = audio_sample_rate
|
||||
frame.pts = 0
|
||||
output.mux(audio_stream.encode(frame))
|
||||
|
||||
# Flush encoder
|
||||
output.mux(audio_stream.encode(None))
|
||||
|
||||
19
comfy_api_nodes/apis/gemini_api.py
Normal file
19
comfy_api_nodes/apis/gemini_api.py
Normal file
@ -0,0 +1,19 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class GeminiImageGenerationConfig(GeminiGenerationConfig):
|
||||
responseModalities: Optional[List[str]] = None
|
||||
|
||||
|
||||
class GeminiImageGenerateContentRequest(BaseModel):
|
||||
contents: List[GeminiContent]
|
||||
generationConfig: Optional[GeminiImageGenerationConfig] = None
|
||||
safetySettings: Optional[List[GeminiSafetySetting]] = None
|
||||
systemInstruction: Optional[GeminiSystemInstructionContent] = None
|
||||
tools: Optional[List[GeminiTool]] = None
|
||||
videoMetadata: Optional[GeminiVideoMetadata] = None
|
||||
@ -4,11 +4,12 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
import json
|
||||
import time
|
||||
import os
|
||||
import uuid
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from enum import Enum
|
||||
from typing import Optional, Literal
|
||||
|
||||
@ -25,6 +26,7 @@ from comfy_api_nodes.apis import (
|
||||
GeminiPart,
|
||||
GeminiMimeType,
|
||||
)
|
||||
from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
@ -35,6 +37,7 @@ from comfy_api_nodes.apinode_utils import (
|
||||
audio_to_base64_string,
|
||||
video_to_base64_string,
|
||||
tensor_to_base64_string,
|
||||
bytesio_to_image_tensor,
|
||||
)
|
||||
|
||||
|
||||
@ -53,6 +56,14 @@ class GeminiModel(str, Enum):
|
||||
gemini_2_5_flash = "gemini-2.5-flash"
|
||||
|
||||
|
||||
class GeminiImageModel(str, Enum):
|
||||
"""
|
||||
Gemini Image Model Names allowed by comfy-api
|
||||
"""
|
||||
|
||||
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
|
||||
|
||||
|
||||
def get_gemini_endpoint(
|
||||
model: GeminiModel,
|
||||
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||
@ -75,6 +86,135 @@ def get_gemini_endpoint(
|
||||
)
|
||||
|
||||
|
||||
def get_gemini_image_endpoint(
|
||||
model: GeminiImageModel,
|
||||
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
|
||||
"""
|
||||
Get the API endpoint for a given Gemini model.
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use, either as enum or string value.
|
||||
|
||||
Returns:
|
||||
ApiEndpoint configured for the specific Gemini model.
|
||||
"""
|
||||
if isinstance(model, str):
|
||||
model = GeminiImageModel(model)
|
||||
return ApiEndpoint(
|
||||
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
|
||||
method=HttpMethod.POST,
|
||||
request_model=GeminiImageGenerateContentRequest,
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
)
|
||||
|
||||
|
||||
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
|
||||
"""
|
||||
Convert image tensor input to Gemini API compatible parts.
|
||||
|
||||
Args:
|
||||
image_input: Batch of image tensors from ComfyUI.
|
||||
|
||||
Returns:
|
||||
List of GeminiPart objects containing the encoded images.
|
||||
"""
|
||||
image_parts: list[GeminiPart] = []
|
||||
for image_index in range(image_input.shape[0]):
|
||||
image_as_b64 = tensor_to_base64_string(
|
||||
image_input[image_index].unsqueeze(0)
|
||||
)
|
||||
image_parts.append(
|
||||
GeminiPart(
|
||||
inlineData=GeminiInlineData(
|
||||
mimeType=GeminiMimeType.image_png,
|
||||
data=image_as_b64,
|
||||
)
|
||||
)
|
||||
)
|
||||
return image_parts
|
||||
|
||||
|
||||
def create_text_part(text: str) -> GeminiPart:
|
||||
"""
|
||||
Create a text part for the Gemini API request.
|
||||
|
||||
Args:
|
||||
text: The text content to include in the request.
|
||||
|
||||
Returns:
|
||||
A GeminiPart object with the text content.
|
||||
"""
|
||||
return GeminiPart(text=text)
|
||||
|
||||
|
||||
def get_parts_from_response(
|
||||
response: GeminiGenerateContentResponse
|
||||
) -> list[GeminiPart]:
|
||||
"""
|
||||
Extract all parts from the Gemini API response.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
|
||||
Returns:
|
||||
List of response parts from the first candidate.
|
||||
"""
|
||||
return response.candidates[0].content.parts
|
||||
|
||||
|
||||
def get_parts_by_type(
|
||||
response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
|
||||
) -> list[GeminiPart]:
|
||||
"""
|
||||
Filter response parts by their type.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
part_type: Type of parts to extract ("text" or a MIME type).
|
||||
|
||||
Returns:
|
||||
List of response parts matching the requested type.
|
||||
"""
|
||||
parts = []
|
||||
for part in get_parts_from_response(response):
|
||||
if part_type == "text" and hasattr(part, "text") and part.text:
|
||||
parts.append(part)
|
||||
elif (
|
||||
hasattr(part, "inlineData")
|
||||
and part.inlineData
|
||||
and part.inlineData.mimeType == part_type
|
||||
):
|
||||
parts.append(part)
|
||||
# Skip parts that don't match the requested type
|
||||
return parts
|
||||
|
||||
|
||||
def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
|
||||
"""
|
||||
Extract and concatenate all text parts from the response.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
|
||||
Returns:
|
||||
Combined text from all text parts in the response.
|
||||
"""
|
||||
parts = get_parts_by_type(response, "text")
|
||||
return "\n".join([part.text for part in parts])
|
||||
|
||||
|
||||
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
|
||||
image_tensors: list[torch.Tensor] = []
|
||||
parts = get_parts_by_type(response, "image/png")
|
||||
for part in parts:
|
||||
image_data = base64.b64decode(part.inlineData.data)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
image_tensors.append(returned_image)
|
||||
if len(image_tensors) == 0:
|
||||
return torch.zeros((1,1024,1024,4))
|
||||
return torch.cat(image_tensors, dim=0)
|
||||
|
||||
|
||||
class GeminiNode(ComfyNodeABC):
|
||||
"""
|
||||
Node to generate text responses from a Gemini model.
|
||||
@ -159,59 +299,6 @@ class GeminiNode(ComfyNodeABC):
|
||||
CATEGORY = "api node/text/Gemini"
|
||||
API_NODE = True
|
||||
|
||||
def get_parts_from_response(
|
||||
self, response: GeminiGenerateContentResponse
|
||||
) -> list[GeminiPart]:
|
||||
"""
|
||||
Extract all parts from the Gemini API response.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
|
||||
Returns:
|
||||
List of response parts from the first candidate.
|
||||
"""
|
||||
return response.candidates[0].content.parts
|
||||
|
||||
def get_parts_by_type(
|
||||
self, response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
|
||||
) -> list[GeminiPart]:
|
||||
"""
|
||||
Filter response parts by their type.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
part_type: Type of parts to extract ("text" or a MIME type).
|
||||
|
||||
Returns:
|
||||
List of response parts matching the requested type.
|
||||
"""
|
||||
parts = []
|
||||
for part in self.get_parts_from_response(response):
|
||||
if part_type == "text" and hasattr(part, "text") and part.text:
|
||||
parts.append(part)
|
||||
elif (
|
||||
hasattr(part, "inlineData")
|
||||
and part.inlineData
|
||||
and part.inlineData.mimeType == part_type
|
||||
):
|
||||
parts.append(part)
|
||||
# Skip parts that don't match the requested type
|
||||
return parts
|
||||
|
||||
def get_text_from_response(self, response: GeminiGenerateContentResponse) -> str:
|
||||
"""
|
||||
Extract and concatenate all text parts from the response.
|
||||
|
||||
Args:
|
||||
response: The API response from Gemini.
|
||||
|
||||
Returns:
|
||||
Combined text from all text parts in the response.
|
||||
"""
|
||||
parts = self.get_parts_by_type(response, "text")
|
||||
return "\n".join([part.text for part in parts])
|
||||
|
||||
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
|
||||
"""
|
||||
Convert video input to Gemini API compatible parts.
|
||||
@ -271,43 +358,6 @@ class GeminiNode(ComfyNodeABC):
|
||||
)
|
||||
return audio_parts
|
||||
|
||||
def create_image_parts(self, image_input: torch.Tensor) -> list[GeminiPart]:
|
||||
"""
|
||||
Convert image tensor input to Gemini API compatible parts.
|
||||
|
||||
Args:
|
||||
image_input: Batch of image tensors from ComfyUI.
|
||||
|
||||
Returns:
|
||||
List of GeminiPart objects containing the encoded images.
|
||||
"""
|
||||
image_parts: list[GeminiPart] = []
|
||||
for image_index in range(image_input.shape[0]):
|
||||
image_as_b64 = tensor_to_base64_string(
|
||||
image_input[image_index].unsqueeze(0)
|
||||
)
|
||||
image_parts.append(
|
||||
GeminiPart(
|
||||
inlineData=GeminiInlineData(
|
||||
mimeType=GeminiMimeType.image_png,
|
||||
data=image_as_b64,
|
||||
)
|
||||
)
|
||||
)
|
||||
return image_parts
|
||||
|
||||
def create_text_part(self, text: str) -> GeminiPart:
|
||||
"""
|
||||
Create a text part for the Gemini API request.
|
||||
|
||||
Args:
|
||||
text: The text content to include in the request.
|
||||
|
||||
Returns:
|
||||
A GeminiPart object with the text content.
|
||||
"""
|
||||
return GeminiPart(text=text)
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
prompt: str,
|
||||
@ -323,11 +373,11 @@ class GeminiNode(ComfyNodeABC):
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
|
||||
# Create parts list with text prompt as the first part
|
||||
parts: list[GeminiPart] = [self.create_text_part(prompt)]
|
||||
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||
|
||||
# Add other modal parts
|
||||
if images is not None:
|
||||
image_parts = self.create_image_parts(images)
|
||||
image_parts = create_image_parts(images)
|
||||
parts.extend(image_parts)
|
||||
if audio is not None:
|
||||
parts.extend(self.create_audio_parts(audio))
|
||||
@ -351,7 +401,7 @@ class GeminiNode(ComfyNodeABC):
|
||||
).execute()
|
||||
|
||||
# Get result output
|
||||
output_text = self.get_text_from_response(response)
|
||||
output_text = get_text_from_response(response)
|
||||
if unique_id and output_text:
|
||||
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||
render_spec = {
|
||||
@ -462,12 +512,162 @@ class GeminiInputFiles(ComfyNodeABC):
|
||||
return (files,)
|
||||
|
||||
|
||||
class GeminiImage(ComfyNodeABC):
|
||||
"""
|
||||
Node to generate text and image responses from a Gemini model.
|
||||
|
||||
This node allows users to interact with Google's Gemini AI models, providing
|
||||
multimodal inputs (text, images, files) to generate coherent
|
||||
text and image responses. The node works with the latest Gemini models, handling the
|
||||
API communication and response parsing.
|
||||
"""
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text prompt for generation",
|
||||
},
|
||||
),
|
||||
"model": (
|
||||
IO.COMBO,
|
||||
{
|
||||
"tooltip": "The Gemini model to use for generating responses.",
|
||||
"options": [model.value for model in GeminiImageModel],
|
||||
"default": GeminiImageModel.gemini_2_5_flash_image_preview.value,
|
||||
},
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 42,
|
||||
"min": 0,
|
||||
"max": 0xFFFFFFFFFFFFFFFF,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"images": (
|
||||
IO.IMAGE,
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
|
||||
},
|
||||
),
|
||||
"files": (
|
||||
"GEMINI_INPUT_FILES",
|
||||
{
|
||||
"default": None,
|
||||
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
},
|
||||
),
|
||||
# TODO: later we can add this parameter later
|
||||
# "n": (
|
||||
# IO.INT,
|
||||
# {
|
||||
# "default": 1,
|
||||
# "min": 1,
|
||||
# "max": 8,
|
||||
# "step": 1,
|
||||
# "display": "number",
|
||||
# "tooltip": "How many images to generate",
|
||||
# },
|
||||
# ),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE, IO.STRING)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node/image/Gemini"
|
||||
DESCRIPTION = "Edit images synchronously via Google API."
|
||||
API_NODE = True
|
||||
|
||||
async def api_call(
|
||||
self,
|
||||
prompt: str,
|
||||
model: GeminiImageModel,
|
||||
images: Optional[IO.IMAGE] = None,
|
||||
files: Optional[list[GeminiPart]] = None,
|
||||
n=1,
|
||||
unique_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
# Validate inputs
|
||||
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||
# Create parts list with text prompt as the first part
|
||||
parts: list[GeminiPart] = [create_text_part(prompt)]
|
||||
|
||||
# Add other modal parts
|
||||
if images is not None:
|
||||
image_parts = create_image_parts(images)
|
||||
parts.extend(image_parts)
|
||||
if files is not None:
|
||||
parts.extend(files)
|
||||
|
||||
response = await SynchronousOperation(
|
||||
endpoint=get_gemini_image_endpoint(model),
|
||||
request=GeminiImageGenerateContentRequest(
|
||||
contents=[
|
||||
GeminiContent(
|
||||
role="user",
|
||||
parts=parts,
|
||||
),
|
||||
],
|
||||
generationConfig=GeminiImageGenerationConfig(
|
||||
responseModalities=["TEXT","IMAGE"]
|
||||
)
|
||||
),
|
||||
auth_kwargs=kwargs,
|
||||
).execute()
|
||||
|
||||
output_image = get_image_from_response(response)
|
||||
output_text = get_text_from_response(response)
|
||||
if unique_id and output_text:
|
||||
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
|
||||
render_spec = {
|
||||
"node_id": unique_id,
|
||||
"component": "ChatHistoryWidget",
|
||||
"props": {
|
||||
"history": json.dumps(
|
||||
[
|
||||
{
|
||||
"prompt": prompt,
|
||||
"response": output_text,
|
||||
"response_id": str(uuid.uuid4()),
|
||||
"timestamp": time.time(),
|
||||
}
|
||||
]
|
||||
),
|
||||
},
|
||||
}
|
||||
PromptServer.instance.send_sync(
|
||||
"display_component",
|
||||
render_spec,
|
||||
)
|
||||
|
||||
output_text = output_text or "Empty response from Gemini model..."
|
||||
return (output_image, output_text,)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"GeminiNode": GeminiNode,
|
||||
"GeminiImageNode": GeminiImage,
|
||||
"GeminiInputFiles": GeminiInputFiles,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"GeminiNode": "Google Gemini",
|
||||
"GeminiImageNode": "Google Gemini Image",
|
||||
"GeminiInputFiles": "Gemini Input Files",
|
||||
}
|
||||
|
||||
@ -1,5 +1,8 @@
|
||||
from inspect import cleandoc
|
||||
from comfy.comfy_types.node_typing import IO
|
||||
from typing import Optional
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io as comfy_io
|
||||
from comfy_api_nodes.apis.stability_api import (
|
||||
StabilityUpscaleConservativeRequest,
|
||||
StabilityUpscaleCreativeRequest,
|
||||
@ -46,87 +49,94 @@ def get_async_dummy_status(x: StabilityResultsGetResponse):
|
||||
return StabilityPollStatus.in_progress
|
||||
|
||||
|
||||
class StabilityStableImageUltraNode:
|
||||
class StabilityStableImageUltraNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Generates images synchronously based on prompt and resolution.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/image/Stability AI"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
|
||||
"What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
node_id="StabilityStableImageUltraNode",
|
||||
display_name="Stability AI Stable Image Ultra",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
|
||||
"elements, colors, and subjects will lead to better results. " +
|
||||
"To control the weight of a given word use the format `(word:weight)`," +
|
||||
"where `word` is the word you'd like to control the weight of and `weight`" +
|
||||
"is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" +
|
||||
"would convey a sky that was blue and green, but more green than blue."
|
||||
},
|
||||
"would convey a sky that was blue and green, but more green than blue.",
|
||||
),
|
||||
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
|
||||
{
|
||||
"default": StabilityAspectRatio.ratio_1_1,
|
||||
"tooltip": "Aspect ratio of generated image.",
|
||||
},
|
||||
comfy_io.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[x.value for x in StabilityAspectRatio],
|
||||
default=StabilityAspectRatio.ratio_1_1.value,
|
||||
tooltip="Aspect ratio of generated image.",
|
||||
),
|
||||
"style_preset": (get_stability_style_presets(),
|
||||
{
|
||||
"tooltip": "Optional desired style of generated image.",
|
||||
},
|
||||
comfy_io.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 4294967294,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "The random seed used for creating the noise.",
|
||||
},
|
||||
comfy_io.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"image": (IO.IMAGE,),
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "A blurb of text describing what you do not wish to see in the output image. This is an advanced feature."
|
||||
},
|
||||
comfy_io.Image.Input(
|
||||
"image",
|
||||
optional=True,
|
||||
),
|
||||
"image_denoise": (
|
||||
IO.FLOAT,
|
||||
{
|
||||
"default": 0.5,
|
||||
"min": 0.0,
|
||||
"max": 1.0,
|
||||
"step": 0.01,
|
||||
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
|
||||
},
|
||||
comfy_io.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="A blurb of text describing what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
comfy_io.Float.Input(
|
||||
"image_denoise",
|
||||
default=0.5,
|
||||
min=0.0,
|
||||
max=1.0,
|
||||
step=0.01,
|
||||
tooltip="Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
async def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
|
||||
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
|
||||
**kwargs):
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
aspect_ratio: str,
|
||||
style_preset: str,
|
||||
seed: int,
|
||||
image: Optional[torch.Tensor] = None,
|
||||
negative_prompt: str = "",
|
||||
image_denoise: Optional[float] = 0.5,
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
# prepare image binary if image present
|
||||
image_binary = None
|
||||
@ -144,6 +154,11 @@ class StabilityStableImageUltraNode:
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/generate/ultra",
|
||||
@ -161,7 +176,7 @@ class StabilityStableImageUltraNode:
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
@ -171,95 +186,106 @@ class StabilityStableImageUltraNode:
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return (returned_image,)
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityStableImageSD_3_5Node:
|
||||
class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
|
||||
"""
|
||||
Generates images synchronously based on prompt and resolution.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/image/Stability AI"
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
node_id="StabilityStableImageSD_3_5Node",
|
||||
display_name="Stability AI Stable Diffusion 3.5 Image",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
"model",
|
||||
options=[x.value for x in Stability_SD3_5_Model],
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
"aspect_ratio",
|
||||
options=[x.value for x in StabilityAspectRatio],
|
||||
default=StabilityAspectRatio.ratio_1_1.value,
|
||||
tooltip="Aspect ratio of generated image.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
"cfg_scale",
|
||||
default=4.0,
|
||||
min=1.0,
|
||||
max=10.0,
|
||||
step=0.1,
|
||||
tooltip="How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.Image.Input(
|
||||
"image",
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
"image_denoise",
|
||||
default=0.5,
|
||||
min=0.0,
|
||||
max=1.0,
|
||||
step=0.01,
|
||||
tooltip="Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
|
||||
},
|
||||
),
|
||||
"model": ([x.value for x in Stability_SD3_5_Model],),
|
||||
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
|
||||
{
|
||||
"default": StabilityAspectRatio.ratio_1_1,
|
||||
"tooltip": "Aspect ratio of generated image.",
|
||||
},
|
||||
),
|
||||
"style_preset": (get_stability_style_presets(),
|
||||
{
|
||||
"tooltip": "Optional desired style of generated image.",
|
||||
},
|
||||
),
|
||||
"cfg_scale": (
|
||||
IO.FLOAT,
|
||||
{
|
||||
"default": 4.0,
|
||||
"min": 1.0,
|
||||
"max": 10.0,
|
||||
"step": 0.1,
|
||||
"tooltip": "How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
|
||||
},
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 4294967294,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "The random seed used for creating the noise.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"image": (IO.IMAGE,),
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
|
||||
},
|
||||
),
|
||||
"image_denoise": (
|
||||
IO.FLOAT,
|
||||
{
|
||||
"default": 0.5,
|
||||
"min": 0.0,
|
||||
"max": 1.0,
|
||||
"step": 0.01,
|
||||
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
|
||||
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
|
||||
**kwargs):
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
aspect_ratio: str,
|
||||
style_preset: str,
|
||||
seed: int,
|
||||
cfg_scale: float,
|
||||
image: Optional[torch.Tensor] = None,
|
||||
negative_prompt: str = "",
|
||||
image_denoise: Optional[float] = 0.5,
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
# prepare image binary if image present
|
||||
image_binary = None
|
||||
@ -280,6 +306,11 @@ class StabilityStableImageSD_3_5Node:
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/generate/sd3",
|
||||
@ -300,7 +331,7 @@ class StabilityStableImageSD_3_5Node:
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
@ -310,72 +341,75 @@ class StabilityStableImageSD_3_5Node:
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return (returned_image,)
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleConservativeNode:
|
||||
class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Upscale image with minimal alterations to 4K resolution.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/image/Stability AI"
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
node_id="StabilityUpscaleConservativeNode",
|
||||
display_name="Stability AI Upscale Conservative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
comfy_io.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
"creativity",
|
||||
default=0.35,
|
||||
min=0.2,
|
||||
max=0.5,
|
||||
step=0.01,
|
||||
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": (IO.IMAGE,),
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
|
||||
},
|
||||
),
|
||||
"creativity": (
|
||||
IO.FLOAT,
|
||||
{
|
||||
"default": 0.35,
|
||||
"min": 0.2,
|
||||
"max": 0.5,
|
||||
"step": 0.01,
|
||||
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
},
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 4294967294,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "The random seed used for creating the noise.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
|
||||
**kwargs):
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
prompt: str,
|
||||
creativity: float,
|
||||
seed: int,
|
||||
negative_prompt: str = "",
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
|
||||
|
||||
@ -386,6 +420,11 @@ class StabilityUpscaleConservativeNode:
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
|
||||
@ -401,7 +440,7 @@ class StabilityUpscaleConservativeNode:
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
@ -411,77 +450,81 @@ class StabilityUpscaleConservativeNode:
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return (returned_image,)
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleCreativeNode:
|
||||
class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Upscale image with minimal alterations to 4K resolution.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/image/Stability AI"
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
node_id="StabilityUpscaleCreativeNode",
|
||||
display_name="Stability AI Upscale Creative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
comfy_io.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
|
||||
),
|
||||
comfy_io.Float.Input(
|
||||
"creativity",
|
||||
default=0.3,
|
||||
min=0.1,
|
||||
max=0.5,
|
||||
step=0.01,
|
||||
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
),
|
||||
comfy_io.Combo.Input(
|
||||
"style_preset",
|
||||
options=get_stability_style_presets(),
|
||||
tooltip="Optional desired style of generated image.",
|
||||
),
|
||||
comfy_io.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=4294967294,
|
||||
step=1,
|
||||
display_mode=comfy_io.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="The random seed used for creating the noise.",
|
||||
),
|
||||
comfy_io.String.Input(
|
||||
"negative_prompt",
|
||||
default="",
|
||||
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
|
||||
force_input=True,
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": (IO.IMAGE,),
|
||||
"prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
|
||||
},
|
||||
),
|
||||
"creativity": (
|
||||
IO.FLOAT,
|
||||
{
|
||||
"default": 0.3,
|
||||
"min": 0.1,
|
||||
"max": 0.5,
|
||||
"step": 0.01,
|
||||
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
|
||||
},
|
||||
),
|
||||
"style_preset": (get_stability_style_presets(),
|
||||
{
|
||||
"tooltip": "Optional desired style of generated image.",
|
||||
},
|
||||
),
|
||||
"seed": (
|
||||
IO.INT,
|
||||
{
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 4294967294,
|
||||
"control_after_generate": True,
|
||||
"tooltip": "The random seed used for creating the noise.",
|
||||
},
|
||||
),
|
||||
},
|
||||
"optional": {
|
||||
"negative_prompt": (
|
||||
IO.STRING,
|
||||
{
|
||||
"default": "",
|
||||
"forceInput": True,
|
||||
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
|
||||
},
|
||||
),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
|
||||
**kwargs):
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
prompt: str,
|
||||
creativity: float,
|
||||
style_preset: str,
|
||||
seed: int,
|
||||
negative_prompt: str = "",
|
||||
) -> comfy_io.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
|
||||
|
||||
@ -494,6 +537,11 @@ class StabilityUpscaleCreativeNode:
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/creative",
|
||||
@ -510,7 +558,7 @@ class StabilityUpscaleCreativeNode:
|
||||
),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
@ -525,7 +573,8 @@ class StabilityUpscaleCreativeNode:
|
||||
completed_statuses=[StabilityPollStatus.finished],
|
||||
failed_statuses=[StabilityPollStatus.failed],
|
||||
status_extractor=lambda x: get_async_dummy_status(x),
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
node_id=cls.hidden.unique_id,
|
||||
)
|
||||
response_poll: StabilityResultsGetResponse = await operation.execute()
|
||||
|
||||
@ -535,41 +584,48 @@ class StabilityUpscaleCreativeNode:
|
||||
image_data = base64.b64decode(response_poll.result)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return (returned_image,)
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
|
||||
|
||||
class StabilityUpscaleFastNode:
|
||||
class StabilityUpscaleFastNode(comfy_io.ComfyNode):
|
||||
"""
|
||||
Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
|
||||
FUNCTION = "api_call"
|
||||
API_NODE = True
|
||||
CATEGORY = "api node/image/Stability AI"
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return comfy_io.Schema(
|
||||
node_id="StabilityUpscaleFastNode",
|
||||
display_name="Stability AI Upscale Fast",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
inputs=[
|
||||
comfy_io.Image.Input("image"),
|
||||
],
|
||||
outputs=[
|
||||
comfy_io.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
comfy_io.Hidden.auth_token_comfy_org,
|
||||
comfy_io.Hidden.api_key_comfy_org,
|
||||
comfy_io.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": (IO.IMAGE,),
|
||||
},
|
||||
"optional": {
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
||||
"comfy_api_key": "API_KEY_COMFY_ORG",
|
||||
},
|
||||
}
|
||||
|
||||
async def api_call(self, image: torch.Tensor, **kwargs):
|
||||
async def execute(cls, image: torch.Tensor) -> comfy_io.NodeOutput:
|
||||
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
|
||||
|
||||
files = {
|
||||
"image": image_binary
|
||||
}
|
||||
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/stability/v2beta/stable-image/upscale/fast",
|
||||
@ -580,7 +636,7 @@ class StabilityUpscaleFastNode:
|
||||
request=EmptyRequest(),
|
||||
files=files,
|
||||
content_type="multipart/form-data",
|
||||
auth_kwargs=kwargs,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response_api = await operation.execute()
|
||||
|
||||
@ -590,24 +646,20 @@ class StabilityUpscaleFastNode:
|
||||
image_data = base64.b64decode(response_api.image)
|
||||
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
|
||||
|
||||
return (returned_image,)
|
||||
return comfy_io.NodeOutput(returned_image)
|
||||
|
||||
|
||||
# A dictionary that contains all nodes you want to export with their names
|
||||
# NOTE: names should be globally unique
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"StabilityStableImageUltraNode": StabilityStableImageUltraNode,
|
||||
"StabilityStableImageSD_3_5Node": StabilityStableImageSD_3_5Node,
|
||||
"StabilityUpscaleConservativeNode": StabilityUpscaleConservativeNode,
|
||||
"StabilityUpscaleCreativeNode": StabilityUpscaleCreativeNode,
|
||||
"StabilityUpscaleFastNode": StabilityUpscaleFastNode,
|
||||
}
|
||||
class StabilityExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
|
||||
return [
|
||||
StabilityStableImageUltraNode,
|
||||
StabilityStableImageSD_3_5Node,
|
||||
StabilityUpscaleConservativeNode,
|
||||
StabilityUpscaleCreativeNode,
|
||||
StabilityUpscaleFastNode,
|
||||
]
|
||||
|
||||
# A dictionary that contains the friendly/humanly readable titles for the nodes
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"StabilityStableImageUltraNode": "Stability AI Stable Image Ultra",
|
||||
"StabilityStableImageSD_3_5Node": "Stability AI Stable Diffusion 3.5 Image",
|
||||
"StabilityUpscaleConservativeNode": "Stability AI Upscale Conservative",
|
||||
"StabilityUpscaleCreativeNode": "Stability AI Upscale Creative",
|
||||
"StabilityUpscaleFastNode": "Stability AI Upscale Fast",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> StabilityExtension:
|
||||
return StabilityExtension()
|
||||
|
||||
@ -88,7 +88,7 @@ class FluxKontextMultiReferenceLatentMethod:
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"conditioning": ("CONDITIONING", ),
|
||||
"reference_latents_method": (("offset", "index"), ),
|
||||
"reference_latents_method": (("offset", "index", "uxo/uno"), ),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
@ -98,6 +98,8 @@ class FluxKontextMultiReferenceLatentMethod:
|
||||
CATEGORY = "advanced/conditioning/flux"
|
||||
|
||||
def append(self, conditioning, reference_latents_method):
|
||||
if "uxo" in reference_latents_method or "uso" in reference_latents_method:
|
||||
reference_latents_method = "uxo"
|
||||
c = node_helpers.conditioning_set_values(conditioning, {"reference_latents_method": reference_latents_method})
|
||||
return (c, )
|
||||
|
||||
|
||||
@ -776,6 +776,37 @@ class ImageFlip:
|
||||
|
||||
return (image,)
|
||||
|
||||
class ImageScaleToMaxDimension:
|
||||
upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"]
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"image": ("IMAGE",),
|
||||
"upscale_method": (s.upscale_methods,),
|
||||
"largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "upscale"
|
||||
|
||||
CATEGORY = "image/upscaling"
|
||||
|
||||
def upscale(self, image, upscale_method, largest_size):
|
||||
height = image.shape[1]
|
||||
width = image.shape[2]
|
||||
|
||||
if height > width:
|
||||
width = round((width / height) * largest_size)
|
||||
height = largest_size
|
||||
elif width > height:
|
||||
height = round((height / width) * largest_size)
|
||||
width = largest_size
|
||||
else:
|
||||
height = largest_size
|
||||
width = largest_size
|
||||
|
||||
samples = image.movedim(-1, 1)
|
||||
s = common_upscale(samples, width, height, upscale_method, "disabled")
|
||||
s = s.movedim(1, -1)
|
||||
return (s,)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageResize": ImageResize,
|
||||
@ -794,6 +825,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"GetImageSize": GetImageSize,
|
||||
"ImageRotate": ImageRotate,
|
||||
"ImageFlip": ImageFlip,
|
||||
"ImageScaleToMaxDimension": ImageScaleToMaxDimension,
|
||||
"ResizeAndPadImage": ResizeAndPadImage,
|
||||
}
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import nodes
|
||||
|
||||
|
||||
import comfy.utils
|
||||
@ -112,6 +113,73 @@ class LatentInterpolate:
|
||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||
return (samples_out,)
|
||||
|
||||
class LatentConcat:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2, dim):
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
s2 = comfy.utils.repeat_to_batch_size(s2, s1.shape[0])
|
||||
|
||||
if "-" in dim:
|
||||
c = (s2, s1)
|
||||
else:
|
||||
c = (s1, s2)
|
||||
|
||||
if "x" in dim:
|
||||
dim = -1
|
||||
elif "y" in dim:
|
||||
dim = -2
|
||||
elif "t" in dim:
|
||||
dim = -3
|
||||
|
||||
samples_out["samples"] = torch.cat(c, dim=dim)
|
||||
return (samples_out,)
|
||||
|
||||
class LatentCut:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"samples": ("LATENT",),
|
||||
"dim": (["x", "y", "t"], ),
|
||||
"index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}),
|
||||
"amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples, dim, index, amount):
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
|
||||
if "x" in dim:
|
||||
dim = s1.ndim - 1
|
||||
elif "y" in dim:
|
||||
dim = s1.ndim - 2
|
||||
elif "t" in dim:
|
||||
dim = s1.ndim - 3
|
||||
|
||||
if index >= 0:
|
||||
index = min(index, s1.shape[dim] - 1)
|
||||
amount = min(s1.shape[dim] - index, amount)
|
||||
else:
|
||||
index = max(index, -s1.shape[dim])
|
||||
amount = min(-index, amount)
|
||||
|
||||
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
|
||||
return (samples_out,)
|
||||
|
||||
|
||||
class LatentBatch:
|
||||
@classmethod
|
||||
@ -333,6 +401,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"LatentSubtract": LatentSubtract,
|
||||
"LatentMultiply": LatentMultiply,
|
||||
"LatentInterpolate": LatentInterpolate,
|
||||
"LatentConcat": LatentConcat,
|
||||
"LatentCut": LatentCut,
|
||||
"LatentBatch": LatentBatch,
|
||||
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
||||
"LatentAddNoiseChannels": LatentAddNoiseChannels,
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from comfy.cmd import folder_paths # pylint: disable=no-name-in-module
|
||||
from torch import nn
|
||||
import comfy.utils
|
||||
import comfy.ops
|
||||
import comfy.model_management
|
||||
@ -58,6 +59,137 @@ class QwenImageBlockWiseControlNet(torch.nn.Module):
|
||||
return self.controlnet_blocks[block_id](img, controlnet_conditioning)
|
||||
|
||||
|
||||
class SigLIPMultiFeatProjModel(torch.nn.Module):
|
||||
"""
|
||||
SigLIP Multi-Feature Projection Model for processing style features from different layers
|
||||
and projecting them into a unified hidden space.
|
||||
|
||||
Args:
|
||||
siglip_token_nums (int): Number of SigLIP tokens, default 257
|
||||
style_token_nums (int): Number of style tokens, default 256
|
||||
siglip_token_dims (int): Dimension of SigLIP tokens, default 1536
|
||||
hidden_size (int): Hidden layer size, default 3072
|
||||
context_layer_norm (bool): Whether to use context layer normalization, default False
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
siglip_token_nums: int = 729,
|
||||
style_token_nums: int = 64,
|
||||
siglip_token_dims: int = 1152,
|
||||
hidden_size: int = 3072,
|
||||
context_layer_norm: bool = True,
|
||||
device=None, dtype=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# High-level feature processing (layer -2)
|
||||
self.high_embedding_linear = nn.Sequential(
|
||||
operations.Linear(siglip_token_nums, style_token_nums),
|
||||
nn.SiLU()
|
||||
)
|
||||
self.high_layer_norm = (
|
||||
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
|
||||
)
|
||||
self.high_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
|
||||
|
||||
# Mid-level feature processing (layer -11)
|
||||
self.mid_embedding_linear = nn.Sequential(
|
||||
operations.Linear(siglip_token_nums, style_token_nums),
|
||||
nn.SiLU()
|
||||
)
|
||||
self.mid_layer_norm = (
|
||||
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
|
||||
)
|
||||
self.mid_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
|
||||
|
||||
# Low-level feature processing (layer -20)
|
||||
self.low_embedding_linear = nn.Sequential(
|
||||
operations.Linear(siglip_token_nums, style_token_nums),
|
||||
nn.SiLU()
|
||||
)
|
||||
self.low_layer_norm = (
|
||||
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
|
||||
)
|
||||
self.low_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
|
||||
|
||||
def forward(self, siglip_outputs):
|
||||
"""
|
||||
Forward pass function
|
||||
|
||||
Args:
|
||||
siglip_outputs: Output from SigLIP model, containing hidden_states
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size]
|
||||
"""
|
||||
dtype = next(self.high_embedding_linear.parameters()).dtype
|
||||
|
||||
# Process high-level features (layer -2)
|
||||
high_embedding = self._process_layer_features(
|
||||
siglip_outputs[2],
|
||||
self.high_embedding_linear,
|
||||
self.high_layer_norm,
|
||||
self.high_projection,
|
||||
dtype
|
||||
)
|
||||
|
||||
# Process mid-level features (layer -11)
|
||||
mid_embedding = self._process_layer_features(
|
||||
siglip_outputs[1],
|
||||
self.mid_embedding_linear,
|
||||
self.mid_layer_norm,
|
||||
self.mid_projection,
|
||||
dtype
|
||||
)
|
||||
|
||||
# Process low-level features (layer -20)
|
||||
low_embedding = self._process_layer_features(
|
||||
siglip_outputs[0],
|
||||
self.low_embedding_linear,
|
||||
self.low_layer_norm,
|
||||
self.low_projection,
|
||||
dtype
|
||||
)
|
||||
|
||||
# Concatenate features from all layersmodel_patch
|
||||
return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1)
|
||||
|
||||
def _process_layer_features(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
embedding_linear: nn.Module,
|
||||
layer_norm: nn.Module,
|
||||
projection: nn.Module,
|
||||
dtype: torch.dtype
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Helper function to process features from a single layer
|
||||
|
||||
Args:
|
||||
hidden_states: Input hidden states [bs, seq_len, dim]
|
||||
embedding_linear: Embedding linear layer
|
||||
layer_norm: Layer normalization
|
||||
projection: Projection layer
|
||||
dtype: Target data type
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Processed features [bs, style_token_nums, hidden_size]
|
||||
"""
|
||||
# Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim]
|
||||
embedding = embedding_linear(
|
||||
hidden_states.to(dtype).transpose(1, 2)
|
||||
).transpose(1, 2)
|
||||
|
||||
# Apply layer normalization
|
||||
embedding = layer_norm(embedding)
|
||||
|
||||
# Project to target hidden space
|
||||
embedding = projection(embedding)
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
class ModelPatchLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -74,9 +206,14 @@ class ModelPatchLoader:
|
||||
model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name)
|
||||
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
|
||||
dtype = comfy.utils.weight_dtype(sd)
|
||||
# TODO: this node will work with more types of model patches
|
||||
|
||||
if 'controlnet_blocks.0.y_rms.weight' in sd:
|
||||
additional_in_dim = sd["img_in.weight"].shape[1] - 64
|
||||
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
elif 'feature_embedder.mid_layer_norm.bias' in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True)
|
||||
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
|
||||
model.load_state_dict(sd)
|
||||
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
return (model,)
|
||||
@ -90,6 +227,7 @@ class DiffSynthCnetPatch:
|
||||
self.strength = strength
|
||||
self.mask = mask
|
||||
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
|
||||
self.encoded_image_size = (image.shape[1], image.shape[2])
|
||||
|
||||
def encode_latent_cond(self, image):
|
||||
latent_image = self.vae.encode(image)
|
||||
@ -107,14 +245,15 @@ class DiffSynthCnetPatch:
|
||||
x = kwargs.get("x")
|
||||
img = kwargs.get("img")
|
||||
block_index = kwargs.get("block_index")
|
||||
if self.encoded_image is None or self.encoded_image.shape[1:] != img.shape[1:]:
|
||||
spacial_compression = self.vae.spacial_compression_encode()
|
||||
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
|
||||
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
|
||||
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
|
||||
img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength)
|
||||
img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength)
|
||||
kwargs['img'] = img
|
||||
return kwargs
|
||||
|
||||
@ -158,7 +297,52 @@ class QwenImageDiffsynthControlnet:
|
||||
return (model_patched,)
|
||||
|
||||
|
||||
class UsoStyleProjectorPatch:
|
||||
def __init__(self, model_patch, encoded_image):
|
||||
self.model_patch = model_patch
|
||||
self.encoded_image = encoded_image
|
||||
|
||||
def __call__(self, kwargs):
|
||||
txt_ids = kwargs.get("txt_ids")
|
||||
txt = kwargs.get("txt")
|
||||
siglip_embedding = self.model_patch.model(self.encoded_image.to(txt.dtype)).to(txt.dtype)
|
||||
txt = torch.cat([siglip_embedding, txt], dim=1)
|
||||
kwargs['txt'] = txt
|
||||
kwargs['txt_ids'] = torch.cat([torch.zeros(siglip_embedding.shape[0], siglip_embedding.shape[1], 3, dtype=txt_ids.dtype, device=txt_ids.device), txt_ids], dim=1)
|
||||
return kwargs
|
||||
|
||||
def to(self, device_or_dtype):
|
||||
if isinstance(device_or_dtype, torch.device):
|
||||
self.encoded_image = self.encoded_image.to(device_or_dtype)
|
||||
return self
|
||||
|
||||
def models(self):
|
||||
return [self.model_patch]
|
||||
|
||||
|
||||
class USOStyleReference:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL",),
|
||||
"model_patch": ("MODEL_PATCH",),
|
||||
"clip_vision_output": ("CLIP_VISION_OUTPUT",),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "apply_patch"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
CATEGORY = "advanced/model_patches/flux"
|
||||
|
||||
def apply_patch(self, model, model_patch, clip_vision_output):
|
||||
encoded_image = torch.stack((clip_vision_output.all_hidden_states[:, -20], clip_vision_output.all_hidden_states[:, -11], clip_vision_output.penultimate_hidden_states))
|
||||
model_patched = model.clone()
|
||||
model_patched.set_model_post_input_patch(UsoStyleProjectorPatch(model_patch, encoded_image))
|
||||
return (model_patched,)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelPatchLoader": ModelPatchLoader,
|
||||
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
|
||||
"USOStyleReference": USOStyleReference,
|
||||
}
|
||||
|
||||
@ -1,98 +1,109 @@
|
||||
# Primitive nodes that are evaluated at backend.
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, IO
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
|
||||
class String(ComfyNodeABC):
|
||||
class String(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {"value": (IO.STRING, {})},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PrimitiveString",
|
||||
display_name="String",
|
||||
category="utils/primitive",
|
||||
inputs=[
|
||||
io.String.Input("value"),
|
||||
],
|
||||
outputs=[io.String.Output()],
|
||||
)
|
||||
|
||||
RETURN_TYPES = (IO.STRING,)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "utils/primitive"
|
||||
|
||||
def execute(self, value: str) -> tuple[str]:
|
||||
return (value,)
|
||||
|
||||
|
||||
class StringMultiline(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {"value": (IO.STRING, {"multiline": True,},)},
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.STRING,)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "utils/primitive"
|
||||
|
||||
def execute(self, value: str) -> tuple[str]:
|
||||
return (value,)
|
||||
def execute(cls, value: str) -> io.NodeOutput:
|
||||
return io.NodeOutput(value)
|
||||
|
||||
|
||||
class Int(ComfyNodeABC):
|
||||
class StringMultiline(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {"value": (IO.INT, {"min": -sys.maxsize, "max": sys.maxsize, "control_after_generate": True})},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PrimitiveStringMultiline",
|
||||
display_name="String (Multiline)",
|
||||
category="utils/primitive",
|
||||
inputs=[
|
||||
io.String.Input("value", multiline=True),
|
||||
],
|
||||
outputs=[io.String.Output()],
|
||||
)
|
||||
|
||||
RETURN_TYPES = (IO.INT,)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "utils/primitive"
|
||||
|
||||
def execute(self, value: int) -> tuple[int]:
|
||||
return (value,)
|
||||
|
||||
|
||||
class Float(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {"value": (IO.FLOAT, {"min": -sys.maxsize, "max": sys.maxsize})},
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.FLOAT,)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "utils/primitive"
|
||||
|
||||
def execute(self, value: float) -> tuple[float]:
|
||||
return (value,)
|
||||
def execute(cls, value: str) -> io.NodeOutput:
|
||||
return io.NodeOutput(value)
|
||||
|
||||
|
||||
class Boolean(ComfyNodeABC):
|
||||
class Int(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {"value": (IO.BOOLEAN, {})},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PrimitiveInt",
|
||||
display_name="Int",
|
||||
category="utils/primitive",
|
||||
inputs=[
|
||||
io.Int.Input("value", min=-sys.maxsize, max=sys.maxsize, control_after_generate=True),
|
||||
],
|
||||
outputs=[io.Int.Output()],
|
||||
)
|
||||
|
||||
RETURN_TYPES = (IO.BOOLEAN,)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "utils/primitive"
|
||||
|
||||
def execute(self, value: bool) -> tuple[bool]:
|
||||
return (value,)
|
||||
@classmethod
|
||||
def execute(cls, value: int) -> io.NodeOutput:
|
||||
return io.NodeOutput(value)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"PrimitiveString": String,
|
||||
"PrimitiveStringMultiline": StringMultiline,
|
||||
"PrimitiveInt": Int,
|
||||
"PrimitiveFloat": Float,
|
||||
"PrimitiveBoolean": Boolean,
|
||||
}
|
||||
class Float(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PrimitiveFloat",
|
||||
display_name="Float",
|
||||
category="utils/primitive",
|
||||
inputs=[
|
||||
io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize),
|
||||
],
|
||||
outputs=[io.Float.Output()],
|
||||
)
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"PrimitiveString": "String",
|
||||
"PrimitiveStringMultiline": "String (Multiline)",
|
||||
"PrimitiveInt": "Int",
|
||||
"PrimitiveFloat": "Float",
|
||||
"PrimitiveBoolean": "Boolean",
|
||||
}
|
||||
@classmethod
|
||||
def execute(cls, value: float) -> io.NodeOutput:
|
||||
return io.NodeOutput(value)
|
||||
|
||||
|
||||
class Boolean(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="PrimitiveBoolean",
|
||||
display_name="Boolean",
|
||||
category="utils/primitive",
|
||||
inputs=[
|
||||
io.Boolean.Input("value"),
|
||||
],
|
||||
outputs=[io.Boolean.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, value: bool) -> io.NodeOutput:
|
||||
return io.NodeOutput(value)
|
||||
|
||||
|
||||
class PrimitivesExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
String,
|
||||
StringMultiline,
|
||||
Int,
|
||||
Float,
|
||||
Boolean,
|
||||
]
|
||||
|
||||
async def comfy_entrypoint() -> PrimitivesExtension:
|
||||
return PrimitivesExtension()
|
||||
|
||||
@ -19,53 +19,61 @@
|
||||
import torch
|
||||
import comfy.nodes.common
|
||||
import comfy.utils
|
||||
from typing_extensions import override
|
||||
|
||||
import comfy.utils
|
||||
from comfy.nodes import base_nodes as nodes
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
|
||||
class StableCascade_EmptyLatentImage:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
class StableCascade_EmptyLatentImage(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableCascade_EmptyLatentImage",
|
||||
category="latent/stable_cascade",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1024, min=256, max=comfy.nodes.common.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=1024, min=256, max=comfy.nodes.common.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("compression", default=42, min=4, max=128, step=1),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(display_name="stage_c"),
|
||||
io.Latent.Output(display_name="stage_b"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"width": ("INT", {"default": 1024, "min": 256, "max": comfy.nodes.common.MAX_RESOLUTION, "step": 8}),
|
||||
"height": ("INT", {"default": 1024, "min": 256, "max": comfy.nodes.common.MAX_RESOLUTION, "step": 8}),
|
||||
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})
|
||||
}}
|
||||
RETURN_TYPES = ("LATENT", "LATENT")
|
||||
RETURN_NAMES = ("stage_c", "stage_b")
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "latent/stable_cascade"
|
||||
|
||||
def generate(self, width, height, compression, batch_size=1):
|
||||
def execute(cls, width, height, compression, batch_size=1):
|
||||
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
|
||||
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
|
||||
return ({
|
||||
return io.NodeOutput({
|
||||
"samples": c_latent,
|
||||
}, {
|
||||
"samples": b_latent,
|
||||
})
|
||||
|
||||
class StableCascade_StageC_VAEEncode:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
|
||||
class StableCascade_StageC_VAEEncode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableCascade_StageC_VAEEncode",
|
||||
category="latent/stable_cascade",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("compression", default=42, min=4, max=128, step=1),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(display_name="stage_c"),
|
||||
io.Latent.Output(display_name="stage_b"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"image": ("IMAGE",),
|
||||
"vae": ("VAE", ),
|
||||
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
|
||||
}}
|
||||
RETURN_TYPES = ("LATENT", "LATENT")
|
||||
RETURN_NAMES = ("stage_c", "stage_b")
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "latent/stable_cascade"
|
||||
|
||||
def generate(self, image, vae, compression):
|
||||
def execute(cls, image, vae, compression):
|
||||
width = image.shape[-2]
|
||||
height = image.shape[-3]
|
||||
out_width = (width // compression) * vae.downscale_ratio
|
||||
@ -75,51 +83,59 @@ class StableCascade_StageC_VAEEncode:
|
||||
|
||||
c_latent = vae.encode(s[:, :, :, :3])
|
||||
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
|
||||
return ({
|
||||
return io.NodeOutput({
|
||||
"samples": c_latent,
|
||||
}, {
|
||||
"samples": b_latent,
|
||||
})
|
||||
|
||||
class StableCascade_StageB_Conditioning:
|
||||
|
||||
class StableCascade_StageB_Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "conditioning": ("CONDITIONING",),
|
||||
"stage_c": ("LATENT",),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableCascade_StageB_Conditioning",
|
||||
category="conditioning/stable_cascade",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Latent.Input("stage_c"),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
FUNCTION = "set_prior"
|
||||
|
||||
CATEGORY = "conditioning/stable_cascade"
|
||||
|
||||
def set_prior(self, conditioning, stage_c):
|
||||
@classmethod
|
||||
def execute(cls, conditioning, stage_c):
|
||||
c = []
|
||||
for t in conditioning:
|
||||
d = t[1].copy()
|
||||
d['stable_cascade_prior'] = stage_c['samples']
|
||||
d["stable_cascade_prior"] = stage_c["samples"]
|
||||
n = [t[0], d]
|
||||
c.append(n)
|
||||
return (c, )
|
||||
return io.NodeOutput(c)
|
||||
|
||||
class StableCascade_SuperResolutionControlnet:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
|
||||
class StableCascade_SuperResolutionControlnet(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="StableCascade_SuperResolutionControlnet",
|
||||
category="_for_testing/stable_cascade",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Vae.Input("vae"),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(display_name="controlnet_input"),
|
||||
io.Latent.Output(display_name="stage_c"),
|
||||
io.Latent.Output(display_name="stage_b"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"image": ("IMAGE",),
|
||||
"vae": ("VAE", ),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE", "LATENT", "LATENT")
|
||||
RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b")
|
||||
FUNCTION = "generate"
|
||||
|
||||
EXPERIMENTAL = True
|
||||
CATEGORY = "_for_testing/stable_cascade"
|
||||
|
||||
def generate(self, image, vae):
|
||||
def execute(cls, image, vae):
|
||||
width = image.shape[-2]
|
||||
height = image.shape[-3]
|
||||
batch_size = image.shape[0]
|
||||
@ -127,15 +143,23 @@ class StableCascade_SuperResolutionControlnet:
|
||||
|
||||
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
|
||||
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
|
||||
return (controlnet_input, {
|
||||
return io.NodeOutput(controlnet_input, {
|
||||
"samples": c_latent,
|
||||
}, {
|
||||
"samples": b_latent,
|
||||
})
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage,
|
||||
"StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning,
|
||||
"StableCascade_StageC_VAEEncode": StableCascade_StageC_VAEEncode,
|
||||
"StableCascade_SuperResolutionControlnet": StableCascade_SuperResolutionControlnet,
|
||||
}
|
||||
|
||||
class StableCascadeExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
StableCascade_EmptyLatentImage,
|
||||
StableCascade_StageB_Conditioning,
|
||||
StableCascade_StageC_VAEEncode,
|
||||
StableCascade_SuperResolutionControlnet,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> StableCascadeExtension:
|
||||
return StableCascadeExtension()
|
||||
|
||||
@ -3,56 +3,54 @@ from __future__ import annotations
|
||||
import json
|
||||
import os
|
||||
from fractions import Fraction
|
||||
from typing import Optional, Literal
|
||||
from typing import Optional
|
||||
|
||||
import av
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy.cli_args import args
|
||||
from comfy.cmd import folder_paths
|
||||
from comfy.comfy_types import IO, FileLocator, ComfyNodeABC
|
||||
from comfy_api.latest import Input, InputImpl, Types
|
||||
from comfy_api.input import AudioInput, ImageInput, VideoInput
|
||||
from comfy_api.input_impl import VideoFromComponents, VideoFromFile
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
from comfy_api.util import VideoCodec, VideoComponents, VideoContainer
|
||||
|
||||
|
||||
class SaveWEBM:
|
||||
def __init__(self):
|
||||
self.type = "output"
|
||||
self.prefix_append = ""
|
||||
class SaveWEBM(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveWEBM",
|
||||
category="image/video",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Image.Input("images"),
|
||||
io.String.Input("filename_prefix", default="ComfyUI"),
|
||||
io.Combo.Input("codec", options=["vp9", "av1"]),
|
||||
io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01),
|
||||
io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"images": ("IMAGE",),
|
||||
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
|
||||
"codec": (["vp9", "av1"],),
|
||||
"fps": ("FLOAT", {"default": 24.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
||||
"crf": ("FLOAT", {"default": 32.0, "min": 0, "max": 63.0, "step": 1, "tooltip": "Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."}),
|
||||
},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save_images"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "image/video"
|
||||
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def save_images(self, images, codec, fps, filename_prefix, crf, prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
|
||||
def execute(cls, images, codec, fps, filename_prefix, crf) -> io.NodeOutput:
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
|
||||
)
|
||||
|
||||
file = f"{filename}_{counter:05}_.webm"
|
||||
container = av.open(os.path.join(full_output_folder, file), mode="w")
|
||||
|
||||
if prompt is not None:
|
||||
container.metadata["prompt"] = json.dumps(prompt)
|
||||
if cls.hidden.prompt is not None:
|
||||
container.metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
container.metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
container.metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
codec_map = {"vp9": "libvpx-vp9", "av1": "libsvtav1"}
|
||||
stream = container.add_stream(codec_map[codec], rate=Fraction(round(fps * 1000), 1000))
|
||||
@ -71,64 +69,47 @@ class SaveWEBM:
|
||||
container.mux(stream.encode())
|
||||
container.close()
|
||||
|
||||
results: list[FileLocator] = [{
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type
|
||||
}]
|
||||
|
||||
return {"ui": {"images": results, "animated": (True,)}} # TODO: frontend side
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
class SaveVideo(ComfyNodeABC):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type: Literal["output"] = "output"
|
||||
self.prefix_append = ""
|
||||
class SaveVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SaveVideo",
|
||||
display_name="Save Video",
|
||||
category="image/video",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
inputs=[
|
||||
io.Video.Input("video", tooltip="The video to save."),
|
||||
io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."),
|
||||
io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
|
||||
io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"video": (IO.VIDEO, {"tooltip": "The video to save."}),
|
||||
"filename_prefix": ("STRING", {"default": "video/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
|
||||
"format": (Types.VideoContainer.as_input(), {"default": "auto", "tooltip": "The format to save the video as."}),
|
||||
"codec": (Types.VideoCodec.as_input(), {"default": "auto", "tooltip": "The codec to use for the video."}),
|
||||
},
|
||||
"hidden": {
|
||||
"prompt": "PROMPT",
|
||||
"extra_pnginfo": "EXTRA_PNGINFO"
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save_video"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
|
||||
|
||||
def save_video(self, video: Input.Video, filename_prefix, format, codec, prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
def execute(cls, video: VideoInput, filename_prefix, format, codec) -> io.NodeOutput:
|
||||
width, height = video.get_dimensions()
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix,
|
||||
self.output_dir,
|
||||
folder_paths.get_output_directory(),
|
||||
width,
|
||||
height
|
||||
)
|
||||
results: list[FileLocator] = list()
|
||||
saved_metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = {}
|
||||
if extra_pnginfo is not None:
|
||||
metadata.update(extra_pnginfo)
|
||||
if prompt is not None:
|
||||
metadata["prompt"] = prompt
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
metadata.update(cls.hidden.extra_pnginfo)
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = cls.hidden.prompt
|
||||
if len(metadata) > 0:
|
||||
saved_metadata = metadata
|
||||
file = f"{filename}_{counter:05}_.{Types.VideoContainer.get_extension(format)}"
|
||||
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
|
||||
video.save_to(
|
||||
os.path.join(full_output_folder, file),
|
||||
format=format,
|
||||
@ -136,88 +117,87 @@ class SaveVideo(ComfyNodeABC):
|
||||
metadata=saved_metadata
|
||||
)
|
||||
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type
|
||||
})
|
||||
counter += 1
|
||||
|
||||
return {"ui": {"images": results, "animated": (True,)}}
|
||||
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
|
||||
|
||||
|
||||
class CreateVideo(ComfyNodeABC):
|
||||
class CreateVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"images": (IO.IMAGE, {"tooltip": "The images to create a video from."}),
|
||||
"fps": ("FLOAT", {"default": 30.0, "min": 1.0, "max": 120.0, "step": 1.0}),
|
||||
},
|
||||
"optional": {
|
||||
"audio": (IO.AUDIO, {"tooltip": "The audio to add to the video."}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CreateVideo",
|
||||
display_name="Create Video",
|
||||
category="image/video",
|
||||
description="Create a video from images.",
|
||||
inputs=[
|
||||
io.Image.Input("images", tooltip="The images to create a video from."),
|
||||
io.Float.Input("fps", default=30.0, min=1.0, max=120.0, step=1.0),
|
||||
io.Audio.Input("audio", optional=True, tooltip="The audio to add to the video."),
|
||||
],
|
||||
outputs=[
|
||||
io.Video.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
FUNCTION = "create_video"
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Create a video from images."
|
||||
|
||||
def create_video(self, images: Input.Image, fps: float, audio: Optional[Input.Audio] = None):
|
||||
return (InputImpl.VideoFromComponents(
|
||||
Types.VideoComponents(
|
||||
@classmethod
|
||||
def execute(cls, images: ImageInput, fps: float, audio: Optional[AudioInput] = None) -> io.NodeOutput:
|
||||
return io.NodeOutput(
|
||||
VideoFromComponents(VideoComponents(
|
||||
images=images,
|
||||
audio=audio,
|
||||
frame_rate=Fraction(fps),
|
||||
frame_rate=Fraction(fps)))
|
||||
)
|
||||
),)
|
||||
|
||||
|
||||
class GetVideoComponents(ComfyNodeABC):
|
||||
class GetVideoComponents(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"video": (IO.VIDEO, {"tooltip": "The video to extract components from."}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="GetVideoComponents",
|
||||
display_name="Get Video Components",
|
||||
category="image/video",
|
||||
description="Extracts all components from a video: frames, audio, and framerate.",
|
||||
inputs=[
|
||||
io.Video.Input("video", tooltip="The video to extract components from."),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(display_name="images"),
|
||||
io.Audio.Output(display_name="audio"),
|
||||
io.Float.Output(display_name="fps"),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE, IO.AUDIO, IO.FLOAT)
|
||||
RETURN_NAMES = ("images", "audio", "fps")
|
||||
FUNCTION = "get_components"
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Extracts all components from a video: frames, audio, and framerate."
|
||||
|
||||
def get_components(self, video: Input.Video):
|
||||
@classmethod
|
||||
def execute(cls, video: VideoInput) -> io.NodeOutput:
|
||||
components = video.get_components()
|
||||
|
||||
return (components.images, components.audio, float(components.frame_rate))
|
||||
return io.NodeOutput(components.images, components.audio, float(components.frame_rate))
|
||||
|
||||
|
||||
class LoadVideo(ComfyNodeABC):
|
||||
class LoadVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
def define_schema(cls):
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
||||
files = folder_paths.filter_files_content_types(files, ["video"])
|
||||
return {"required":
|
||||
{"file": (sorted(files), {"video_upload": True})},
|
||||
}
|
||||
|
||||
CATEGORY = "image/video"
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
FUNCTION = "load_video"
|
||||
|
||||
def load_video(self, file):
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
return (InputImpl.VideoFromFile(video_path),)
|
||||
return io.Schema(
|
||||
node_id="LoadVideo",
|
||||
display_name="Load Video",
|
||||
category="image/video",
|
||||
inputs=[
|
||||
io.Combo.Input("file", options=sorted(files), upload=io.UploadType.video),
|
||||
],
|
||||
outputs=[
|
||||
io.Video.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(cls, file):
|
||||
def execute(cls, file) -> io.NodeOutput:
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
return io.NodeOutput(VideoFromFile(video_path))
|
||||
|
||||
@classmethod
|
||||
def fingerprint_inputs(s, file):
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
mod_time = os.path.getmtime(video_path)
|
||||
# Instead of hashing the file, we can just use the modification time to avoid
|
||||
@ -225,25 +205,24 @@ class LoadVideo(ComfyNodeABC):
|
||||
return mod_time
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, file):
|
||||
def validate_inputs(s, file):
|
||||
if not folder_paths.exists_annotated_filepath(file):
|
||||
return "Invalid video file: {}".format(file)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SaveWEBM": SaveWEBM,
|
||||
"SaveVideo": SaveVideo,
|
||||
"CreateVideo": CreateVideo,
|
||||
"GetVideoComponents": GetVideoComponents,
|
||||
"LoadVideo": LoadVideo,
|
||||
}
|
||||
class VideoExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
SaveWEBM,
|
||||
SaveVideo,
|
||||
CreateVideo,
|
||||
GetVideoComponents,
|
||||
LoadVideo,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"SaveVideo": "Save Video",
|
||||
"CreateVideo": "Create Video",
|
||||
"GetVideoComponents": "Get Video Components",
|
||||
"LoadVideo": "Load Video",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> VideoExtension:
|
||||
return VideoExtension()
|
||||
|
||||
@ -144,8 +144,13 @@ class Wan22FunControlToVideo(io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, start_image=None, control_video=None) -> io.NodeOutput:
|
||||
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
spacial_scale = vae.spacial_compression_encode()
|
||||
latent_channels = vae.latent_channels
|
||||
latent = torch.zeros([batch_size, latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
|
||||
concat_latent = torch.zeros([batch_size, latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
|
||||
if latent_channels == 48:
|
||||
concat_latent = comfy.latent_formats.Wan22().process_out(concat_latent)
|
||||
else:
|
||||
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
|
||||
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
|
||||
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
|
||||
@ -153,7 +158,7 @@ class Wan22FunControlToVideo(io.ComfyNode):
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
concat_latent_image = vae.encode(start_image[:, :, :, :3])
|
||||
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
|
||||
concat_latent[:,latent_channels:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
|
||||
mask[:, :, :start_image.shape[0] + 3] = 0.0
|
||||
|
||||
ref_latent = None
|
||||
@ -164,11 +169,11 @@ class Wan22FunControlToVideo(io.ComfyNode):
|
||||
if control_video is not None:
|
||||
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
concat_latent_image = vae.encode(control_video[:, :, :, :3])
|
||||
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
|
||||
concat_latent[:,:latent_channels,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
|
||||
|
||||
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": latent_channels})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": latent_channels})
|
||||
|
||||
if ref_latent is not None:
|
||||
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
|
||||
@ -207,7 +212,8 @@ class WanFirstLastFrameToVideo(io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
|
||||
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
spacial_scale = vae.spacial_compression_encode()
|
||||
latent = torch.zeros([batch_size, vae.latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
if end_image is not None:
|
||||
@ -800,6 +806,229 @@ class WanTrackToVideo(io.ComfyNode):
|
||||
return io.NodeOutput(positive, negative, out_latent)
|
||||
|
||||
|
||||
def linear_interpolation(features, input_fps, output_fps, output_len=None):
|
||||
"""
|
||||
features: shape=[1, T, 512]
|
||||
input_fps: fps for audio, f_a
|
||||
output_fps: fps for video, f_m
|
||||
output_len: video length
|
||||
"""
|
||||
features = features.transpose(1, 2) # [1, 512, T]
|
||||
seq_len = features.shape[2] / float(input_fps) # T/f_a
|
||||
if output_len is None:
|
||||
output_len = int(seq_len * output_fps) # f_m*T/f_a
|
||||
output_features = torch.nn.functional.interpolate(
|
||||
features, size=output_len, align_corners=True,
|
||||
mode='linear') # [1, 512, output_len]
|
||||
return output_features.transpose(1, 2) # [1, output_len, 512]
|
||||
|
||||
|
||||
def get_sample_indices(original_fps,
|
||||
total_frames,
|
||||
target_fps,
|
||||
num_sample,
|
||||
fixed_start=None):
|
||||
required_duration = num_sample / target_fps
|
||||
required_origin_frames = int(np.ceil(required_duration * original_fps))
|
||||
if required_duration > total_frames / original_fps:
|
||||
raise ValueError("required_duration must be less than video length")
|
||||
|
||||
if not fixed_start is None and fixed_start >= 0:
|
||||
start_frame = fixed_start
|
||||
else:
|
||||
max_start = total_frames - required_origin_frames
|
||||
if max_start < 0:
|
||||
raise ValueError("video length is too short")
|
||||
start_frame = np.random.randint(0, max_start + 1)
|
||||
start_time = start_frame / original_fps
|
||||
|
||||
end_time = start_time + required_duration
|
||||
time_points = np.linspace(start_time, end_time, num_sample, endpoint=False)
|
||||
|
||||
frame_indices = np.round(np.array(time_points) * original_fps).astype(int)
|
||||
frame_indices = np.clip(frame_indices, 0, total_frames - 1)
|
||||
return frame_indices
|
||||
|
||||
|
||||
def get_audio_embed_bucket_fps(audio_embed, fps=16, batch_frames=81, m=0, video_rate=30):
|
||||
num_layers, audio_frame_num, audio_dim = audio_embed.shape
|
||||
|
||||
if num_layers > 1:
|
||||
return_all_layers = True
|
||||
else:
|
||||
return_all_layers = False
|
||||
|
||||
scale = video_rate / fps
|
||||
|
||||
min_batch_num = int(audio_frame_num / (batch_frames * scale)) + 1
|
||||
|
||||
bucket_num = min_batch_num * batch_frames
|
||||
padd_audio_num = math.ceil(min_batch_num * batch_frames / fps * video_rate) - audio_frame_num
|
||||
batch_idx = get_sample_indices(
|
||||
original_fps=video_rate,
|
||||
total_frames=audio_frame_num + padd_audio_num,
|
||||
target_fps=fps,
|
||||
num_sample=bucket_num,
|
||||
fixed_start=0)
|
||||
batch_audio_eb = []
|
||||
audio_sample_stride = int(video_rate / fps)
|
||||
for bi in batch_idx:
|
||||
if bi < audio_frame_num:
|
||||
|
||||
chosen_idx = list(
|
||||
range(bi - m * audio_sample_stride, bi + (m + 1) * audio_sample_stride, audio_sample_stride))
|
||||
chosen_idx = [0 if c < 0 else c for c in chosen_idx]
|
||||
chosen_idx = [
|
||||
audio_frame_num - 1 if c >= audio_frame_num else c
|
||||
for c in chosen_idx
|
||||
]
|
||||
|
||||
if return_all_layers:
|
||||
frame_audio_embed = audio_embed[:, chosen_idx].flatten(
|
||||
start_dim=-2, end_dim=-1)
|
||||
else:
|
||||
frame_audio_embed = audio_embed[0][chosen_idx].flatten()
|
||||
else:
|
||||
frame_audio_embed = torch.zeros([audio_dim * (2 * m + 1)], device=audio_embed.device) if not return_all_layers \
|
||||
else torch.zeros([num_layers, audio_dim * (2 * m + 1)], device=audio_embed.device)
|
||||
batch_audio_eb.append(frame_audio_embed)
|
||||
batch_audio_eb = torch.cat([c.unsqueeze(0) for c in batch_audio_eb], dim=0)
|
||||
|
||||
return batch_audio_eb, min_batch_num
|
||||
|
||||
|
||||
def wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=0, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None, ref_motion_latent=None):
|
||||
latent_t = ((length - 1) // 4) + 1
|
||||
if audio_encoder_output is not None:
|
||||
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
|
||||
video_rate = 30
|
||||
fps = 16
|
||||
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
|
||||
batch_frames = latent_t * 4
|
||||
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=batch_frames, m=0, video_rate=video_rate)
|
||||
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
|
||||
if len(audio_embed_bucket.shape) == 3:
|
||||
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
|
||||
elif len(audio_embed_bucket.shape) == 4:
|
||||
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)
|
||||
|
||||
audio_embed_bucket = audio_embed_bucket[:, :, :, frame_offset:frame_offset + batch_frames]
|
||||
if audio_embed_bucket.shape[3] > 0:
|
||||
positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket * 0.0})
|
||||
frame_offset += batch_frames
|
||||
|
||||
if ref_image is not None:
|
||||
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
ref_latent = vae.encode(ref_image[:, :, :, :3])
|
||||
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
|
||||
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
|
||||
|
||||
if ref_motion is not None:
|
||||
if ref_motion.shape[0] > 73:
|
||||
ref_motion = ref_motion[-73:]
|
||||
|
||||
ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
|
||||
if ref_motion.shape[0] < 73:
|
||||
r = torch.ones([73, height, width, 3]) * 0.5
|
||||
r[-ref_motion.shape[0]:] = ref_motion
|
||||
ref_motion = r
|
||||
|
||||
ref_motion_latent = vae.encode(ref_motion[:, :, :, :3])
|
||||
|
||||
if ref_motion_latent is not None:
|
||||
ref_motion_latent = ref_motion_latent[:, :, -19:]
|
||||
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion_latent})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion_latent})
|
||||
|
||||
latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
|
||||
control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
|
||||
if control_video is not None:
|
||||
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
control_video = vae.encode(control_video[:, :, :, :3])
|
||||
control_video_out[:, :, :control_video.shape[2]] = control_video
|
||||
|
||||
# TODO: check if zero is better than none if none provided
|
||||
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})
|
||||
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return positive, negative, out_latent, frame_offset
|
||||
|
||||
|
||||
class WanSoundImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="WanSoundImageToVideo",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
|
||||
io.Image.Input("ref_image", optional=True),
|
||||
io.Image.Input("control_video", optional=True),
|
||||
io.Image.Input("ref_motion", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None) -> io.NodeOutput:
|
||||
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
|
||||
control_video=control_video, ref_motion=ref_motion)
|
||||
return io.NodeOutput(positive, negative, out_latent)
|
||||
|
||||
|
||||
class WanSoundImageToVideoExtend(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="WanSoundImageToVideoExtend",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Latent.Input("video_latent"),
|
||||
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
|
||||
io.Image.Input("ref_image", optional=True),
|
||||
io.Image.Input("control_video", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, length, video_latent, ref_image=None, audio_encoder_output=None, control_video=None) -> io.NodeOutput:
|
||||
video_latent = video_latent["samples"]
|
||||
width = video_latent.shape[-1] * 8
|
||||
height = video_latent.shape[-2] * 8
|
||||
batch_size = video_latent.shape[0]
|
||||
frame_offset = video_latent.shape[-3] * 4
|
||||
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=frame_offset, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
|
||||
control_video=control_video, ref_motion=None, ref_motion_latent=video_latent)
|
||||
return io.NodeOutput(positive, negative, out_latent)
|
||||
|
||||
|
||||
class Wan22ImageToVideoLatent(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -858,6 +1087,8 @@ class WanExtension(ComfyExtension):
|
||||
TrimVideoLatent,
|
||||
WanCameraImageToVideo,
|
||||
WanPhantomSubjectToVideo,
|
||||
WanSoundImageToVideo,
|
||||
WanSoundImageToVideoExtend,
|
||||
Wan22ImageToVideoLatent,
|
||||
]
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "comfyui"
|
||||
version = "0.3.52"
|
||||
version = "0.3.56"
|
||||
description = "An installable version of ComfyUI"
|
||||
readme = "README.md"
|
||||
authors = [
|
||||
@ -18,8 +18,8 @@ classifiers = [
|
||||
]
|
||||
|
||||
dependencies = [
|
||||
"comfyui-frontend-package>=1.25.10",
|
||||
"comfyui-workflow-templates>=0.1.66",
|
||||
"comfyui-frontend-package>=1.25.11",
|
||||
"comfyui-workflow-templates>=0.1.73",
|
||||
"comfyui-embedded-docs>=0.2.6",
|
||||
"torch",
|
||||
"torchvision",
|
||||
|
||||
Loading…
Reference in New Issue
Block a user