Merge branch 'master' of github.com:comfyanonymous/ComfyUI

This commit is contained in:
doctorpangloss 2025-09-03 12:04:32 -07:00
commit 179c2d35c8
34 changed files with 2336 additions and 865 deletions

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.52"
__version__ = "0.3.56"

View File

@ -299,6 +299,17 @@ paths:
responses:
'200':
description: OK
requestBody:
required: false
content:
application/json:
schema:
type: object
properties:
prompt_id:
type: string
description: |
The prompt to interrupt.
/free:
# from 6d281b4ff4ad3918a4f3b4ca4a8b547a2ba3bf80
post:

View File

@ -52,6 +52,7 @@ class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
class Configuration(dict):

View File

@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):

View File

@ -41,12 +41,14 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
IMAGE_ENCODERS = {
"clip_vision_model": clip_model.CLIPVisionModelProjection,
"siglip_vision_model": clip_model.CLIPVisionModelProjection,
"dinov2": dino2.Dinov2Model,
}
class ClipVisionModel():
def __init__(self, json_config: dict | str):
if isinstance(json_config, dict):
@ -63,7 +65,13 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
self.load_device = model_management.text_encoder_device()
offload_device = model_management.text_encoder_offload_device()
self.dtype = model_management.text_encoder_dtype(self.load_device)
@ -81,11 +89,16 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
load_models_gpu([self.patcher])
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(model_management.intermediate_device())
if self.return_all_hidden_states:
all_hs = out[1].to(model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
outputs["all_hidden_states"] = all_hs
else:
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs

View File

@ -24,6 +24,8 @@ os.environ["BITSANDBYTES_NOWELCOME"] = "1"
os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
os.environ['DO_NOT_TRACK'] = '1'
if os.name == "nt":
os.environ['MIMALLOC_PURGE_DELAY'] = '0'
this_logger = logging.getLogger(__name__)

View File

@ -769,6 +769,33 @@ class PromptServer(ExecutorToClientProgress):
@routes.post("/interrupt")
async def post_interrupt(request):
try:
json_data = await request.json()
except json.JSONDecodeError:
json_data = {}
# Check if a specific prompt_id was provided for targeted interruption
prompt_id = json_data.get('prompt_id')
if prompt_id:
currently_running, _ = self.prompt_queue.get_current_queue()
# Check if the prompt_id matches any currently running prompt
should_interrupt = False
for item in currently_running:
# item structure: (number, prompt_id, prompt, extra_data, outputs_to_execute)
if item[1] == prompt_id:
logger.debug(f"Interrupting prompt {prompt_id}")
should_interrupt = True
break
if should_interrupt:
interruption.interrupt_current_processing()
else:
logger.debug(f"Prompt {prompt_id} is not currently running, skipping interrupt")
else:
# No prompt_id provided, do a global interrupt
logger.debug("Global interrupt (no prompt_id specified)")
interruption.interrupt_current_processing()
return web.Response(status=200)

View File

@ -172,6 +172,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
return sigmas
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
return torch.expm1(h)
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
return (torch.expm1(h) - h) / h
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@ -862,6 +872,11 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
return x
@torch.no_grad()
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@ -934,6 +949,16 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@ -1578,13 +1603,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1592,55 +1616,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
fac = 1 / (2 * r)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
continue
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
sigma_s_1 = sigma_fn(lambda_s_1)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1. / 3, r_2=2. / 3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1652,45 +1674,49 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
continue
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
segment_factor = (r_1 - r_2) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
b3 = ei_h_phi_2(-h_eta) / r_2
b1 = ei_h_phi_1(-h_eta) - b3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
segment_factor = (r_2 - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x

View File

@ -108,6 +108,7 @@ class Flux(nn.Module):
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@ -122,6 +123,14 @@ class Flux(nn.Module):
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
img = out["img"]
txt = out["txt"]
img_ids = out["img_ids"]
txt_ids = out["txt_ids"]
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
@ -160,7 +169,7 @@ class Flux(nn.Module):
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img[:, :add.shape[1]] += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
@ -191,7 +200,7 @@ class Flux(nn.Module):
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1]:, ...] += add
img[:, txt.shape[1]: txt.shape[1] + add.shape[1], ...] += add
img = img[:, txt.shape[1]:, ...]
@ -235,12 +244,18 @@ class Flux(nn.Module):
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if index_ref_method:
if ref_latents_method == "index":
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
index = 0
h_offset = h_len * patch_size + h
w_offset = w_len * patch_size + w
h += ref.shape[-2]
w += ref.shape[-1]
else:
index = 1
h_offset = 0

View File

@ -459,7 +459,7 @@ class QwenImageTransformer2DModel(nn.Module):
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states += add
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

View File

@ -4,7 +4,7 @@ import math
import torch
import torch.nn as nn
from einops import repeat
from einops import rearrange
from ..modules.attention import optimized_attention
from ..flux.layers import EmbedND
@ -153,7 +153,10 @@ def repeat_e(e, x):
repeats = x.size(1) // e.size(1)
if repeats == 1:
return e
if repeats * e.size(1) == x.size(1):
return torch.repeat_interleave(e, repeats, dim=1)
else:
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
class WanAttentionBlock(nn.Module):
@ -573,6 +576,28 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return freqs
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
return WrapperExecutor.new_class_executor(
self._forward,
@ -584,26 +609,16 @@ class WanModel(torch.nn.Module):
bs, c, t, h, w = x.shape
x = pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
t_len = t
if time_dim_concat is not None:
time_dim_concat = pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
t_len = x.shape[2]
if self.ref_conv is not None and "reference_latent" in kwargs:
t_len += 1
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
@ -839,3 +854,468 @@ class CameraWanModel(WanModel):
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CausalConv1d(nn.Module):
def __init__(self,
chan_in,
chan_out,
kernel_size=3,
stride=1,
dilation=1,
pad_mode='replicate',
operations=None,
**kwargs):
super().__init__()
self.pad_mode = pad_mode
padding = (kernel_size - 1, 0) # T
self.time_causal_padding = padding
self.conv = operations.Conv1d(
chan_in,
chan_out,
kernel_size,
stride=stride,
dilation=dilation,
**kwargs)
def forward(self, x):
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class MotionEncoder_tc(nn.Module):
def __init__(self,
in_dim: int,
hidden_dim: int,
num_heads=int,
need_global=True,
dtype=None,
device=None,
operations=None,):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.num_heads = num_heads
self.need_global = need_global
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
if need_global:
self.conv1_global = CausalConv1d(
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.act = nn.SiLU()
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
if need_global:
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm2 = operations.LayerNorm(
hidden_dim // 2,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm3 = operations.LayerNorm(
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
def forward(self, x):
x = rearrange(x, 'b t c -> b c t')
x_ori = x.clone()
b, c, t = x.shape
x = self.conv1_local(x)
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
x = torch.cat([x, padding], dim=-2)
x_local = x.clone()
if not self.need_global:
return x_local
x = self.conv1_global(x_ori)
x = rearrange(x, 'b c t -> b t c')
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = self.final_linear(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
return x, x_local
class CausalAudioEncoder(nn.Module):
def __init__(self,
dim=5120,
num_layers=25,
out_dim=2048,
video_rate=8,
num_token=4,
need_global=False,
dtype=None,
device=None,
operations=None):
super().__init__()
self.encoder = MotionEncoder_tc(
in_dim=dim,
hidden_dim=out_dim,
num_heads=num_token,
need_global=need_global, dtype=dtype, device=device, operations=operations)
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
self.weights = torch.nn.Parameter(weight)
self.act = torch.nn.SiLU()
def forward(self, features):
# features B * num_layers * dim * video_length
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
weights_sum = weights.sum(dim=1, keepdims=True)
weighted_feat = ((features * weights) / weights_sum).sum(
dim=1) # b dim f
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
res = self.encoder(weighted_feat) # b f n dim
return res # b f n dim
class AdaLayerNorm(nn.Module):
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
super().__init__()
output_dim = output_dim or embedding_dim * 2
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
def forward(self, x, temb):
temb = self.linear(self.silu(temb))
shift, scale = temb.chunk(2, dim=1)
shift = shift[:, None, :]
scale = scale[:, None, :]
x = self.norm(x) * (1 + scale) + shift
return x
class AudioInjector_WAN(nn.Module):
def __init__(self,
dim=2048,
num_heads=32,
inject_layer=[0, 27],
root_net=None,
enable_adain=False,
adain_dim=2048,
adain_mode=None,
dtype=None,
device=None,
operations=None):
super().__init__()
self.enable_adain = enable_adain
self.adain_mode = adain_mode
self.injected_block_id = {}
audio_injector_id = 0
for inject_id in inject_layer:
self.injected_block_id[inject_id] = audio_injector_id
audio_injector_id += 1
self.injector = nn.ModuleList([
WanT2VCrossAttention(
dim=dim,
num_heads=num_heads,
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_feat = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_vec = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
if enable_adain:
self.injector_adain_layers = nn.ModuleList([
AdaLayerNorm(
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
for _ in range(audio_injector_id)
])
if adain_mode != "attn_norm":
self.injector_adain_output_layers = nn.ModuleList(
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
audio_attn_id = self.injected_block_id.get(block_id, None)
if audio_attn_id is None:
return x
num_frames = audio_emb.shape[1]
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
if self.enable_adain and self.adain_mode == "attn_norm":
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
attn_hidden_states = adain_hidden_states
else:
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
attn_audio_emb = audio_emb
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
residual_out = rearrange(
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
x[:, :seq_len] = x[:, :seq_len] + residual_out
return x
class FramePackMotioner(nn.Module):
def __init__(
self,
inner_dim=1024,
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
zip_frame_buckets=[
1, 2, 16
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
dtype=None,
device=None,
operations=None):
super().__init__()
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
self.zip_frame_buckets = zip_frame_buckets
self.inner_dim = inner_dim
self.num_heads = num_heads
self.drop_mode = drop_mode
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
if overlap_frame > 0:
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
if add_last_motion < 2 and self.drop_mode != "drop":
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
padd_lat[:, :, -zero_end_frame:] = 0
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
# patchfy
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
clean_latents_2x = self.proj_2x(clean_latents_2x)
l_2x_shape = clean_latents_2x.shape
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
clean_latents_4x = self.proj_4x(clean_latents_4x)
l_4x_shape = clean_latents_4x.shape
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
if add_last_motion < 2 and self.drop_mode == "drop":
clean_latents_post = clean_latents_post[:, :
0] if add_last_motion < 2 else clean_latents_post
clean_latents_2x = clean_latents_2x[:, :
0] if add_last_motion < 1 else clean_latents_2x
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
return motion_lat, rope
class WanModel_S2V(WanModel):
def __init__(self,
model_type='s2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
audio_dim=1024,
num_audio_token=4,
enable_adain=True,
cond_dim=16,
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
adain_mode="attn_norm",
framepack_drop_mode="padd",
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
self.casual_audio_encoder = CausalAudioEncoder(
dim=audio_dim,
out_dim=self.dim,
num_token=num_audio_token,
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
if cond_dim > 0:
self.cond_encoder = operations.Conv3d(
cond_dim,
self.dim,
kernel_size=self.patch_size,
stride=self.patch_size, device=device, dtype=dtype)
self.audio_injector = AudioInjector_WAN(
dim=self.dim,
num_heads=self.num_heads,
inject_layer=audio_inject_layers,
root_net=self,
enable_adain=enable_adain,
adain_dim=self.dim,
adain_mode=adain_mode,
dtype=dtype, device=device, operations=operations
)
self.frame_packer = FramePackMotioner(
inner_dim=self.dim,
num_heads=self.num_heads,
zip_frame_buckets=[1, 2, 16],
drop_mode=framepack_drop_mode,
dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
x,
t,
context,
audio_embed=None,
reference_latent=None,
control_video=None,
reference_motion=None,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
if audio_embed is not None:
num_embeds = x.shape[-3] * 4
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
else:
audio_emb = None
# embeddings
bs, _, time, height, width = x.shape
x = self.patch_embedding(x.float()).to(x.dtype)
if control_video is not None:
x = x + self.cond_encoder(control_video)
if t.ndim == 1:
t = t.unsqueeze(1).repeat(1, x.shape[2])
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
seq_len = x.size(1)
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
x = x + cond_mask_weight[0]
if reference_latent is not None:
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
ref = ref.flatten(2).transpose(1, 2)
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=max(30, time + 9), device=x.device, dtype=x.dtype)
ref = ref + cond_mask_weight[1]
x = torch.cat([x, ref], dim=1)
freqs = torch.cat([freqs, freqs_ref], dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
del ref, freqs_ref
if reference_motion is not None:
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
motion_encoded = motion_encoded + cond_mask_weight[2]
x = torch.cat([x, motion_encoded], dim=1)
freqs = torch.cat([freqs, freqs_motion], dim=1)
t = torch.repeat_interleave(t, 2, dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
del motion_encoded, freqs_motion
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
# context
context = self.text_embedding(context)
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
if audio_emb is not None:
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@ -272,6 +272,10 @@ def model_lora_keys_unet(model, key_map=None):
key_map["transformer.{}".format(k[:-len(".weight")])] = to # simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # onetrainer
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
if isinstance(model, model_base.GenmoMochi):
for k in sdk:
@ -307,13 +311,13 @@ def model_lora_keys_unet(model, key_map=None):
if isinstance(model, model_base.QwenImage):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format
if k.startswith("diffusion_model.") and k.endswith(".weight"): # QwenImage lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
# Direct mapping for transformer_blocks format (QwenImage LoRA format)
key_map["{}".format(key_lora)] = k
# Support transformer prefix format
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k # SimpleTuner lycoris format
return key_map

View File

@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
def convert_lora_wan_fun(sd): #Wan Fun loras
return state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_uso_lora(sd):
sd_out = {}
for k in sd:
tensor = sd[k]
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
.replace(".up.weight", ".lora_up.weight")
.replace(".qkv_lora2.", ".txt_attn.qkv.")
.replace(".qkv_lora1.", ".img_attn.qkv.")
.replace(".proj_lora1.", ".img_attn.proj.")
.replace(".proj_lora2.", ".txt_attn.proj.")
.replace(".qkv_lora.", ".linear1_qkv.")
.replace(".proj_lora.", ".linear2.")
.replace(".processor.", ".")
)
sd_out[k_to] = tensor
return sd_out
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
return convert_uso_lora(sd)
return sd

View File

@ -169,7 +169,8 @@ class BaseModel(torch.nn.Module):
logger.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
self.training = False
self.memory_usage_shape_process = {}
self.training = False # todo: does this break the training nodes?
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return WrapperExecutor.new_class_executor(
@ -373,7 +374,14 @@ class BaseModel(torch.nn.Module):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
if shape is not None:
if c in self.memory_usage_shape_process:
out = []
for s in shape:
out.append(self.memory_usage_shape_process[c](s))
shape = out
if len(shape) > 0:
input_shapes += shape
if model_management.xformers_enabled() or model_management.pytorch_attention_flash_attention():
@ -1147,9 +1155,10 @@ class WAN21(BaseModel):
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
if extra_channels != image.shape[1] + 4:
@ -1247,18 +1256,50 @@ class WAN21_Camera(WAN21):
return out
class WAN22(BaseModel):
class WAN22_S2V(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
control_video = kwargs.get("control_video", None)
if control_video is not None:
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = reference_motion.shape
return out
class WAN22(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=WanModel)
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=WanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = conds.CONDRegular(cross_attn)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
denoise_mask = kwargs.get("denoise_mask", None)
if denoise_mask is not None:
out["denoise_mask"] = conds.CONDRegular(denoise_mask)
return out

View File

@ -374,6 +374,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "camera_2.2"
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "s2v"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"

View File

@ -488,6 +488,9 @@ class ModelPatcher(ModelManageable):
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj

View File

@ -69,6 +69,9 @@ except Exception as exc_info:
cast_to = model_management.cast_to # TODO: remove once no more references
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
torch.backends.cudnn.benchmark = True
def cast_to_input(weight, input, non_blocking=False, copy=True):
return model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)

View File

@ -1,6 +1,6 @@
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]

9
comfy/samplers.py Normal file → Executable file
View File

@ -22,12 +22,14 @@ from .k_diffusion import sampling as k_diffusion_sampling
from .model_base import BaseModel
from .model_management_types import ModelOptions
from .model_patcher import ModelPatcher
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES, KSAMPLER_NAMES
from .context_windows import ContextHandlerABC
from .utils import common_upscale
from .patcher_extension import WrapperExecutor, get_all_wrappers, WrappersMP
from .component_model import module_property
logger = logging.getLogger(__name__)
_module_properties = module_property.create_module_properties()
def add_area_dims(area, num_dims):
@ -769,6 +771,11 @@ class Sampler:
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
@_module_properties.getter()
def _KSAMPLER_NAMES():
return KSAMPLER_NAMES
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
self.sampler_function = sampler_function

View File

@ -1,3 +1,5 @@
import os
import torch
from . import diffusers_convert
@ -749,7 +751,8 @@ class Flux(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.Flux
memory_usage_factor = 2.4
# TODO: debug why flux mem usage is so weird on windows.
memory_usage_factor = 3.1 if os.name == 'nt' else 2.4
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
@ -1155,6 +1158,19 @@ class WAN21_Vace(WAN21_T2V):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class WAN22_S2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "s2v",
}
def __init__(self, unet_config):
super().__init__(unet_config)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN22_S2V(self, device=device)
return out
class WAN22_T2V(WAN21_T2V):
unet_config = {
@ -1370,6 +1386,6 @@ class QwenImage(supported_models_base.BASE):
return supported_models_base.ClipTarget(qwen_image.QwenImageTokenizer, qwen_image.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

View File

@ -98,6 +98,9 @@ class LoKrAdapter(WeightAdapterBase):
(mat1, mat2, alpha, None, None, None, None, None, None)
)
def to_train(self):
return LokrDiff(self.weights)
@classmethod
def load(
cls,

View File

@ -8,6 +8,7 @@ import av
import io
import json
import numpy as np
import math
import torch
from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents
@ -282,8 +283,6 @@ class VideoFromComponents(VideoInput):
if self.__components.audio:
audio_sample_rate = int(self.__components.audio['sample_rate'])
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
audio_stream.sample_rate = audio_sample_rate
audio_stream.format = 'fltp'
# Encode video
for i, frame in enumerate(self.__components.images):
@ -298,27 +297,12 @@ class VideoFromComponents(VideoInput):
output.mux(packet)
if audio_stream and self.__components.audio:
# Encode audio
samples_per_frame = int(audio_sample_rate / frame_rate)
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
for i in range(num_frames):
start = i * samples_per_frame
end = start + samples_per_frame
# TODO(Feature) - Add support for stereo audio
chunk = (
self.__components.audio["waveform"][0, 0, start:end]
.unsqueeze(0)
.contiguous()
.numpy()
)
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
audio_frame.sample_rate = audio_sample_rate
audio_frame.pts = i * samples_per_frame
for packet in audio_stream.encode(audio_frame):
output.mux(packet)
# Flush audio
for packet in audio_stream.encode(None):
output.mux(packet)
waveform = self.__components.audio['waveform']
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
frame.sample_rate = audio_sample_rate
frame.pts = 0
output.mux(audio_stream.encode(frame))
# Flush encoder
output.mux(audio_stream.encode(None))

View File

@ -0,0 +1,19 @@
from __future__ import annotations
from typing import List, Optional
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
from pydantic import BaseModel
class GeminiImageGenerationConfig(GeminiGenerationConfig):
responseModalities: Optional[List[str]] = None
class GeminiImageGenerateContentRequest(BaseModel):
contents: List[GeminiContent]
generationConfig: Optional[GeminiImageGenerationConfig] = None
safetySettings: Optional[List[GeminiSafetySetting]] = None
systemInstruction: Optional[GeminiSystemInstructionContent] = None
tools: Optional[List[GeminiTool]] = None
videoMetadata: Optional[GeminiVideoMetadata] = None

View File

@ -4,11 +4,12 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
"""
from __future__ import annotations
import json
import time
import os
import uuid
import base64
from io import BytesIO
from enum import Enum
from typing import Optional, Literal
@ -25,6 +26,7 @@ from comfy_api_nodes.apis import (
GeminiPart,
GeminiMimeType,
)
from comfy_api_nodes.apis.gemini_api import GeminiImageGenerationConfig, GeminiImageGenerateContentRequest
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
@ -35,6 +37,7 @@ from comfy_api_nodes.apinode_utils import (
audio_to_base64_string,
video_to_base64_string,
tensor_to_base64_string,
bytesio_to_image_tensor,
)
@ -53,6 +56,14 @@ class GeminiModel(str, Enum):
gemini_2_5_flash = "gemini-2.5-flash"
class GeminiImageModel(str, Enum):
"""
Gemini Image Model Names allowed by comfy-api
"""
gemini_2_5_flash_image_preview = "gemini-2.5-flash-image-preview"
def get_gemini_endpoint(
model: GeminiModel,
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
@ -75,6 +86,135 @@ def get_gemini_endpoint(
)
def get_gemini_image_endpoint(
model: GeminiImageModel,
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
"""
Get the API endpoint for a given Gemini model.
Args:
model: The Gemini model to use, either as enum or string value.
Returns:
ApiEndpoint configured for the specific Gemini model.
"""
if isinstance(model, str):
model = GeminiImageModel(model)
return ApiEndpoint(
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
method=HttpMethod.POST,
request_model=GeminiImageGenerateContentRequest,
response_model=GeminiGenerateContentResponse,
)
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(
image_input[image_index].unsqueeze(0)
)
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def create_text_part(text: str) -> GeminiPart:
"""
Create a text part for the Gemini API request.
Args:
text: The text content to include in the request.
Returns:
A GeminiPart object with the text content.
"""
return GeminiPart(text=text)
def get_parts_from_response(
response: GeminiGenerateContentResponse
) -> list[GeminiPart]:
"""
Extract all parts from the Gemini API response.
Args:
response: The API response from Gemini.
Returns:
List of response parts from the first candidate.
"""
return response.candidates[0].content.parts
def get_parts_by_type(
response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in get_parts_from_response(response):
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif (
hasattr(part, "inlineData")
and part.inlineData
and part.inlineData.mimeType == part_type
):
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
image_tensors: list[torch.Tensor] = []
parts = get_parts_by_type(response, "image/png")
for part in parts:
image_data = base64.b64decode(part.inlineData.data)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
image_tensors.append(returned_image)
if len(image_tensors) == 0:
return torch.zeros((1,1024,1024,4))
return torch.cat(image_tensors, dim=0)
class GeminiNode(ComfyNodeABC):
"""
Node to generate text responses from a Gemini model.
@ -159,59 +299,6 @@ class GeminiNode(ComfyNodeABC):
CATEGORY = "api node/text/Gemini"
API_NODE = True
def get_parts_from_response(
self, response: GeminiGenerateContentResponse
) -> list[GeminiPart]:
"""
Extract all parts from the Gemini API response.
Args:
response: The API response from Gemini.
Returns:
List of response parts from the first candidate.
"""
return response.candidates[0].content.parts
def get_parts_by_type(
self, response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in self.get_parts_from_response(response):
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif (
hasattr(part, "inlineData")
and part.inlineData
and part.inlineData.mimeType == part_type
):
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(self, response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = self.get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
"""
Convert video input to Gemini API compatible parts.
@ -271,43 +358,6 @@ class GeminiNode(ComfyNodeABC):
)
return audio_parts
def create_image_parts(self, image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(
image_input[image_index].unsqueeze(0)
)
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def create_text_part(self, text: str) -> GeminiPart:
"""
Create a text part for the Gemini API request.
Args:
text: The text content to include in the request.
Returns:
A GeminiPart object with the text content.
"""
return GeminiPart(text=text)
async def api_call(
self,
prompt: str,
@ -323,11 +373,11 @@ class GeminiNode(ComfyNodeABC):
validate_string(prompt, strip_whitespace=False)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [self.create_text_part(prompt)]
parts: list[GeminiPart] = [create_text_part(prompt)]
# Add other modal parts
if images is not None:
image_parts = self.create_image_parts(images)
image_parts = create_image_parts(images)
parts.extend(image_parts)
if audio is not None:
parts.extend(self.create_audio_parts(audio))
@ -351,7 +401,7 @@ class GeminiNode(ComfyNodeABC):
).execute()
# Get result output
output_text = self.get_text_from_response(response)
output_text = get_text_from_response(response)
if unique_id and output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
@ -462,12 +512,162 @@ class GeminiInputFiles(ComfyNodeABC):
return (files,)
class GeminiImage(ComfyNodeABC):
"""
Node to generate text and image responses from a Gemini model.
This node allows users to interact with Google's Gemini AI models, providing
multimodal inputs (text, images, files) to generate coherent
text and image responses. The node works with the latest Gemini models, handling the
API communication and response parsing.
"""
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text prompt for generation",
},
),
"model": (
IO.COMBO,
{
"tooltip": "The Gemini model to use for generating responses.",
"options": [model.value for model in GeminiImageModel],
"default": GeminiImageModel.gemini_2_5_flash_image_preview.value,
},
),
"seed": (
IO.INT,
{
"default": 42,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
},
),
},
"optional": {
"images": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
},
),
"files": (
"GEMINI_INPUT_FILES",
{
"default": None,
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
},
),
# TODO: later we can add this parameter later
# "n": (
# IO.INT,
# {
# "default": 1,
# "min": 1,
# "max": 8,
# "step": 1,
# "display": "number",
# "tooltip": "How many images to generate",
# },
# ),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = (IO.IMAGE, IO.STRING)
FUNCTION = "api_call"
CATEGORY = "api node/image/Gemini"
DESCRIPTION = "Edit images synchronously via Google API."
API_NODE = True
async def api_call(
self,
prompt: str,
model: GeminiImageModel,
images: Optional[IO.IMAGE] = None,
files: Optional[list[GeminiPart]] = None,
n=1,
unique_id: Optional[str] = None,
**kwargs,
):
# Validate inputs
validate_string(prompt, strip_whitespace=True, min_length=1)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [create_text_part(prompt)]
# Add other modal parts
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
if files is not None:
parts.extend(files)
response = await SynchronousOperation(
endpoint=get_gemini_image_endpoint(model),
request=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(
role="user",
parts=parts,
),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=["TEXT","IMAGE"]
)
),
auth_kwargs=kwargs,
).execute()
output_image = get_image_from_response(response)
output_text = get_text_from_response(response)
if unique_id and output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
output_text = output_text or "Empty response from Gemini model..."
return (output_image, output_text,)
NODE_CLASS_MAPPINGS = {
"GeminiNode": GeminiNode,
"GeminiImageNode": GeminiImage,
"GeminiInputFiles": GeminiInputFiles,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GeminiNode": "Google Gemini",
"GeminiImageNode": "Google Gemini Image",
"GeminiInputFiles": "Gemini Input Files",
}

View File

@ -1,5 +1,8 @@
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO
from typing import Optional
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api_nodes.apis.stability_api import (
StabilityUpscaleConservativeRequest,
StabilityUpscaleCreativeRequest,
@ -46,87 +49,94 @@ def get_async_dummy_status(x: StabilityResultsGetResponse):
return StabilityPollStatus.in_progress
class StabilityStableImageUltraNode:
class StabilityStableImageUltraNode(comfy_io.ComfyNode):
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
def define_schema(cls):
return comfy_io.Schema(
node_id="StabilityStableImageUltraNode",
display_name="Stability AI Stable Image Ultra",
category="api node/image/Stability AI",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"elements, colors, and subjects will lead to better results. " +
"To control the weight of a given word use the format `(word:weight)`," +
"where `word` is the word you'd like to control the weight of and `weight`" +
"is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" +
"would convey a sky that was blue and green, but more green than blue."
},
"would convey a sky that was blue and green, but more green than blue.",
),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=[x.value for x in StabilityAspectRatio],
default=StabilityAspectRatio.ratio_1_1.value,
tooltip="Aspect ratio of generated image.",
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
comfy_io.Combo.Input(
"style_preset",
options=get_stability_style_presets(),
tooltip="Optional desired style of generated image.",
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967294,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "A blurb of text describing what you do not wish to see in the output image. This is an advanced feature."
},
comfy_io.Image.Input(
"image",
optional=True,
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
comfy_io.String.Input(
"negative_prompt",
default="",
tooltip="A blurb of text describing what you do not wish to see in the output image. This is an advanced feature.",
force_input=True,
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
comfy_io.Float.Input(
"image_denoise",
default=0.5,
min=0.0,
max=1.0,
step=0.01,
tooltip="Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
async def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
**kwargs):
@classmethod
async def execute(
cls,
prompt: str,
aspect_ratio: str,
style_preset: str,
seed: int,
image: Optional[torch.Tensor] = None,
negative_prompt: str = "",
image_denoise: Optional[float] = 0.5,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
@ -144,6 +154,11 @@ class StabilityStableImageUltraNode:
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/ultra",
@ -161,7 +176,7 @@ class StabilityStableImageUltraNode:
),
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response_api = await operation.execute()
@ -171,95 +186,106 @@ class StabilityStableImageUltraNode:
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
return comfy_io.NodeOutput(returned_image)
class StabilityStableImageSD_3_5Node:
class StabilityStableImageSD_3_5Node(comfy_io.ComfyNode):
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="StabilityStableImageSD_3_5Node",
display_name="Stability AI Stable Diffusion 3.5 Image",
category="api node/image/Stability AI",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
),
comfy_io.Combo.Input(
"model",
options=[x.value for x in Stability_SD3_5_Model],
),
comfy_io.Combo.Input(
"aspect_ratio",
options=[x.value for x in StabilityAspectRatio],
default=StabilityAspectRatio.ratio_1_1.value,
tooltip="Aspect ratio of generated image.",
),
comfy_io.Combo.Input(
"style_preset",
options=get_stability_style_presets(),
tooltip="Optional desired style of generated image.",
),
comfy_io.Float.Input(
"cfg_scale",
default=4.0,
min=1.0,
max=10.0,
step=0.1,
tooltip="How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967294,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
comfy_io.Image.Input(
"image",
optional=True,
),
comfy_io.String.Input(
"negative_prompt",
default="",
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
force_input=True,
optional=True,
),
comfy_io.Float.Input(
"image_denoise",
default=0.5,
min=0.0,
max=1.0,
step=0.01,
tooltip="Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"model": ([x.value for x in Stability_SD3_5_Model],),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"cfg_scale": (
IO.FLOAT,
{
"default": 4.0,
"min": 1.0,
"max": 10.0,
"step": 0.1,
"tooltip": "How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
async def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
**kwargs):
async def execute(
cls,
model: str,
prompt: str,
aspect_ratio: str,
style_preset: str,
seed: int,
cfg_scale: float,
image: Optional[torch.Tensor] = None,
negative_prompt: str = "",
image_denoise: Optional[float] = 0.5,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
@ -280,6 +306,11 @@ class StabilityStableImageSD_3_5Node:
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/sd3",
@ -300,7 +331,7 @@ class StabilityStableImageSD_3_5Node:
),
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response_api = await operation.execute()
@ -310,72 +341,75 @@ class StabilityStableImageSD_3_5Node:
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
return comfy_io.NodeOutput(returned_image)
class StabilityUpscaleConservativeNode:
class StabilityUpscaleConservativeNode(comfy_io.ComfyNode):
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="StabilityUpscaleConservativeNode",
display_name="Stability AI Upscale Conservative",
category="api node/image/Stability AI",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.Image.Input("image"),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
),
comfy_io.Float.Input(
"creativity",
default=0.35,
min=0.2,
max=0.5,
step=0.01,
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967294,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
comfy_io.String.Input(
"negative_prompt",
default="",
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
force_input=True,
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.35,
"min": 0.2,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
**kwargs):
async def execute(
cls,
image: torch.Tensor,
prompt: str,
creativity: float,
seed: int,
negative_prompt: str = "",
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
@ -386,6 +420,11 @@ class StabilityUpscaleConservativeNode:
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
@ -401,7 +440,7 @@ class StabilityUpscaleConservativeNode:
),
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response_api = await operation.execute()
@ -411,77 +450,81 @@ class StabilityUpscaleConservativeNode:
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
return comfy_io.NodeOutput(returned_image)
class StabilityUpscaleCreativeNode:
class StabilityUpscaleCreativeNode(comfy_io.ComfyNode):
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="StabilityUpscaleCreativeNode",
display_name="Stability AI Upscale Creative",
category="api node/image/Stability AI",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.Image.Input("image"),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results.",
),
comfy_io.Float.Input(
"creativity",
default=0.3,
min=0.1,
max=0.5,
step=0.01,
tooltip="Controls the likelihood of creating additional details not heavily conditioned by the init image.",
),
comfy_io.Combo.Input(
"style_preset",
options=get_stability_style_presets(),
tooltip="Optional desired style of generated image.",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=4294967294,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
comfy_io.String.Input(
"negative_prompt",
default="",
tooltip="Keywords of what you do not wish to see in the output image. This is an advanced feature.",
force_input=True,
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.3,
"min": 0.1,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
**kwargs):
async def execute(
cls,
image: torch.Tensor,
prompt: str,
creativity: float,
style_preset: str,
seed: int,
negative_prompt: str = "",
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
@ -494,6 +537,11 @@ class StabilityUpscaleCreativeNode:
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/creative",
@ -510,7 +558,7 @@ class StabilityUpscaleCreativeNode:
),
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response_api = await operation.execute()
@ -525,7 +573,8 @@ class StabilityUpscaleCreativeNode:
completed_statuses=[StabilityPollStatus.finished],
failed_statuses=[StabilityPollStatus.failed],
status_extractor=lambda x: get_async_dummy_status(x),
auth_kwargs=kwargs,
auth_kwargs=auth,
node_id=cls.hidden.unique_id,
)
response_poll: StabilityResultsGetResponse = await operation.execute()
@ -535,41 +584,48 @@ class StabilityUpscaleCreativeNode:
image_data = base64.b64decode(response_poll.result)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
return comfy_io.NodeOutput(returned_image)
class StabilityUpscaleFastNode:
class StabilityUpscaleFastNode(comfy_io.ComfyNode):
"""
Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="StabilityUpscaleFastNode",
display_name="Stability AI Upscale Fast",
category="api node/image/Stability AI",
description=cleandoc(cls.__doc__ or ""),
inputs=[
comfy_io.Image.Input("image"),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
async def api_call(self, image: torch.Tensor, **kwargs):
async def execute(cls, image: torch.Tensor) -> comfy_io.NodeOutput:
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
files = {
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/fast",
@ -580,7 +636,7 @@ class StabilityUpscaleFastNode:
request=EmptyRequest(),
files=files,
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response_api = await operation.execute()
@ -590,24 +646,20 @@ class StabilityUpscaleFastNode:
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
return comfy_io.NodeOutput(returned_image)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"StabilityStableImageUltraNode": StabilityStableImageUltraNode,
"StabilityStableImageSD_3_5Node": StabilityStableImageSD_3_5Node,
"StabilityUpscaleConservativeNode": StabilityUpscaleConservativeNode,
"StabilityUpscaleCreativeNode": StabilityUpscaleCreativeNode,
"StabilityUpscaleFastNode": StabilityUpscaleFastNode,
}
class StabilityExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
StabilityStableImageUltraNode,
StabilityStableImageSD_3_5Node,
StabilityUpscaleConservativeNode,
StabilityUpscaleCreativeNode,
StabilityUpscaleFastNode,
]
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"StabilityStableImageUltraNode": "Stability AI Stable Image Ultra",
"StabilityStableImageSD_3_5Node": "Stability AI Stable Diffusion 3.5 Image",
"StabilityUpscaleConservativeNode": "Stability AI Upscale Conservative",
"StabilityUpscaleCreativeNode": "Stability AI Upscale Creative",
"StabilityUpscaleFastNode": "Stability AI Upscale Fast",
}
async def comfy_entrypoint() -> StabilityExtension:
return StabilityExtension()

View File

@ -88,7 +88,7 @@ class FluxKontextMultiReferenceLatentMethod:
def INPUT_TYPES(s):
return {"required": {
"conditioning": ("CONDITIONING", ),
"reference_latents_method": (("offset", "index"), ),
"reference_latents_method": (("offset", "index", "uxo/uno"), ),
}}
RETURN_TYPES = ("CONDITIONING",)
@ -98,6 +98,8 @@ class FluxKontextMultiReferenceLatentMethod:
CATEGORY = "advanced/conditioning/flux"
def append(self, conditioning, reference_latents_method):
if "uxo" in reference_latents_method or "uso" in reference_latents_method:
reference_latents_method = "uxo"
c = node_helpers.conditioning_set_values(conditioning, {"reference_latents_method": reference_latents_method})
return (c, )

View File

@ -776,6 +776,37 @@ class ImageFlip:
return (image,)
class ImageScaleToMaxDimension:
upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"]
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"upscale_method": (s.upscale_methods,),
"largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, largest_size):
height = image.shape[1]
width = image.shape[2]
if height > width:
width = round((width / height) * largest_size)
height = largest_size
elif width > height:
height = round((height / width) * largest_size)
width = largest_size
else:
height = largest_size
width = largest_size
samples = image.movedim(-1, 1)
s = common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1, -1)
return (s,)
NODE_CLASS_MAPPINGS = {
"ImageResize": ImageResize,
@ -794,6 +825,7 @@ NODE_CLASS_MAPPINGS = {
"GetImageSize": GetImageSize,
"ImageRotate": ImageRotate,
"ImageFlip": ImageFlip,
"ImageScaleToMaxDimension": ImageScaleToMaxDimension,
"ResizeAndPadImage": ResizeAndPadImage,
}

View File

@ -1,4 +1,5 @@
import torch
import nodes
import comfy.utils
@ -112,6 +113,73 @@ class LatentInterpolate:
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
return (samples_out,)
class LatentConcat:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2, dim):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = comfy.utils.repeat_to_batch_size(s2, s1.shape[0])
if "-" in dim:
c = (s2, s1)
else:
c = (s1, s2)
if "x" in dim:
dim = -1
elif "y" in dim:
dim = -2
elif "t" in dim:
dim = -3
samples_out["samples"] = torch.cat(c, dim=dim)
return (samples_out,)
class LatentCut:
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT",),
"dim": (["x", "y", "t"], ),
"index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}),
"amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, dim, index, amount):
samples_out = samples.copy()
s1 = samples["samples"]
if "x" in dim:
dim = s1.ndim - 1
elif "y" in dim:
dim = s1.ndim - 2
elif "t" in dim:
dim = s1.ndim - 3
if index >= 0:
index = min(index, s1.shape[dim] - 1)
amount = min(s1.shape[dim] - index, amount)
else:
index = max(index, -s1.shape[dim])
amount = min(-index, amount)
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
return (samples_out,)
class LatentBatch:
@classmethod
@ -333,6 +401,8 @@ NODE_CLASS_MAPPINGS = {
"LatentSubtract": LatentSubtract,
"LatentMultiply": LatentMultiply,
"LatentInterpolate": LatentInterpolate,
"LatentConcat": LatentConcat,
"LatentCut": LatentCut,
"LatentBatch": LatentBatch,
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
"LatentAddNoiseChannels": LatentAddNoiseChannels,

View File

@ -1,5 +1,6 @@
import torch
from comfy.cmd import folder_paths # pylint: disable=no-name-in-module
from torch import nn
import comfy.utils
import comfy.ops
import comfy.model_management
@ -58,6 +59,137 @@ class QwenImageBlockWiseControlNet(torch.nn.Module):
return self.controlnet_blocks[block_id](img, controlnet_conditioning)
class SigLIPMultiFeatProjModel(torch.nn.Module):
"""
SigLIP Multi-Feature Projection Model for processing style features from different layers
and projecting them into a unified hidden space.
Args:
siglip_token_nums (int): Number of SigLIP tokens, default 257
style_token_nums (int): Number of style tokens, default 256
siglip_token_dims (int): Dimension of SigLIP tokens, default 1536
hidden_size (int): Hidden layer size, default 3072
context_layer_norm (bool): Whether to use context layer normalization, default False
"""
def __init__(
self,
siglip_token_nums: int = 729,
style_token_nums: int = 64,
siglip_token_dims: int = 1152,
hidden_size: int = 3072,
context_layer_norm: bool = True,
device=None, dtype=None, operations=None
):
super().__init__()
# High-level feature processing (layer -2)
self.high_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.high_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.high_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
# Mid-level feature processing (layer -11)
self.mid_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.mid_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.mid_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
# Low-level feature processing (layer -20)
self.low_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.low_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.low_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
def forward(self, siglip_outputs):
"""
Forward pass function
Args:
siglip_outputs: Output from SigLIP model, containing hidden_states
Returns:
torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size]
"""
dtype = next(self.high_embedding_linear.parameters()).dtype
# Process high-level features (layer -2)
high_embedding = self._process_layer_features(
siglip_outputs[2],
self.high_embedding_linear,
self.high_layer_norm,
self.high_projection,
dtype
)
# Process mid-level features (layer -11)
mid_embedding = self._process_layer_features(
siglip_outputs[1],
self.mid_embedding_linear,
self.mid_layer_norm,
self.mid_projection,
dtype
)
# Process low-level features (layer -20)
low_embedding = self._process_layer_features(
siglip_outputs[0],
self.low_embedding_linear,
self.low_layer_norm,
self.low_projection,
dtype
)
# Concatenate features from all layersmodel_patch
return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1)
def _process_layer_features(
self,
hidden_states: torch.Tensor,
embedding_linear: nn.Module,
layer_norm: nn.Module,
projection: nn.Module,
dtype: torch.dtype
) -> torch.Tensor:
"""
Helper function to process features from a single layer
Args:
hidden_states: Input hidden states [bs, seq_len, dim]
embedding_linear: Embedding linear layer
layer_norm: Layer normalization
projection: Projection layer
dtype: Target data type
Returns:
torch.Tensor: Processed features [bs, style_token_nums, hidden_size]
"""
# Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim]
embedding = embedding_linear(
hidden_states.to(dtype).transpose(1, 2)
).transpose(1, 2)
# Apply layer normalization
embedding = layer_norm(embedding)
# Project to target hidden space
embedding = projection(embedding)
return embedding
class ModelPatchLoader:
@classmethod
def INPUT_TYPES(s):
@ -74,9 +206,14 @@ class ModelPatchLoader:
model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name)
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
dtype = comfy.utils.weight_dtype(sd)
# TODO: this node will work with more types of model patches
if 'controlnet_blocks.0.y_rms.weight' in sd:
additional_in_dim = sd["img_in.weight"].shape[1] - 64
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
elif 'feature_embedder.mid_layer_norm.bias' in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True)
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
return (model,)
@ -90,6 +227,7 @@ class DiffSynthCnetPatch:
self.strength = strength
self.mask = mask
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
self.encoded_image_size = (image.shape[1], image.shape[2])
def encode_latent_cond(self, image):
latent_image = self.vae.encode(image)
@ -107,14 +245,15 @@ class DiffSynthCnetPatch:
x = kwargs.get("x")
img = kwargs.get("img")
block_index = kwargs.get("block_index")
if self.encoded_image is None or self.encoded_image.shape[1:] != img.shape[1:]:
spacial_compression = self.vae.spacial_compression_encode()
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
comfy.model_management.load_models_gpu(loaded_models)
img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength)
img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength)
kwargs['img'] = img
return kwargs
@ -158,7 +297,52 @@ class QwenImageDiffsynthControlnet:
return (model_patched,)
class UsoStyleProjectorPatch:
def __init__(self, model_patch, encoded_image):
self.model_patch = model_patch
self.encoded_image = encoded_image
def __call__(self, kwargs):
txt_ids = kwargs.get("txt_ids")
txt = kwargs.get("txt")
siglip_embedding = self.model_patch.model(self.encoded_image.to(txt.dtype)).to(txt.dtype)
txt = torch.cat([siglip_embedding, txt], dim=1)
kwargs['txt'] = txt
kwargs['txt_ids'] = torch.cat([torch.zeros(siglip_embedding.shape[0], siglip_embedding.shape[1], 3, dtype=txt_ids.dtype, device=txt_ids.device), txt_ids], dim=1)
return kwargs
def to(self, device_or_dtype):
if isinstance(device_or_dtype, torch.device):
self.encoded_image = self.encoded_image.to(device_or_dtype)
return self
def models(self):
return [self.model_patch]
class USOStyleReference:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
"model_patch": ("MODEL_PATCH",),
"clip_vision_output": ("CLIP_VISION_OUTPUT",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_patch"
EXPERIMENTAL = True
CATEGORY = "advanced/model_patches/flux"
def apply_patch(self, model, model_patch, clip_vision_output):
encoded_image = torch.stack((clip_vision_output.all_hidden_states[:, -20], clip_vision_output.all_hidden_states[:, -11], clip_vision_output.penultimate_hidden_states))
model_patched = model.clone()
model_patched.set_model_post_input_patch(UsoStyleProjectorPatch(model_patch, encoded_image))
return (model_patched,)
NODE_CLASS_MAPPINGS = {
"ModelPatchLoader": ModelPatchLoader,
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
"USOStyleReference": USOStyleReference,
}

View File

@ -1,98 +1,109 @@
# Primitive nodes that are evaluated at backend.
from __future__ import annotations
import sys
from typing_extensions import override
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, IO
from comfy_api.latest import ComfyExtension, io
class String(ComfyNodeABC):
class String(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.STRING, {})},
}
def define_schema(cls):
return io.Schema(
node_id="PrimitiveString",
display_name="String",
category="utils/primitive",
inputs=[
io.String.Input("value"),
],
outputs=[io.String.Output()],
)
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: str) -> tuple[str]:
return (value,)
class StringMultiline(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.STRING, {"multiline": True,},)},
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: str) -> tuple[str]:
return (value,)
def execute(cls, value: str) -> io.NodeOutput:
return io.NodeOutput(value)
class Int(ComfyNodeABC):
class StringMultiline(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.INT, {"min": -sys.maxsize, "max": sys.maxsize, "control_after_generate": True})},
}
def define_schema(cls):
return io.Schema(
node_id="PrimitiveStringMultiline",
display_name="String (Multiline)",
category="utils/primitive",
inputs=[
io.String.Input("value", multiline=True),
],
outputs=[io.String.Output()],
)
RETURN_TYPES = (IO.INT,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: int) -> tuple[int]:
return (value,)
class Float(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.FLOAT, {"min": -sys.maxsize, "max": sys.maxsize})},
}
RETURN_TYPES = (IO.FLOAT,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: float) -> tuple[float]:
return (value,)
def execute(cls, value: str) -> io.NodeOutput:
return io.NodeOutput(value)
class Boolean(ComfyNodeABC):
class Int(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.BOOLEAN, {})},
}
def define_schema(cls):
return io.Schema(
node_id="PrimitiveInt",
display_name="Int",
category="utils/primitive",
inputs=[
io.Int.Input("value", min=-sys.maxsize, max=sys.maxsize, control_after_generate=True),
],
outputs=[io.Int.Output()],
)
RETURN_TYPES = (IO.BOOLEAN,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: bool) -> tuple[bool]:
return (value,)
@classmethod
def execute(cls, value: int) -> io.NodeOutput:
return io.NodeOutput(value)
NODE_CLASS_MAPPINGS = {
"PrimitiveString": String,
"PrimitiveStringMultiline": StringMultiline,
"PrimitiveInt": Int,
"PrimitiveFloat": Float,
"PrimitiveBoolean": Boolean,
}
class Float(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="PrimitiveFloat",
display_name="Float",
category="utils/primitive",
inputs=[
io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize),
],
outputs=[io.Float.Output()],
)
NODE_DISPLAY_NAME_MAPPINGS = {
"PrimitiveString": "String",
"PrimitiveStringMultiline": "String (Multiline)",
"PrimitiveInt": "Int",
"PrimitiveFloat": "Float",
"PrimitiveBoolean": "Boolean",
}
@classmethod
def execute(cls, value: float) -> io.NodeOutput:
return io.NodeOutput(value)
class Boolean(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="PrimitiveBoolean",
display_name="Boolean",
category="utils/primitive",
inputs=[
io.Boolean.Input("value"),
],
outputs=[io.Boolean.Output()],
)
@classmethod
def execute(cls, value: bool) -> io.NodeOutput:
return io.NodeOutput(value)
class PrimitivesExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
String,
StringMultiline,
Int,
Float,
Boolean,
]
async def comfy_entrypoint() -> PrimitivesExtension:
return PrimitivesExtension()

View File

@ -19,123 +19,147 @@
import torch
import comfy.nodes.common
import comfy.utils
from typing_extensions import override
import comfy.utils
from comfy.nodes import base_nodes as nodes
from comfy_api.latest import ComfyExtension, io
class StableCascade_EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
class StableCascade_EmptyLatentImage(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="StableCascade_EmptyLatentImage",
category="latent/stable_cascade",
inputs=[
io.Int.Input("width", default=1024, min=256, max=comfy.nodes.common.MAX_RESOLUTION, step=8),
io.Int.Input("height", default=1024, min=256, max=comfy.nodes.common.MAX_RESOLUTION, step=8),
io.Int.Input("compression", default=42, min=4, max=128, step=1),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Latent.Output(display_name="stage_c"),
io.Latent.Output(display_name="stage_b"),
],
)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024, "min": 256, "max": comfy.nodes.common.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 256, "max": comfy.nodes.common.MAX_RESOLUTION, "step": 8}),
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})
}}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("stage_c", "stage_b")
FUNCTION = "generate"
CATEGORY = "latent/stable_cascade"
def generate(self, width, height, compression, batch_size=1):
def execute(cls, width, height, compression, batch_size=1):
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
return ({
return io.NodeOutput({
"samples": c_latent,
}, {
"samples": b_latent,
})
class StableCascade_StageC_VAEEncode:
def __init__(self, device="cpu"):
self.device = device
class StableCascade_StageC_VAEEncode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="StableCascade_StageC_VAEEncode",
category="latent/stable_cascade",
inputs=[
io.Image.Input("image"),
io.Vae.Input("vae"),
io.Int.Input("compression", default=42, min=4, max=128, step=1),
],
outputs=[
io.Latent.Output(display_name="stage_c"),
io.Latent.Output(display_name="stage_b"),
],
)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"vae": ("VAE", ),
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
}}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("stage_c", "stage_b")
FUNCTION = "generate"
CATEGORY = "latent/stable_cascade"
def generate(self, image, vae, compression):
def execute(cls, image, vae, compression):
width = image.shape[-2]
height = image.shape[-3]
out_width = (width // compression) * vae.downscale_ratio
out_height = (height // compression) * vae.downscale_ratio
s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1)
s = comfy.utils.common_upscale(image.movedim(-1, 1), out_width, out_height, "bicubic", "center").movedim(1, -1)
c_latent = vae.encode(s[:,:,:,:3])
c_latent = vae.encode(s[:, :, :, :3])
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
return ({
return io.NodeOutput({
"samples": c_latent,
}, {
"samples": b_latent,
})
class StableCascade_StageB_Conditioning:
class StableCascade_StageB_Conditioning(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "conditioning": ("CONDITIONING",),
"stage_c": ("LATENT",),
}}
RETURN_TYPES = ("CONDITIONING",)
def define_schema(cls):
return io.Schema(
node_id="StableCascade_StageB_Conditioning",
category="conditioning/stable_cascade",
inputs=[
io.Conditioning.Input("conditioning"),
io.Latent.Input("stage_c"),
],
outputs=[
io.Conditioning.Output(),
],
)
FUNCTION = "set_prior"
CATEGORY = "conditioning/stable_cascade"
def set_prior(self, conditioning, stage_c):
@classmethod
def execute(cls, conditioning, stage_c):
c = []
for t in conditioning:
d = t[1].copy()
d['stable_cascade_prior'] = stage_c['samples']
d["stable_cascade_prior"] = stage_c["samples"]
n = [t[0], d]
c.append(n)
return (c, )
return io.NodeOutput(c)
class StableCascade_SuperResolutionControlnet:
def __init__(self, device="cpu"):
self.device = device
class StableCascade_SuperResolutionControlnet(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="StableCascade_SuperResolutionControlnet",
category="_for_testing/stable_cascade",
is_experimental=True,
inputs=[
io.Image.Input("image"),
io.Vae.Input("vae"),
],
outputs=[
io.Image.Output(display_name="controlnet_input"),
io.Latent.Output(display_name="stage_c"),
io.Latent.Output(display_name="stage_b"),
],
)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"vae": ("VAE", ),
}}
RETURN_TYPES = ("IMAGE", "LATENT", "LATENT")
RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b")
FUNCTION = "generate"
EXPERIMENTAL = True
CATEGORY = "_for_testing/stable_cascade"
def generate(self, image, vae):
def execute(cls, image, vae):
width = image.shape[-2]
height = image.shape[-3]
batch_size = image.shape[0]
controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1)
controlnet_input = vae.encode(image[:, :, :, :3]).movedim(1, -1)
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
return (controlnet_input, {
return io.NodeOutput(controlnet_input, {
"samples": c_latent,
}, {
"samples": b_latent,
})
NODE_CLASS_MAPPINGS = {
"StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage,
"StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning,
"StableCascade_StageC_VAEEncode": StableCascade_StageC_VAEEncode,
"StableCascade_SuperResolutionControlnet": StableCascade_SuperResolutionControlnet,
}
class StableCascadeExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
StableCascade_EmptyLatentImage,
StableCascade_StageB_Conditioning,
StableCascade_StageC_VAEEncode,
StableCascade_SuperResolutionControlnet,
]
async def comfy_entrypoint() -> StableCascadeExtension:
return StableCascadeExtension()

View File

@ -3,56 +3,54 @@ from __future__ import annotations
import json
import os
from fractions import Fraction
from typing import Optional, Literal
from typing import Optional
import av
import torch
from typing_extensions import override
from comfy.cli_args import args
from comfy.cmd import folder_paths
from comfy.comfy_types import IO, FileLocator, ComfyNodeABC
from comfy_api.latest import Input, InputImpl, Types
from comfy_api.input import AudioInput, ImageInput, VideoInput
from comfy_api.input_impl import VideoFromComponents, VideoFromFile
from comfy_api.latest import ComfyExtension, io, ui
from comfy_api.util import VideoCodec, VideoComponents, VideoContainer
class SaveWEBM:
def __init__(self):
self.type = "output"
self.prefix_append = ""
class SaveWEBM(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SaveWEBM",
category="image/video",
is_experimental=True,
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Combo.Input("codec", options=["vp9", "av1"]),
io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01),
io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."),
],
outputs=[],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"codec": (["vp9", "av1"],),
"fps": ("FLOAT", {"default": 24.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"crf": ("FLOAT", {"default": 32.0, "min": 0, "max": 63.0, "step": 1, "tooltip": "Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/video"
EXPERIMENTAL = True
def save_images(self, images, codec, fps, filename_prefix, crf, prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
def execute(cls, images, codec, fps, filename_prefix, crf) -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
file = f"{filename}_{counter:05}_.webm"
container = av.open(os.path.join(full_output_folder, file), mode="w")
if prompt is not None:
container.metadata["prompt"] = json.dumps(prompt)
if cls.hidden.prompt is not None:
container.metadata["prompt"] = json.dumps(cls.hidden.prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
container.metadata[x] = json.dumps(extra_pnginfo[x])
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
container.metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
codec_map = {"vp9": "libvpx-vp9", "av1": "libsvtav1"}
stream = container.add_stream(codec_map[codec], rate=Fraction(round(fps * 1000), 1000))
@ -71,64 +69,47 @@ class SaveWEBM:
container.mux(stream.encode())
container.close()
results: list[FileLocator] = [{
"filename": file,
"subfolder": subfolder,
"type": self.type
}]
return {"ui": {"images": results, "animated": (True,)}} # TODO: frontend side
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
class SaveVideo(ComfyNodeABC):
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type: Literal["output"] = "output"
self.prefix_append = ""
class SaveVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SaveVideo",
display_name="Save Video",
category="image/video",
description="Saves the input images to your ComfyUI output directory.",
inputs=[
io.Video.Input("video", tooltip="The video to save."),
io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."),
io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
],
outputs=[],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to save."}),
"filename_prefix": ("STRING", {"default": "video/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
"format": (Types.VideoContainer.as_input(), {"default": "auto", "tooltip": "The format to save the video as."}),
"codec": (Types.VideoCodec.as_input(), {"default": "auto", "tooltip": "The codec to use for the video."}),
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ()
FUNCTION = "save_video"
OUTPUT_NODE = True
CATEGORY = "image/video"
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
def save_video(self, video: Input.Video, filename_prefix, format, codec, prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
def execute(cls, video: VideoInput, filename_prefix, format, codec) -> io.NodeOutput:
width, height = video.get_dimensions()
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix,
self.output_dir,
folder_paths.get_output_directory(),
width,
height
)
results: list[FileLocator] = list()
saved_metadata = None
if not args.disable_metadata:
metadata = {}
if extra_pnginfo is not None:
metadata.update(extra_pnginfo)
if prompt is not None:
metadata["prompt"] = prompt
if cls.hidden.extra_pnginfo is not None:
metadata.update(cls.hidden.extra_pnginfo)
if cls.hidden.prompt is not None:
metadata["prompt"] = cls.hidden.prompt
if len(metadata) > 0:
saved_metadata = metadata
file = f"{filename}_{counter:05}_.{Types.VideoContainer.get_extension(format)}"
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
video.save_to(
os.path.join(full_output_folder, file),
format=format,
@ -136,88 +117,87 @@ class SaveVideo(ComfyNodeABC):
metadata=saved_metadata
)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return {"ui": {"images": results, "animated": (True,)}}
return io.NodeOutput(ui=ui.PreviewVideo([ui.SavedResult(file, subfolder, io.FolderType.output)]))
class CreateVideo(ComfyNodeABC):
class CreateVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": (IO.IMAGE, {"tooltip": "The images to create a video from."}),
"fps": ("FLOAT", {"default": 30.0, "min": 1.0, "max": 120.0, "step": 1.0}),
},
"optional": {
"audio": (IO.AUDIO, {"tooltip": "The audio to add to the video."}),
}
}
def define_schema(cls):
return io.Schema(
node_id="CreateVideo",
display_name="Create Video",
category="image/video",
description="Create a video from images.",
inputs=[
io.Image.Input("images", tooltip="The images to create a video from."),
io.Float.Input("fps", default=30.0, min=1.0, max=120.0, step=1.0),
io.Audio.Input("audio", optional=True, tooltip="The audio to add to the video."),
],
outputs=[
io.Video.Output(),
],
)
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "create_video"
CATEGORY = "image/video"
DESCRIPTION = "Create a video from images."
def create_video(self, images: Input.Image, fps: float, audio: Optional[Input.Audio] = None):
return (InputImpl.VideoFromComponents(
Types.VideoComponents(
@classmethod
def execute(cls, images: ImageInput, fps: float, audio: Optional[AudioInput] = None) -> io.NodeOutput:
return io.NodeOutput(
VideoFromComponents(VideoComponents(
images=images,
audio=audio,
frame_rate=Fraction(fps),
frame_rate=Fraction(fps)))
)
),)
class GetVideoComponents(ComfyNodeABC):
class GetVideoComponents(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"video": (IO.VIDEO, {"tooltip": "The video to extract components from."}),
}
}
def define_schema(cls):
return io.Schema(
node_id="GetVideoComponents",
display_name="Get Video Components",
category="image/video",
description="Extracts all components from a video: frames, audio, and framerate.",
inputs=[
io.Video.Input("video", tooltip="The video to extract components from."),
],
outputs=[
io.Image.Output(display_name="images"),
io.Audio.Output(display_name="audio"),
io.Float.Output(display_name="fps"),
],
)
RETURN_TYPES = (IO.IMAGE, IO.AUDIO, IO.FLOAT)
RETURN_NAMES = ("images", "audio", "fps")
FUNCTION = "get_components"
CATEGORY = "image/video"
DESCRIPTION = "Extracts all components from a video: frames, audio, and framerate."
def get_components(self, video: Input.Video):
@classmethod
def execute(cls, video: VideoInput) -> io.NodeOutput:
components = video.get_components()
return (components.images, components.audio, float(components.frame_rate))
return io.NodeOutput(components.images, components.audio, float(components.frame_rate))
class LoadVideo(ComfyNodeABC):
class LoadVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(cls):
def define_schema(cls):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
files = folder_paths.filter_files_content_types(files, ["video"])
return {"required":
{"file": (sorted(files), {"video_upload": True})},
}
CATEGORY = "image/video"
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "load_video"
def load_video(self, file):
video_path = folder_paths.get_annotated_filepath(file)
return (InputImpl.VideoFromFile(video_path),)
return io.Schema(
node_id="LoadVideo",
display_name="Load Video",
category="image/video",
inputs=[
io.Combo.Input("file", options=sorted(files), upload=io.UploadType.video),
],
outputs=[
io.Video.Output(),
],
)
@classmethod
def IS_CHANGED(cls, file):
def execute(cls, file) -> io.NodeOutput:
video_path = folder_paths.get_annotated_filepath(file)
return io.NodeOutput(VideoFromFile(video_path))
@classmethod
def fingerprint_inputs(s, file):
video_path = folder_paths.get_annotated_filepath(file)
mod_time = os.path.getmtime(video_path)
# Instead of hashing the file, we can just use the modification time to avoid
@ -225,25 +205,24 @@ class LoadVideo(ComfyNodeABC):
return mod_time
@classmethod
def VALIDATE_INPUTS(cls, file):
def validate_inputs(s, file):
if not folder_paths.exists_annotated_filepath(file):
return "Invalid video file: {}".format(file)
return True
NODE_CLASS_MAPPINGS = {
"SaveWEBM": SaveWEBM,
"SaveVideo": SaveVideo,
"CreateVideo": CreateVideo,
"GetVideoComponents": GetVideoComponents,
"LoadVideo": LoadVideo,
}
class VideoExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
SaveWEBM,
SaveVideo,
CreateVideo,
GetVideoComponents,
LoadVideo,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"SaveVideo": "Save Video",
"CreateVideo": "Create Video",
"GetVideoComponents": "Get Video Components",
"LoadVideo": "Load Video",
}
async def comfy_entrypoint() -> VideoExtension:
return VideoExtension()

View File

@ -144,8 +144,13 @@ class Wan22FunControlToVideo(io.ComfyNode):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, start_image=None, control_video=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
spacial_scale = vae.spacial_compression_encode()
latent_channels = vae.latent_channels
latent = torch.zeros([batch_size, latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
if latent_channels == 48:
concat_latent = comfy.latent_formats.Wan22().process_out(concat_latent)
else:
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
@ -153,7 +158,7 @@ class Wan22FunControlToVideo(io.ComfyNode):
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
concat_latent[:,latent_channels:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask[:, :, :start_image.shape[0] + 3] = 0.0
ref_latent = None
@ -164,11 +169,11 @@ class Wan22FunControlToVideo(io.ComfyNode):
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
concat_latent[:,:latent_channels,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": latent_channels})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": latent_channels})
if ref_latent is not None:
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
@ -207,7 +212,8 @@ class WanFirstLastFrameToVideo(io.ComfyNode):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
spacial_scale = vae.spacial_compression_encode()
latent = torch.zeros([batch_size, vae.latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if end_image is not None:
@ -800,6 +806,229 @@ class WanTrackToVideo(io.ComfyNode):
return io.NodeOutput(positive, negative, out_latent)
def linear_interpolation(features, input_fps, output_fps, output_len=None):
"""
features: shape=[1, T, 512]
input_fps: fps for audio, f_a
output_fps: fps for video, f_m
output_len: video length
"""
features = features.transpose(1, 2) # [1, 512, T]
seq_len = features.shape[2] / float(input_fps) # T/f_a
if output_len is None:
output_len = int(seq_len * output_fps) # f_m*T/f_a
output_features = torch.nn.functional.interpolate(
features, size=output_len, align_corners=True,
mode='linear') # [1, 512, output_len]
return output_features.transpose(1, 2) # [1, output_len, 512]
def get_sample_indices(original_fps,
total_frames,
target_fps,
num_sample,
fixed_start=None):
required_duration = num_sample / target_fps
required_origin_frames = int(np.ceil(required_duration * original_fps))
if required_duration > total_frames / original_fps:
raise ValueError("required_duration must be less than video length")
if not fixed_start is None and fixed_start >= 0:
start_frame = fixed_start
else:
max_start = total_frames - required_origin_frames
if max_start < 0:
raise ValueError("video length is too short")
start_frame = np.random.randint(0, max_start + 1)
start_time = start_frame / original_fps
end_time = start_time + required_duration
time_points = np.linspace(start_time, end_time, num_sample, endpoint=False)
frame_indices = np.round(np.array(time_points) * original_fps).astype(int)
frame_indices = np.clip(frame_indices, 0, total_frames - 1)
return frame_indices
def get_audio_embed_bucket_fps(audio_embed, fps=16, batch_frames=81, m=0, video_rate=30):
num_layers, audio_frame_num, audio_dim = audio_embed.shape
if num_layers > 1:
return_all_layers = True
else:
return_all_layers = False
scale = video_rate / fps
min_batch_num = int(audio_frame_num / (batch_frames * scale)) + 1
bucket_num = min_batch_num * batch_frames
padd_audio_num = math.ceil(min_batch_num * batch_frames / fps * video_rate) - audio_frame_num
batch_idx = get_sample_indices(
original_fps=video_rate,
total_frames=audio_frame_num + padd_audio_num,
target_fps=fps,
num_sample=bucket_num,
fixed_start=0)
batch_audio_eb = []
audio_sample_stride = int(video_rate / fps)
for bi in batch_idx:
if bi < audio_frame_num:
chosen_idx = list(
range(bi - m * audio_sample_stride, bi + (m + 1) * audio_sample_stride, audio_sample_stride))
chosen_idx = [0 if c < 0 else c for c in chosen_idx]
chosen_idx = [
audio_frame_num - 1 if c >= audio_frame_num else c
for c in chosen_idx
]
if return_all_layers:
frame_audio_embed = audio_embed[:, chosen_idx].flatten(
start_dim=-2, end_dim=-1)
else:
frame_audio_embed = audio_embed[0][chosen_idx].flatten()
else:
frame_audio_embed = torch.zeros([audio_dim * (2 * m + 1)], device=audio_embed.device) if not return_all_layers \
else torch.zeros([num_layers, audio_dim * (2 * m + 1)], device=audio_embed.device)
batch_audio_eb.append(frame_audio_embed)
batch_audio_eb = torch.cat([c.unsqueeze(0) for c in batch_audio_eb], dim=0)
return batch_audio_eb, min_batch_num
def wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=0, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None, ref_motion_latent=None):
latent_t = ((length - 1) // 4) + 1
if audio_encoder_output is not None:
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
video_rate = 30
fps = 16
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
batch_frames = latent_t * 4
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=batch_frames, m=0, video_rate=video_rate)
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
if len(audio_embed_bucket.shape) == 3:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
elif len(audio_embed_bucket.shape) == 4:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)
audio_embed_bucket = audio_embed_bucket[:, :, :, frame_offset:frame_offset + batch_frames]
if audio_embed_bucket.shape[3] > 0:
positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket * 0.0})
frame_offset += batch_frames
if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
if ref_motion is not None:
if ref_motion.shape[0] > 73:
ref_motion = ref_motion[-73:]
ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if ref_motion.shape[0] < 73:
r = torch.ones([73, height, width, 3]) * 0.5
r[-ref_motion.shape[0]:] = ref_motion
ref_motion = r
ref_motion_latent = vae.encode(ref_motion[:, :, :, :3])
if ref_motion_latent is not None:
ref_motion_latent = ref_motion_latent[:, :, -19:]
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion_latent})
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion_latent})
latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())
control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
control_video = vae.encode(control_video[:, :, :, :3])
control_video_out[:, :, :control_video.shape[2]] = control_video
# TODO: check if zero is better than none if none provided
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})
out_latent = {}
out_latent["samples"] = latent
return positive, negative, out_latent, frame_offset
class WanSoundImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanSoundImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
io.Image.Input("ref_motion", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
is_experimental=True,
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None) -> io.NodeOutput:
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
control_video=control_video, ref_motion=ref_motion)
return io.NodeOutput(positive, negative, out_latent)
class WanSoundImageToVideoExtend(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanSoundImageToVideoExtend",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Latent.Input("video_latent"),
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
is_experimental=True,
)
@classmethod
def execute(cls, positive, negative, vae, length, video_latent, ref_image=None, audio_encoder_output=None, control_video=None) -> io.NodeOutput:
video_latent = video_latent["samples"]
width = video_latent.shape[-1] * 8
height = video_latent.shape[-2] * 8
batch_size = video_latent.shape[0]
frame_offset = video_latent.shape[-3] * 4
positive, negative, out_latent, frame_offset = wan_sound_to_video(positive, negative, vae, width, height, length, batch_size, frame_offset=frame_offset, ref_image=ref_image, audio_encoder_output=audio_encoder_output,
control_video=control_video, ref_motion=None, ref_motion_latent=video_latent)
return io.NodeOutput(positive, negative, out_latent)
class Wan22ImageToVideoLatent(io.ComfyNode):
@classmethod
def define_schema(cls):
@ -858,6 +1087,8 @@ class WanExtension(ComfyExtension):
TrimVideoLatent,
WanCameraImageToVideo,
WanPhantomSubjectToVideo,
WanSoundImageToVideo,
WanSoundImageToVideoExtend,
Wan22ImageToVideoLatent,
]

View File

@ -1,6 +1,6 @@
[project]
name = "comfyui"
version = "0.3.52"
version = "0.3.56"
description = "An installable version of ComfyUI"
readme = "README.md"
authors = [
@ -18,8 +18,8 @@ classifiers = [
]
dependencies = [
"comfyui-frontend-package>=1.25.10",
"comfyui-workflow-templates>=0.1.66",
"comfyui-frontend-package>=1.25.11",
"comfyui-workflow-templates>=0.1.73",
"comfyui-embedded-docs>=0.2.6",
"torch",
"torchvision",