HunyuanImage2.1: Fix refiner template

This commit is contained in:
KimbingNg 2025-09-15 22:41:26 +08:00
parent 0836853fec
commit 192b74ccc1
4 changed files with 113 additions and 16 deletions

View File

@ -836,7 +836,7 @@ class CLIPType(Enum):
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_IMAGE_REFINER = 20
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
@ -995,6 +995,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
if clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_IMAGE_REFINER:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, refiner=True, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageRefinerTokenizer
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer

View File

@ -4,6 +4,8 @@ from .qwen_image import QwenImageTokenizer, QwenImageTEModel
from transformers import ByT5Tokenizer
import os
import re
import torch
import numbers
class ByT5SmallTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@ -38,6 +40,13 @@ class HunyuanImageTokenizer(QwenImageTokenizer):
out['byt5'] = self.byt5.tokenize_with_weights(''.join(map(lambda a: 'Text "{}". '.format(a), text_prompt_texts)), return_word_ids, **kwargs)
return out
class HunyuanImageRefinerTokenizer(HunyuanImageTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|eot_id|>\n<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
@ -53,9 +62,9 @@ class ByT5SmallModel(sd1_clip.SDClipModel):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, model_options=model_options, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True)
class HunyuanImageTEModel(QwenImageTEModel):
class HunyuanImageTEModel(sd1_clip.SD1ClipModel):
def __init__(self, byt5=True, device="cpu", dtype=None, model_options={}):
super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
super().__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
if byt5:
self.byt5_small = ByT5SmallModel(device=device, dtype=dtype, model_options=model_options)
@ -63,11 +72,35 @@ class HunyuanImageTEModel(QwenImageTEModel):
self.byt5_small = None
def encode_token_weights(self, token_weight_pairs):
cond, p, extra = super().encode_token_weights(token_weight_pairs)
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
tok_pairs = token_weight_pairs["qwen25_7b"][0]
count_im_start = 0
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 151644 and count_im_start < 2:
template_end = i
count_im_start += 1
if out.shape[1] > (template_end + 3):
if tok_pairs[template_end + 1][0] == 872:
if tok_pairs[template_end + 2][0] == 198:
template_end += 3
out = out[:, template_end:]
extra["attention_mask"] = extra["attention_mask"][:, template_end:]
if extra["attention_mask"].sum() == torch.numel(extra["attention_mask"]):
extra.pop("attention_mask") # attention mask is useless if no masked elements
# noqa: W293
if self.byt5_small is not None and "byt5" in token_weight_pairs:
out = self.byt5_small.encode_token_weights(token_weight_pairs["byt5"])
extra["conditioning_byt5small"] = out[0]
return cond, p, extra
byt5_out = self.byt5_small.encode_token_weights(token_weight_pairs["byt5"])
extra["conditioning_byt5small"] = byt5_out[0]
return out, pooled, extra
def set_clip_options(self, options):
super().set_clip_options(options)
@ -84,9 +117,33 @@ class HunyuanImageTEModel(QwenImageTEModel):
return self.byt5_small.load_sd(sd)
else:
return super().load_sd(sd)
class HunyuanImageRefinerTEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
tok_pairs = token_weight_pairs["qwen25_7b"][0]
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 6171:
template_end = i
break
out = out[:, template_end-1:]
extra["attention_mask"] = extra["attention_mask"][:, template_end-1:]
if extra["attention_mask"].sum() == torch.numel(extra["attention_mask"]):
extra.pop("attention_mask") # attention mask is useless if no masked elements
return out, pooled, extra
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None, refiner=False):
class HunyuanImageTEModel_(HunyuanImageTEModel):
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
class QwenImageTEModel_(HunyuanImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
@ -94,4 +151,14 @@ def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options)
return QwenImageTEModel_
class HunyuanImageTEModel_refiner(HunyuanImageRefinerTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
assert refiner, "refiner must be True"
assert not byt5, "byt5 must be False"
super().__init__(device=device, dtype=dtype, model_options=model_options)
return HunyuanImageTEModel_refiner if refiner else HunyuanImageTEModel_

View File

@ -199,9 +199,8 @@ class CLIPTextEncodeHunyuanDiTWithTextDetection:
"clip": ("CLIP", ),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
}}
RETURN_TYPES = ("CONDITIONING", "HAS_QUOTED_TEXT")
RETURN_NAMES = ("conditioning", "has_quoted_text")
RETURN_TYPES = ("CONDITIONING", "HAS_QUOTED_TEXT", "STRING")
RETURN_NAMES = ("conditioning", "has_quoted_text", "text")
FUNCTION = "encode"
CATEGORY = "advanced/conditioning/hunyuan"
@ -237,7 +236,35 @@ class CLIPTextEncodeHunyuanDiTWithTextDetection:
n[1]['has_quoted_text'] = has_quoted_text
c.append(n)
return (c, has_quoted_text)
return (c, has_quoted_text, text)
class CLIPTextEncodeHunyuanImageRefiner:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"clip": ("CLIP", ),
"text": ("STRING", ),
}}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("conditioning",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning/hunyuan"
def encode(self, clip, text):
tokens = clip.tokenize(text)
conditioning = clip.encode_from_tokens_scheduled(tokens)
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
c.append(n)
return (c, )
class EmptyHunyuanLatentVideo:
@classmethod
@ -370,13 +397,13 @@ class HunyuanRefinerLatent:
NODE_DISPLAY_NAME_MAPPINGS = {
"HunyuanMixModeAPG": "Hunyuan Mix Mode APG",
"HunyuanStepBasedAPG": "Hunyuan Step Based APG",
}
NODE_CLASS_MAPPINGS = {
"HunyuanMixModeAPG": HunyuanMixModeAPG,
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
"CLIPTextEncodeHunyuanDiTWithTextDetection": CLIPTextEncodeHunyuanDiTWithTextDetection,
"CLIPTextEncodeHunyuanImageRefiner": CLIPTextEncodeHunyuanImageRefiner,
"TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo,
"EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo,
"HunyuanImageToVideo": HunyuanImageToVideo,

View File

@ -929,7 +929,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image","hunyuan_image_refiner"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),