Remove Chroma Radiance image conversion and stub VAE nodes

Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE
Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1
This commit is contained in:
blepping 2025-09-12 23:36:53 -06:00
parent 0828916ef1
commit 1bc45d3c0a
3 changed files with 64 additions and 108 deletions

View File

@ -785,6 +785,66 @@ class VAE:
except:
return None
# "Fake" VAE that converts from IMAGE B, H, W, C and values on the scale of 0..1
# to LATENT B, C, H, W and values on the scale of -1..1.
class PixelspaceConversionVAE:
def __init__(self, size_increment: int=16):
self.intermediate_device = comfy.model_management.intermediate_device()
self.size_increment = size_increment
def vae_encode_crop_pixels(self, pixels: torch.Tensor) -> torch.Tensor:
if self.size_increment == 1:
return pixels
dims = pixels.shape[1:-1]
for d in range(len(dims)):
d_adj = (dims[d] // self.size_increment) * self.size_increment
if d_adj == d:
continue
d_offset = (dims[d] % self.size_increment) // 2
pixels = pixels.narrow(d + 1, d_offset, d_adj)
return pixels
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
if pixels.ndim == 3:
pixels = pixels.unsqueeze(0)
elif pixels.ndim != 4:
raise ValueError("Unexpected input image shape")
# Ensure the image has spatial dimensions that are multiples of 16.
pixels = self.vae_encode_crop_pixels(pixels)
h, w, c = pixels.shape[1:]
if h < self.size_increment or w < self.size_increment:
raise ValueError(f"Image inputs must have height/width of at least {self.size_increment} pixel(s).")
pixels= pixels[..., :3]
if c == 1:
pixels = pixels.expand(-1, -1, -1, 3)
elif c != 3:
raise ValueError("Unexpected number of channels in input image")
# Rescale to -1..1 and move the channel dimension to position 1.
latent = pixels.to(device=self.intermediate_device, dtype=torch.float32, copy=True)
latent = latent.clamp_(0, 1).movedim(-1, 1).contiguous()
latent -= 0.5
latent *= 2
return latent.clamp_(-1, 1)
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
# Rescale to 0..1 and move the channel dimension to the end.
img = samples.to(device=self.intermediate_device, dtype=torch.float32, copy=True)
img = img.clamp_(-1, 1).movedim(1, -1).contiguous()
img += 1.0
img *= 0.5
return img.clamp_(0, 1)
encode_tiled = encode
decode_tiled = decode
@classmethod
def spacial_compression_decode(cls) -> int:
# This just exists so the tiled VAE nodes don't crash.
return 1
spacial_compression_encode = spacial_compression_decode
temporal_compression_decode = spacial_compression_decode
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model

View File

@ -28,110 +28,6 @@ class EmptyChromaRadianceLatentImage(io.ComfyNode):
return io.NodeOutput({"samples":latent})
class ChromaRadianceStubVAE:
@staticmethod
def vae_encode_crop_pixels(pixels: torch.Tensor) -> torch.Tensor:
dims = pixels.shape[1:-1]
for d in range(len(dims)):
d_adj = (dims[d] // 16) * 16
if d_adj == d:
continue
d_offset = (dims[d] % 16) // 2
pixels = pixels.narrow(d + 1, d_offset, d_adj)
return pixels
@classmethod
def encode(cls, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
device = comfy.model_management.intermediate_device()
if pixels.ndim == 3:
pixels = pixels.unsqueeze(0)
elif pixels.ndim != 4:
raise ValueError("Unexpected input image shape")
# Ensure the image has spatial dimensions that are multiples of 16.
pixels = cls.vae_encode_crop_pixels(pixels)
h, w, c = pixels.shape[1:]
if h < 16 or w < 16:
raise ValueError("Chroma Radiance image inputs must have height/width of at least 16 pixels.")
pixels= pixels[..., :3]
if c == 1:
pixels = pixels.expand(-1, -1, -1, 3)
elif c != 3:
raise ValueError("Unexpected number of channels in input image")
# Rescale to -1..1 and move the channel dimension to position 1.
latent = pixels.to(device=device, dtype=torch.float32, copy=True)
latent = latent.clamp_(0, 1).movedim(-1, 1).contiguous()
latent -= 0.5
latent *= 2
return latent.clamp_(-1, 1)
@classmethod
def decode(cls, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
device = comfy.model_management.intermediate_device()
# Rescale to 0..1 and move the channel dimension to the end.
img = samples.to(device=device, dtype=torch.float32, copy=True)
img = img.clamp_(-1, 1).movedim(1, -1).contiguous()
img += 1.0
img *= 0.5
return img.clamp_(0, 1)
encode_tiled = encode
decode_tiled = decode
@classmethod
def spacial_compression_decode(cls) -> int:
# This just exists so the tiled VAE nodes don't crash.
return 1
spacial_compression_encode = spacial_compression_decode
temporal_compression_decode = spacial_compression_decode
class ChromaRadianceLatentToImage(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="ChromaRadianceLatentToImage",
category="latent/chroma_radiance",
description="For use with Chroma Radiance. Converts an input LATENT to IMAGE.",
inputs=[io.Latent.Input(id="latent")],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, *, latent: dict) -> io.NodeOutput:
return io.NodeOutput(ChromaRadianceStubVAE.decode(latent["samples"]))
class ChromaRadianceImageToLatent(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="ChromaRadianceImageToLatent",
category="latent/chroma_radiance",
description="For use with Chroma Radiance. Converts an input IMAGE to LATENT. Note: Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary.",
inputs=[io.Image.Input(id="image")],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, *, image: torch.Tensor) -> io.NodeOutput:
return io.NodeOutput({"samples": ChromaRadianceStubVAE.encode(image)})
class ChromaRadianceStubVAENode(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="ChromaRadianceStubVAE",
category="vae/chroma_radiance",
description="For use with Chroma Radiance. Allows converting between latent and image types with nodes that require a VAE input. Note: Chroma Radiance requires inputs with width/height that are multiples of 16 so your image will be cropped if necessary.",
outputs=[io.Vae.Output()],
)
@classmethod
def execute(cls) -> io.NodeOutput:
return io.NodeOutput(ChromaRadianceStubVAE())
class ChromaRadianceOptions(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
@ -210,9 +106,6 @@ class ChromaRadianceExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
EmptyChromaRadianceLatentImage,
ChromaRadianceLatentToImage,
ChromaRadianceImageToLatent,
ChromaRadianceStubVAENode,
ChromaRadianceOptions,
]

View File

@ -730,6 +730,7 @@ class VAELoader:
vaes.append("taesd3")
if f1_taesd_dec and f1_taesd_enc:
vaes.append("taef1")
vaes.append("chroma_radiance")
return vaes
@staticmethod
@ -772,7 +773,9 @@ class VAELoader:
#TODO: scale factor?
def load_vae(self, vae_name):
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
if vae_name == "chroma_radiance":
return (comfy.sd.PixelspaceConversionVAE(),)
elif vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)