mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-15 01:07:03 +08:00
convert nodes_lumina2.py to V3 schema (#10058)
This commit is contained in:
parent
a1127b232d
commit
1cf86f5ae5
@ -1,20 +1,27 @@
|
||||
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||||
from typing_extensions import override
|
||||
import torch
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
class RenormCFG:
|
||||
|
||||
class RenormCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"cfg_trunc": ("FLOAT", {"default": 100, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
"renorm_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="RenormCFG",
|
||||
category="advanced/model",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("cfg_trunc", default=100, min=0.0, max=100.0, step=0.01),
|
||||
io.Float.Input("renorm_cfg", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model"
|
||||
|
||||
def patch(self, model, cfg_trunc, renorm_cfg):
|
||||
@classmethod
|
||||
def execute(cls, model, cfg_trunc, renorm_cfg) -> io.NodeOutput:
|
||||
def renorm_cfg_func(args):
|
||||
cond_denoised = args["cond_denoised"]
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
@ -53,10 +60,10 @@ class RenormCFG:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(renorm_cfg_func)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
class CLIPTextEncodeLumina2(ComfyNodeABC):
|
||||
class CLIPTextEncodeLumina2(io.ComfyNode):
|
||||
SYSTEM_PROMPT = {
|
||||
"superior": "You are an assistant designed to generate superior images with the superior "\
|
||||
"degree of image-text alignment based on textual prompts or user prompts.",
|
||||
@ -69,36 +76,52 @@ class CLIPTextEncodeLumina2(ComfyNodeABC):
|
||||
"Alignment: You are an assistant designed to generate high-quality images with the highest "\
|
||||
"degree of image-text alignment based on textual prompts."
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"system_prompt": (list(CLIPTextEncodeLumina2.SYSTEM_PROMPT.keys()), {"tooltip": CLIPTextEncodeLumina2.SYSTEM_PROMPT_TIP}),
|
||||
"user_prompt": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
|
||||
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = (IO.CONDITIONING,)
|
||||
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
|
||||
FUNCTION = "encode"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeLumina2",
|
||||
display_name="CLIP Text Encode for Lumina2",
|
||||
category="conditioning",
|
||||
description="Encodes a system prompt and a user prompt using a CLIP model into an embedding "
|
||||
"that can be used to guide the diffusion model towards generating specific images.",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"system_prompt",
|
||||
options=list(cls.SYSTEM_PROMPT.keys()),
|
||||
tooltip=cls.SYSTEM_PROMPT_TIP,
|
||||
),
|
||||
io.String.Input(
|
||||
"user_prompt",
|
||||
multiline=True,
|
||||
dynamic_prompts=True,
|
||||
tooltip="The text to be encoded.",
|
||||
),
|
||||
io.Clip.Input("clip", tooltip="The CLIP model used for encoding the text."),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(
|
||||
tooltip="A conditioning containing the embedded text used to guide the diffusion model.",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
DESCRIPTION = "Encodes a system prompt and a user prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
|
||||
|
||||
def encode(self, clip, user_prompt, system_prompt):
|
||||
@classmethod
|
||||
def execute(cls, clip, user_prompt, system_prompt) -> io.NodeOutput:
|
||||
if clip is None:
|
||||
raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.")
|
||||
system_prompt = CLIPTextEncodeLumina2.SYSTEM_PROMPT[system_prompt]
|
||||
system_prompt = cls.SYSTEM_PROMPT[system_prompt]
|
||||
prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
|
||||
tokens = clip.tokenize(prompt)
|
||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CLIPTextEncodeLumina2": CLIPTextEncodeLumina2,
|
||||
"RenormCFG": RenormCFG
|
||||
}
|
||||
class Lumina2Extension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
CLIPTextEncodeLumina2,
|
||||
RenormCFG,
|
||||
]
|
||||
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"CLIPTextEncodeLumina2": "CLIP Text Encode for Lumina2",
|
||||
}
|
||||
async def comfy_entrypoint() -> Lumina2Extension:
|
||||
return Lumina2Extension()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user