convert nodes_lumina2.py to V3 schema (#10058)

This commit is contained in:
Alexander Piskun 2025-09-28 05:12:51 +03:00 committed by GitHub
parent a1127b232d
commit 1cf86f5ae5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,20 +1,27 @@
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict from typing_extensions import override
import torch import torch
from comfy_api.latest import ComfyExtension, io
class RenormCFG:
class RenormCFG(io.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { "model": ("MODEL",), return io.Schema(
"cfg_trunc": ("FLOAT", {"default": 100, "min": 0.0, "max": 100.0, "step": 0.01}), node_id="RenormCFG",
"renorm_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), category="advanced/model",
}} inputs=[
RETURN_TYPES = ("MODEL",) io.Model.Input("model"),
FUNCTION = "patch" io.Float.Input("cfg_trunc", default=100, min=0.0, max=100.0, step=0.01),
io.Float.Input("renorm_cfg", default=1.0, min=0.0, max=100.0, step=0.01),
],
outputs=[
io.Model.Output(),
],
)
CATEGORY = "advanced/model" @classmethod
def execute(cls, model, cfg_trunc, renorm_cfg) -> io.NodeOutput:
def patch(self, model, cfg_trunc, renorm_cfg):
def renorm_cfg_func(args): def renorm_cfg_func(args):
cond_denoised = args["cond_denoised"] cond_denoised = args["cond_denoised"]
uncond_denoised = args["uncond_denoised"] uncond_denoised = args["uncond_denoised"]
@ -53,10 +60,10 @@ class RenormCFG:
m = model.clone() m = model.clone()
m.set_model_sampler_cfg_function(renorm_cfg_func) m.set_model_sampler_cfg_function(renorm_cfg_func)
return (m, ) return io.NodeOutput(m)
class CLIPTextEncodeLumina2(ComfyNodeABC): class CLIPTextEncodeLumina2(io.ComfyNode):
SYSTEM_PROMPT = { SYSTEM_PROMPT = {
"superior": "You are an assistant designed to generate superior images with the superior "\ "superior": "You are an assistant designed to generate superior images with the superior "\
"degree of image-text alignment based on textual prompts or user prompts.", "degree of image-text alignment based on textual prompts or user prompts.",
@ -69,36 +76,52 @@ class CLIPTextEncodeLumina2(ComfyNodeABC):
"Alignment: You are an assistant designed to generate high-quality images with the highest "\ "Alignment: You are an assistant designed to generate high-quality images with the highest "\
"degree of image-text alignment based on textual prompts." "degree of image-text alignment based on textual prompts."
@classmethod @classmethod
def INPUT_TYPES(s) -> InputTypeDict: def define_schema(cls):
return { return io.Schema(
"required": { node_id="CLIPTextEncodeLumina2",
"system_prompt": (list(CLIPTextEncodeLumina2.SYSTEM_PROMPT.keys()), {"tooltip": CLIPTextEncodeLumina2.SYSTEM_PROMPT_TIP}), display_name="CLIP Text Encode for Lumina2",
"user_prompt": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}), category="conditioning",
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."}) description="Encodes a system prompt and a user prompt using a CLIP model into an embedding "
} "that can be used to guide the diffusion model towards generating specific images.",
} inputs=[
RETURN_TYPES = (IO.CONDITIONING,) io.Combo.Input(
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",) "system_prompt",
FUNCTION = "encode" options=list(cls.SYSTEM_PROMPT.keys()),
tooltip=cls.SYSTEM_PROMPT_TIP,
),
io.String.Input(
"user_prompt",
multiline=True,
dynamic_prompts=True,
tooltip="The text to be encoded.",
),
io.Clip.Input("clip", tooltip="The CLIP model used for encoding the text."),
],
outputs=[
io.Conditioning.Output(
tooltip="A conditioning containing the embedded text used to guide the diffusion model.",
),
],
)
CATEGORY = "conditioning" @classmethod
DESCRIPTION = "Encodes a system prompt and a user prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images." def execute(cls, clip, user_prompt, system_prompt) -> io.NodeOutput:
def encode(self, clip, user_prompt, system_prompt):
if clip is None: if clip is None:
raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.") raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.")
system_prompt = CLIPTextEncodeLumina2.SYSTEM_PROMPT[system_prompt] system_prompt = cls.SYSTEM_PROMPT[system_prompt]
prompt = f'{system_prompt} <Prompt Start> {user_prompt}' prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
tokens = clip.tokenize(prompt) tokens = clip.tokenize(prompt)
return (clip.encode_from_tokens_scheduled(tokens), ) return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
NODE_CLASS_MAPPINGS = { class Lumina2Extension(ComfyExtension):
"CLIPTextEncodeLumina2": CLIPTextEncodeLumina2, @override
"RenormCFG": RenormCFG async def get_node_list(self) -> list[type[io.ComfyNode]]:
} return [
CLIPTextEncodeLumina2,
RenormCFG,
]
NODE_DISPLAY_NAME_MAPPINGS = { async def comfy_entrypoint() -> Lumina2Extension:
"CLIPTextEncodeLumina2": "CLIP Text Encode for Lumina2", return Lumina2Extension()
}