mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
1d9338b4b9
@ -18,6 +18,7 @@ class Output:
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
|
||||
@ -31,35 +31,43 @@ def downscale_input(image):
|
||||
s = s.movedim(1,-1)
|
||||
return s
|
||||
|
||||
def validate_and_cast_response (response):
|
||||
def validate_and_cast_response(response):
|
||||
# validate raw JSON response
|
||||
data = response.data
|
||||
if not data or len(data) == 0:
|
||||
raise Exception("No images returned from API endpoint")
|
||||
|
||||
# Get base64 image data
|
||||
image_url = data[0].url
|
||||
b64_data = data[0].b64_json
|
||||
if not image_url and not b64_data:
|
||||
raise Exception("No image was generated in the response")
|
||||
# Initialize list to store image tensors
|
||||
image_tensors = []
|
||||
|
||||
if b64_data:
|
||||
img_data = base64.b64decode(b64_data)
|
||||
img = Image.open(io.BytesIO(img_data))
|
||||
# Process each image in the data array
|
||||
for image_data in data:
|
||||
image_url = image_data.url
|
||||
b64_data = image_data.b64_json
|
||||
|
||||
elif image_url:
|
||||
img_response = requests.get(image_url)
|
||||
if img_response.status_code != 200:
|
||||
raise Exception("Failed to download the image")
|
||||
img = Image.open(io.BytesIO(img_response.content))
|
||||
if not image_url and not b64_data:
|
||||
raise Exception("No image was generated in the response")
|
||||
|
||||
img = img.convert("RGBA")
|
||||
if b64_data:
|
||||
img_data = base64.b64decode(b64_data)
|
||||
img = Image.open(io.BytesIO(img_data))
|
||||
|
||||
# Convert to numpy array, normalize to float32 between 0 and 1
|
||||
img_array = np.array(img).astype(np.float32) / 255.0
|
||||
elif image_url:
|
||||
img_response = requests.get(image_url)
|
||||
if img_response.status_code != 200:
|
||||
raise Exception("Failed to download the image")
|
||||
img = Image.open(io.BytesIO(img_response.content))
|
||||
|
||||
# Convert to torch tensor and add batch dimension
|
||||
return torch.from_numpy(img_array)[None,]
|
||||
img = img.convert("RGBA")
|
||||
|
||||
# Convert to numpy array, normalize to float32 between 0 and 1
|
||||
img_array = np.array(img).astype(np.float32) / 255.0
|
||||
img_tensor = torch.from_numpy(img_array)
|
||||
|
||||
# Add to list of tensors
|
||||
image_tensors.append(img_tensor)
|
||||
|
||||
return torch.stack(image_tensors, dim=0)
|
||||
|
||||
class OpenAIDalle2(ComfyNodeABC):
|
||||
"""
|
||||
|
||||
Loading…
Reference in New Issue
Block a user