Initial HYV1.5 manual FLF implementation

This commit is contained in:
kabachuha 2025-12-06 17:25:47 +03:00
parent 76f18e955d
commit 1e4f506f03

View File

@ -124,6 +124,87 @@ class HunyuanVideo15ImageToVideo(io.ComfyNode):
return io.NodeOutput(positive, negative, out_latent)
class HunyuanVideo15FirstLastFrameToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="HunyuanVideo15FirstLastFrameToVideo",
category="conditioning/video_models",
is_experimental=True,
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=33, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_end_image", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("end_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16],
device=comfy.model_management.intermediate_device())
concat_latent_image = torch.zeros((batch_size, 32, latent.shape[2], latent.shape[3], latent.shape[4]),
device=comfy.model_management.intermediate_device())
mask = torch.ones((1, 1, latent.shape[2], latent.shape[3], latent.shape[4]),
device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encoded_start = vae.encode(start_image[:, :, :, :3])
concat_latent_image[:, :, :encoded_start.shape[2], :, :] = encoded_start
start_frames_in_latent = ((start_image.shape[0] - 1) // 4) + 1
mask[:, :, :start_frames_in_latent] = 0.0
if end_image is not None:
end_image = comfy.utils.common_upscale(end_image[-length:].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encoded_end = vae.encode(end_image[:, :, :, :3])
end_frames_in_latent = ((end_image.shape[0] - 1) // 4) + 1
concat_latent_image[:, :, -end_frames_in_latent:, :, :] = encoded_end[:, :, -end_frames_in_latent:, :, :]
mask[:, :, -end_frames_in_latent:] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
clip_vision_output = None
if clip_vision_start_image is not None:
clip_vision_output = clip_vision_start_image
if clip_vision_end_image is not None:
if clip_vision_output is not None:
pass # Use only one embedding for now
else:
clip_vision_output = clip_vision_end_image
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class HunyuanVideo15SuperResolution(io.ComfyNode):
@classmethod
def define_schema(cls):
@ -406,6 +487,7 @@ class HunyuanExtension(ComfyExtension):
EmptyHunyuanLatentVideo,
EmptyHunyuanVideo15Latent,
HunyuanVideo15ImageToVideo,
HunyuanVideo15FirstLastFrameToVideo,
HunyuanVideo15SuperResolution,
HunyuanVideo15LatentUpscaleWithModel,
LatentUpscaleModelLoader,