This commit is contained in:
Haoming 2025-12-29 16:02:43 +08:00
parent 5c6fcbda91
commit 20dbf31c0f

View File

@ -1,6 +1,7 @@
# adapted from https://github.com/guyyariv/DyPE # adapted from https://github.com/guyyariv/DyPE
import math import math
from typing import Callable
import numpy as np import numpy as np
import torch import torch
@ -39,7 +40,7 @@ def find_newbase_ntk(dim, base, scale):
def get_1d_rotary_pos_embed( def get_1d_rotary_pos_embed(
dim: int, dim: int,
pos: np.ndarray | int, pos: torch.Tensor,
theta: float = 10000.0, theta: float = 10000.0,
use_real=False, use_real=False,
linear_factor=1.0, linear_factor=1.0,
@ -49,7 +50,6 @@ def get_1d_rotary_pos_embed(
yarn=False, yarn=False,
max_pe_len=None, max_pe_len=None,
ori_max_pe_len=64, ori_max_pe_len=64,
dype=False,
current_timestep=1.0, current_timestep=1.0,
): ):
""" """
@ -80,8 +80,6 @@ def get_1d_rotary_pos_embed(
Maximum position encoding length (current patches for vision models). Maximum position encoding length (current patches for vision models).
ori_max_pe_len (`int`, *optional*, defaults to 64): ori_max_pe_len (`int`, *optional*, defaults to 64):
Original maximum position encoding length (base patches for vision models). Original maximum position encoding length (base patches for vision models).
dype (`bool`, *optional*, defaults to False):
If True, enable DyPE (Dynamic Position Encoding) with timestep-aware scaling.
current_timestep (`float`, *optional*, defaults to 1.0): current_timestep (`float`, *optional*, defaults to 1.0):
Current timestep for DyPE, normalized to [0, 1] where 1 is pure noise. Current timestep for DyPE, normalized to [0, 1] where 1 is pure noise.
@ -91,11 +89,6 @@ def get_1d_rotary_pos_embed(
""" """
assert dim % 2 == 0 assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos)
device = pos.device device = pos.device
if yarn and max_pe_len is not None and max_pe_len > ori_max_pe_len: if yarn and max_pe_len is not None and max_pe_len > ori_max_pe_len:
@ -104,10 +97,8 @@ def get_1d_rotary_pos_embed(
scale = torch.clamp_min(max_pe_len / ori_max_pe_len, 1.0) scale = torch.clamp_min(max_pe_len / ori_max_pe_len, 1.0)
beta_0 = 1.25 beta_0, beta_1 = 1.25, 0.75
beta_1 = 0.75 gamma_0, gamma_1 = 16, 2
gamma_0 = 16
gamma_1 = 2
freqs_base = 1.0 / ( freqs_base = 1.0 / (
theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=device) / dim) theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=device) / dim)
@ -131,9 +122,8 @@ def get_1d_rotary_pos_embed(
if freqs_ntk.dim() > 1: if freqs_ntk.dim() > 1:
freqs_ntk = freqs_ntk.squeeze() freqs_ntk = freqs_ntk.squeeze()
if dype: beta_0 = beta_0 ** (2.0 * (current_timestep**2.0))
beta_0 = beta_0 ** (2.0 * (current_timestep**2.0)) beta_1 = beta_1 ** (2.0 * (current_timestep**2.0))
beta_1 = beta_1 ** (2.0 * (current_timestep**2.0))
low, high = find_correction_range(beta_0, beta_1, dim, theta, ori_max_pe_len) low, high = find_correction_range(beta_0, beta_1, dim, theta, ori_max_pe_len)
low = max(0, low) low = max(0, low)
@ -144,9 +134,8 @@ def get_1d_rotary_pos_embed(
) )
freqs = freqs_linear * (1 - freqs_mask) + freqs_ntk * freqs_mask freqs = freqs_linear * (1 - freqs_mask) + freqs_ntk * freqs_mask
if dype: gamma_0 = gamma_0 ** (2.0 * (current_timestep**2.0))
gamma_0 = gamma_0 ** (2.0 * (current_timestep**2.0)) gamma_1 = gamma_1 ** (2.0 * (current_timestep**2.0))
gamma_1 = gamma_1 ** (2.0 * (current_timestep**2.0))
low, high = find_correction_range(gamma_0, gamma_1, dim, theta, ori_max_pe_len) low, high = find_correction_range(gamma_0, gamma_1, dim, theta, ori_max_pe_len)
low = max(0, low) low = max(0, low)
@ -174,50 +163,44 @@ def get_1d_rotary_pos_embed(
if is_npu: if is_npu:
freqs = freqs.float() freqs = freqs.float()
if use_real and repeat_interleave_real: if use_real:
freqs_cos = ( if repeat_interleave_real:
freqs.cos() freqs_cos = (
.repeat_interleave(2, dim=-1, output_size=freqs.shape[-1] * 2) freqs.cos()
.float() .repeat_interleave(2, dim=-1, output_size=freqs.shape[-1] * 2)
) .float()
freqs_sin = ( )
freqs.sin() freqs_sin = (
.repeat_interleave(2, dim=-1, output_size=freqs.shape[-1] * 2) freqs.sin()
.float() .repeat_interleave(2, dim=-1, output_size=freqs.shape[-1] * 2)
) .float()
)
if yarn and max_pe_len is not None and max_pe_len > ori_max_pe_len: if yarn and max_pe_len is not None and max_pe_len > ori_max_pe_len:
mscale = torch.where( mscale = torch.where(
scale <= 1.0, torch.tensor(1.0), 0.1 * torch.log(scale) + 1.0 scale <= 1.0, torch.tensor(1.0), 0.1 * torch.log(scale) + 1.0
).to(scale) ).to(scale)
freqs_cos = freqs_cos * mscale freqs_cos = freqs_cos * mscale
freqs_sin = freqs_sin * mscale freqs_sin = freqs_sin * mscale
return freqs_cos, freqs_sin return freqs_cos, freqs_sin
elif use_real: else:
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float()
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float()
return freqs_cos, freqs_sin return freqs_cos, freqs_sin
else: else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis return freqs_cis
class FluxPosEmbed(torch.nn.Module): class FluxPosEmbed(torch.nn.Module):
def __init__( def __init__(self, theta: int, axes_dim: list[int], method: str = "yarn"):
self,
theta: int,
axes_dim: list[int],
method: str = "yarn",
dype: bool = True,
):
super().__init__() super().__init__()
self.theta = theta self.theta = theta
self.axes_dim = axes_dim self.axes_dim = axes_dim
self.base_resolution = 1024 self.base_resolution = 1024
self.base_patches = (self.base_resolution // 8) // 2 self.base_patches = (self.base_resolution // 8) // 2
self.method = method self.method = method
self.dype = dype if method != "base" else False
self.current_timestep = 1.0 self.current_timestep = 1.0
def set_timestep(self, timestep: float): def set_timestep(self, timestep: float):
@ -244,43 +227,35 @@ class FluxPosEmbed(torch.nn.Module):
"freqs_dtype": freqs_dtype, "freqs_dtype": freqs_dtype,
} }
if i > 0: max_pos = axis_pos.max().item()
max_pos = axis_pos.max().item() current_patches = max_pos + 1
current_patches = max_pos + 1
if self.method == "yarn" and current_patches > self.base_patches: if i == 0 or current_patches <= self.base_patches:
max_pe_len = torch.tensor(
current_patches, dtype=freqs_dtype, device=pos.device
)
cos, sin = get_1d_rotary_pos_embed(
**common_kwargs,
yarn=True,
max_pe_len=max_pe_len,
ori_max_pe_len=self.base_patches,
dype=self.dype,
current_timestep=self.current_timestep,
)
elif self.method == "ntk" and current_patches > self.base_patches:
base_ntk = (current_patches / self.base_patches) ** (
self.axes_dim[i] / (self.axes_dim[i] - 2)
)
ntk_factor = (
base_ntk ** (2.0 * (self.current_timestep**2.0))
if self.dype
else base_ntk
)
ntk_factor = max(1.0, ntk_factor)
cos, sin = get_1d_rotary_pos_embed(
**common_kwargs, ntk_factor=ntk_factor
)
else:
cos, sin = get_1d_rotary_pos_embed(**common_kwargs)
else:
cos, sin = get_1d_rotary_pos_embed(**common_kwargs) cos, sin = get_1d_rotary_pos_embed(**common_kwargs)
elif self.method == "yarn":
max_pe_len = torch.tensor(
current_patches, dtype=freqs_dtype, device=pos.device
)
cos, sin = get_1d_rotary_pos_embed(
**common_kwargs,
yarn=True,
max_pe_len=max_pe_len,
ori_max_pe_len=self.base_patches,
current_timestep=self.current_timestep,
)
elif self.method == "ntk":
base_ntk = (current_patches / self.base_patches) ** (
self.axes_dim[i] / (self.axes_dim[i] - 2)
)
ntk_factor = base_ntk ** (2.0 * (self.current_timestep**2.0))
ntk_factor = max(1.0, ntk_factor)
cos, sin = get_1d_rotary_pos_embed(
**common_kwargs, ntk_factor=ntk_factor
)
cos_out.append(cos) cos_out.append(cos)
sin_out.append(sin) sin_out.append(sin)
@ -298,35 +273,26 @@ class FluxPosEmbed(torch.nn.Module):
def apply_dype_flux(model: ModelPatcher, method: str) -> ModelPatcher: def apply_dype_flux(model: ModelPatcher, method: str) -> ModelPatcher:
if getattr(model.model, "_dype", None) == method: _pe_embedder = model.model.diffusion_model.pe_embedder
return model
m = model.clone()
m.model._dype = method
_pe_embedder = m.model.diffusion_model.pe_embedder
_theta, _axes_dim = _pe_embedder.theta, _pe_embedder.axes_dim _theta, _axes_dim = _pe_embedder.theta, _pe_embedder.axes_dim
pos_embedder = FluxPosEmbed(_theta, _axes_dim, method, dype=True) pos_embedder = FluxPosEmbed(_theta, _axes_dim, method)
m.add_object_patch("diffusion_model.pe_embedder", pos_embedder) model.add_object_patch("diffusion_model.pe_embedder", pos_embedder)
sigma_max = m.model.model_sampling.sigma_max.item() sigma_max: float = model.model.model_sampling.sigma_max.item()
def dype_wrapper_function(model_function, args_dict): def dype_wrapper_function(apply_model: Callable, args: dict):
timestep_tensor = args_dict.get("timestep") timestep: torch.Tensor = args["timestep"]
if timestep_tensor is not None and timestep_tensor.numel() > 0: sigma: float = timestep.item()
current_sigma = timestep_tensor.flatten()[0].item()
if sigma_max > 0: normalized_timestep = min(max(sigma / sigma_max, 0.0), 1.0)
normalized_timestep = min(max(current_sigma / sigma_max, 0.0), 1.0) pos_embedder.set_timestep(normalized_timestep)
pos_embedder.set_timestep(normalized_timestep)
input_x, c = args_dict.get("input"), args_dict.get("c", {}) return apply_model(args["input"], timestep, **args["c"])
return model_function(input_x, args_dict.get("timestep"), **c)
m.set_model_unet_function_wrapper(dype_wrapper_function) model.set_model_unet_function_wrapper(dype_wrapper_function)
return m return model
class DyPEPatchModelFlux(io.ComfyNode): class DyPEPatchModelFlux(io.ComfyNode):
@ -338,11 +304,7 @@ class DyPEPatchModelFlux(io.ComfyNode):
category="_for_testing", category="_for_testing",
inputs=[ inputs=[
io.Model.Input("model"), io.Model.Input("model"),
io.Combo.Input( io.Combo.Input("method", options=["yarn", "ntk"], default="yarn"),
"method",
options=["yarn", "ntk", "base"],
default="yarn",
),
], ],
outputs=[io.Model.Output()], outputs=[io.Model.Output()],
is_experimental=True, is_experimental=True,
@ -350,8 +312,9 @@ class DyPEPatchModelFlux(io.ComfyNode):
@classmethod @classmethod
def execute(cls, model: ModelPatcher, method: str) -> io.NodeOutput: def execute(cls, model: ModelPatcher, method: str) -> io.NodeOutput:
m = apply_dype_flux(model, method) model = model.clone()
return io.NodeOutput(m) model = apply_dype_flux(model, method)
return io.NodeOutput(model)
class DyPEExtension(ComfyExtension): class DyPEExtension(ComfyExtension):