From 2108167f9f70cfd4874945b31a916680f959a6d7 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 19 Jan 2026 20:17:38 -0800 Subject: [PATCH] Support zimage omni base model. (#11979) --- comfy/ldm/lumina/model.py | 317 ++++++++++++++++++++++++++++------- comfy/model_base.py | 30 ++++ comfy/model_detection.py | 3 + comfy_extras/nodes_zimage.py | 88 ++++++++++ nodes.py | 1 + 5 files changed, 381 insertions(+), 58 deletions(-) create mode 100644 comfy_extras/nodes_zimage.py diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index afbab2ac7..139f879a1 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -13,10 +13,53 @@ from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.math import apply_rope import comfy.patcher_extension +import comfy.utils -def modulate(x, scale): - return x * (1 + scale.unsqueeze(1)) +def invert_slices(slices, length): + sorted_slices = sorted(slices) + result = [] + current = 0 + + for start, end in sorted_slices: + if current < start: + result.append((current, start)) + current = max(current, end) + + if current < length: + result.append((current, length)) + + return result + + +def modulate(x, scale, timestep_zero_index=None): + if timestep_zero_index is None: + return x * (1 + scale.unsqueeze(1)) + else: + scale = (1 + scale.unsqueeze(1)) + actual_batch = scale.size(0) // 2 + slices = timestep_zero_index + invert = invert_slices(timestep_zero_index, x.shape[1]) + for s in slices: + x[:, s[0]:s[1]] *= scale[actual_batch:] + for s in invert: + x[:, s[0]:s[1]] *= scale[:actual_batch] + return x + + +def apply_gate(gate, x, timestep_zero_index=None): + if timestep_zero_index is None: + return gate * x + else: + actual_batch = gate.size(0) // 2 + + slices = timestep_zero_index + invert = invert_slices(timestep_zero_index, x.shape[1]) + for s in slices: + x[:, s[0]:s[1]] *= gate[actual_batch:] + for s in invert: + x[:, s[0]:s[1]] *= gate[:actual_batch] + return x ############################################################################# # Core NextDiT Model # @@ -258,6 +301,7 @@ class JointTransformerBlock(nn.Module): x_mask: torch.Tensor, freqs_cis: torch.Tensor, adaln_input: Optional[torch.Tensor]=None, + timestep_zero_index=None, transformer_options={}, ): """ @@ -276,18 +320,18 @@ class JointTransformerBlock(nn.Module): assert adaln_input is not None scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) - x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( + x = x + apply_gate(gate_msa.unsqueeze(1).tanh(), self.attention_norm2( clamp_fp16(self.attention( - modulate(self.attention_norm1(x), scale_msa), + modulate(self.attention_norm1(x), scale_msa, timestep_zero_index=timestep_zero_index), x_mask, freqs_cis, transformer_options=transformer_options, - )) + ))), timestep_zero_index=timestep_zero_index ) - x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( + x = x + apply_gate(gate_mlp.unsqueeze(1).tanh(), self.ffn_norm2( clamp_fp16(self.feed_forward( - modulate(self.ffn_norm1(x), scale_mlp), - )) + modulate(self.ffn_norm1(x), scale_mlp, timestep_zero_index=timestep_zero_index), + ))), timestep_zero_index=timestep_zero_index ) else: assert adaln_input is None @@ -345,13 +389,37 @@ class FinalLayer(nn.Module): ), ) - def forward(self, x, c): + def forward(self, x, c, timestep_zero_index=None): scale = self.adaLN_modulation(c) - x = modulate(self.norm_final(x), scale) + x = modulate(self.norm_final(x), scale, timestep_zero_index=timestep_zero_index) x = self.linear(x) return x +def pad_zimage(feats, pad_token, pad_tokens_multiple): + pad_extra = (-feats.shape[1]) % pad_tokens_multiple + return torch.cat((feats, pad_token.to(device=feats.device, dtype=feats.dtype, copy=True).unsqueeze(0).repeat(feats.shape[0], pad_extra, 1)), dim=1), pad_extra + + +def pos_ids_x(start_t, H_tokens, W_tokens, batch_size, device, transformer_options={}): + rope_options = transformer_options.get("rope_options", None) + h_scale = 1.0 + w_scale = 1.0 + h_start = 0 + w_start = 0 + if rope_options is not None: + h_scale = rope_options.get("scale_y", 1.0) + w_scale = rope_options.get("scale_x", 1.0) + + h_start = rope_options.get("shift_y", 0.0) + w_start = rope_options.get("shift_x", 0.0) + x_pos_ids = torch.zeros((batch_size, H_tokens * W_tokens, 3), dtype=torch.float32, device=device) + x_pos_ids[:, :, 0] = start_t + x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() + x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() + return x_pos_ids + + class NextDiT(nn.Module): """ Diffusion model with a Transformer backbone. @@ -378,6 +446,7 @@ class NextDiT(nn.Module): time_scale=1.0, pad_tokens_multiple=None, clip_text_dim=None, + siglip_feat_dim=None, image_model=None, device=None, dtype=None, @@ -491,6 +560,41 @@ class NextDiT(nn.Module): for layer_id in range(n_layers) ] ) + + if siglip_feat_dim is not None: + self.siglip_embedder = nn.Sequential( + operation_settings.get("operations").RMSNorm(siglip_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), + operation_settings.get("operations").Linear( + siglip_feat_dim, + dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.siglip_refiner = nn.ModuleList( + [ + JointTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + modulation=False, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + self.siglip_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype)) + else: + self.siglip_embedder = None + self.siglip_refiner = None + self.siglip_pad_token = None + # This norm final is in the lumina 2.0 code but isn't actually used for anything. # self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings) @@ -531,70 +635,166 @@ class NextDiT(nn.Module): imgs = torch.stack(imgs, dim=0) return imgs - def patchify_and_embed( - self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={} - ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]: - bsz = len(x) - pH = pW = self.patch_size - device = x[0].device - orig_x = x - - if self.pad_tokens_multiple is not None: - pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple - cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype, copy=True).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1) + def embed_cap(self, cap_feats=None, offset=0, bsz=1, device=None, dtype=None): + if cap_feats is not None: + cap_feats = self.cap_embedder(cap_feats) + cap_feats_len = cap_feats.shape[1] + if self.pad_tokens_multiple is not None: + cap_feats, _ = pad_zimage(cap_feats, self.cap_pad_token, self.pad_tokens_multiple) + else: + cap_feats_len = 0 + cap_feats = self.cap_pad_token.to(device=device, dtype=dtype, copy=True).unsqueeze(0).repeat(bsz, self.pad_tokens_multiple, 1) cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device) - cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 + cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 + offset + embeds = (cap_feats,) + freqs_cis = (self.rope_embedder(cap_pos_ids).movedim(1, 2),) + return embeds, freqs_cis, cap_feats_len + + def embed_all(self, x, cap_feats=None, siglip_feats=None, offset=0, omni=False, transformer_options={}): + bsz = 1 + pH = pW = self.patch_size + device = x.device + embeds, freqs_cis, cap_feats_len = self.embed_cap(cap_feats, offset=offset, bsz=bsz, device=device, dtype=x.dtype) + + if not omni: + cap_feats_len = embeds[0].shape[1] + offset + embeds += (None,) + freqs_cis += (None,) + else: + cap_feats_len += offset + if siglip_feats is not None: + b, h, w, c = siglip_feats.shape + siglip_feats = siglip_feats.permute(0, 3, 1, 2).reshape(b, h * w, c) + siglip_feats = self.siglip_embedder(siglip_feats) + siglip_pos_ids = torch.zeros((bsz, siglip_feats.shape[1], 3), dtype=torch.float32, device=device) + siglip_pos_ids[:, :, 0] = cap_feats_len + 2 + siglip_pos_ids[:, :, 1] = (torch.linspace(0, h * 8 - 1, steps=h, dtype=torch.float32, device=device).floor()).view(-1, 1).repeat(1, w).flatten() + siglip_pos_ids[:, :, 2] = (torch.linspace(0, w * 8 - 1, steps=w, dtype=torch.float32, device=device).floor()).view(1, -1).repeat(h, 1).flatten() + if self.siglip_pad_token is not None: + siglip_feats, pad_extra = pad_zimage(siglip_feats, self.siglip_pad_token, self.pad_tokens_multiple) # TODO: double check + siglip_pos_ids = torch.nn.functional.pad(siglip_pos_ids, (0, 0, 0, pad_extra)) + else: + siglip_feats = self.siglip_pad_token.to(device=device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(bsz, self.pad_tokens_multiple, 1) + siglip_pos_ids = torch.zeros((bsz, siglip_feats.shape[1], 3), dtype=torch.float32, device=device) + + if siglip_feats is None: + embeds += (None,) + freqs_cis += (None,) + else: + embeds += (siglip_feats,) + freqs_cis += (self.rope_embedder(siglip_pos_ids).movedim(1, 2),) B, C, H, W = x.shape x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) - - rope_options = transformer_options.get("rope_options", None) - h_scale = 1.0 - w_scale = 1.0 - h_start = 0 - w_start = 0 - if rope_options is not None: - h_scale = rope_options.get("scale_y", 1.0) - w_scale = rope_options.get("scale_x", 1.0) - - h_start = rope_options.get("shift_y", 0.0) - w_start = rope_options.get("shift_x", 0.0) - - H_tokens, W_tokens = H // pH, W // pW - x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device) - x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1 - x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() - x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() - + x_pos_ids = pos_ids_x(cap_feats_len + 1, H // pH, W // pW, bsz, device, transformer_options=transformer_options) if self.pad_tokens_multiple is not None: - pad_extra = (-x.shape[1]) % self.pad_tokens_multiple - x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1) + x, pad_extra = pad_zimage(x, self.x_pad_token, self.pad_tokens_multiple) x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra)) - freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2) + embeds += (x,) + freqs_cis += (self.rope_embedder(x_pos_ids).movedim(1, 2),) + return embeds, freqs_cis, cap_feats_len + len(freqs_cis) - 1 + + + def patchify_and_embed( + self, x: torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, ref_latents=[], ref_contexts=[], siglip_feats=[], transformer_options={} + ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]: + bsz = x.shape[0] + cap_mask = None # TODO? + main_siglip = None + orig_x = x + + embeds = ([], [], []) + freqs_cis = ([], [], []) + leftover_cap = [] + + start_t = 0 + omni = len(ref_latents) > 0 + if omni: + for i, ref in enumerate(ref_latents): + if i < len(ref_contexts): + ref_con = ref_contexts[i] + else: + ref_con = None + if i < len(siglip_feats): + sig_feat = siglip_feats[i] + else: + sig_feat = None + + out = self.embed_all(ref, ref_con, sig_feat, offset=start_t, omni=omni, transformer_options=transformer_options) + for i, e in enumerate(out[0]): + embeds[i].append(comfy.utils.repeat_to_batch_size(e, bsz)) + freqs_cis[i].append(out[1][i]) + start_t = out[2] + leftover_cap = ref_contexts[len(ref_latents):] + + H, W = x.shape[-2], x.shape[-1] + img_sizes = [(H, W)] * bsz + out = self.embed_all(x, cap_feats, main_siglip, offset=start_t, omni=omni, transformer_options=transformer_options) + img_len = out[0][-1].shape[1] + cap_len = out[0][0].shape[1] + for i, e in enumerate(out[0]): + if e is not None: + e = comfy.utils.repeat_to_batch_size(e, bsz) + embeds[i].append(e) + freqs_cis[i].append(out[1][i]) + start_t = out[2] + + for cap in leftover_cap: + out = self.embed_cap(cap, offset=start_t, bsz=bsz, device=x.device, dtype=x.dtype) + cap_len += out[0][0].shape[1] + embeds[0].append(comfy.utils.repeat_to_batch_size(out[0][0], bsz)) + freqs_cis[0].append(out[1][0]) + start_t += out[2] patches = transformer_options.get("patches", {}) # refine context + cap_feats = torch.cat(embeds[0], dim=1) + cap_freqs_cis = torch.cat(freqs_cis[0], dim=1) for layer in self.context_refiner: - cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options) + cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options) + + feats = (cap_feats,) + fc = (cap_freqs_cis,) + + if omni: + siglip_mask = None + siglip_feats_combined = torch.cat(embeds[1], dim=1) + siglip_feats_freqs_cis = torch.cat(freqs_cis[1], dim=1) + if self.siglip_refiner is not None: + for layer in self.siglip_refiner: + siglip_feats_combined = layer(siglip_feats_combined, siglip_mask, siglip_feats_freqs_cis, transformer_options=transformer_options) + feats += (siglip_feats_combined,) + fc += (siglip_feats_freqs_cis,) padded_img_mask = None + x = torch.cat(embeds[-1], dim=1) + fc_x = torch.cat(freqs_cis[-1], dim=1) + if omni: + timestep_zero_index = [(x.shape[1] - img_len, x.shape[1])] + else: + timestep_zero_index = None + x_input = x for i, layer in enumerate(self.noise_refiner): - x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options) + x = layer(x, padded_img_mask, fc_x, t, timestep_zero_index=timestep_zero_index, transformer_options=transformer_options) if "noise_refiner" in patches: for p in patches["noise_refiner"]: - out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"}) + out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": fc_x, "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"}) if "img" in out: x = out["img"] - padded_full_embed = torch.cat((cap_feats, x), dim=1) + padded_full_embed = torch.cat(feats + (x,), dim=1) + if timestep_zero_index is not None: + ind = padded_full_embed.shape[1] - x.shape[1] + timestep_zero_index = [(ind + x.shape[1] - img_len, ind + x.shape[1])] + timestep_zero_index.append((feats[0].shape[1] - cap_len, feats[0].shape[1])) + mask = None - img_sizes = [(H, W)] * bsz - l_effective_cap_len = [cap_feats.shape[1]] * bsz - return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis + l_effective_cap_len = [padded_full_embed.shape[1] - img_len] * bsz + return padded_full_embed, mask, img_sizes, l_effective_cap_len, torch.cat(fc + (fc_x,), dim=1), timestep_zero_index def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( @@ -604,7 +804,11 @@ class NextDiT(nn.Module): ).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs) # def forward(self, x, t, cap_feats, cap_mask): - def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs): + def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, ref_latents=[], ref_contexts=[], siglip_feats=[], transformer_options={}, **kwargs): + omni = len(ref_latents) > 0 + if omni: + timesteps = torch.cat([timesteps * 0, timesteps], dim=0) + t = 1.0 - timesteps cap_feats = context cap_mask = attention_mask @@ -619,8 +823,6 @@ class NextDiT(nn.Module): t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D) adaln_input = t - cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute - if self.clip_text_pooled_proj is not None: pooled = kwargs.get("clip_text_pooled", None) if pooled is not None: @@ -632,7 +834,7 @@ class NextDiT(nn.Module): patches = transformer_options.get("patches", {}) x_is_tensor = isinstance(x, torch.Tensor) - img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options) + img, mask, img_size, cap_size, freqs_cis, timestep_zero_index = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, ref_latents=ref_latents, ref_contexts=ref_contexts, siglip_feats=siglip_feats, transformer_options=transformer_options) freqs_cis = freqs_cis.to(img.device) transformer_options["total_blocks"] = len(self.layers) @@ -640,7 +842,7 @@ class NextDiT(nn.Module): img_input = img for i, layer in enumerate(self.layers): transformer_options["block_index"] = i - img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + img = layer(img, mask, freqs_cis, adaln_input, timestep_zero_index=timestep_zero_index, transformer_options=transformer_options) if "double_block" in patches: for p in patches["double_block"]: out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) @@ -649,8 +851,7 @@ class NextDiT(nn.Module): if "txt" in out: img[:, :cap_size[0]] = out["txt"] - img = self.final_layer(img, adaln_input) + img = self.final_layer(img, adaln_input, timestep_zero_index=timestep_zero_index) img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w] - return -img diff --git a/comfy/model_base.py b/comfy/model_base.py index 49efd700b..28ba2643e 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1150,6 +1150,7 @@ class CosmosPredict2(BaseModel): class Lumina2(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT) + self.memory_usage_factor_conds = ("ref_latents",) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) @@ -1169,6 +1170,35 @@ class Lumina2(BaseModel): if clip_text_pooled is not None: out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) + clip_vision_outputs = kwargs.get("clip_vision_outputs", list(map(lambda a: a.get("clip_vision_output"), kwargs.get("unclip_conditioning", [{}])))) # Z Image omni + if clip_vision_outputs is not None and len(clip_vision_outputs) > 0: + sigfeats = [] + for clip_vision_output in clip_vision_outputs: + if clip_vision_output is not None: + image_size = clip_vision_output.image_sizes[0] + shape = clip_vision_output.last_hidden_state.shape + sigfeats.append(clip_vision_output.last_hidden_state.reshape(shape[0], image_size[1] // 16, image_size[2] // 16, shape[-1])) + if len(sigfeats) > 0: + out['siglip_feats'] = comfy.conds.CONDList(sigfeats) + + ref_latents = kwargs.get("reference_latents", None) + if ref_latents is not None: + latents = [] + for lat in ref_latents: + latents.append(self.process_latent_in(lat)) + out['ref_latents'] = comfy.conds.CONDList(latents) + + ref_contexts = kwargs.get("reference_latents_text_embeds", None) + if ref_contexts is not None: + out['ref_contexts'] = comfy.conds.CONDList(ref_contexts) + + return out + + def extra_conds_shapes(self, **kwargs): + out = {} + ref_latents = kwargs.get("reference_latents", None) + if ref_latents is not None: + out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))]) return out class WAN21(BaseModel): diff --git a/comfy/model_detection.py b/comfy/model_detection.py index aff5a50b9..42884f797 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -446,6 +446,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["time_scale"] = 1000.0 if '{}cap_pad_token'.format(key_prefix) in state_dict_keys: dit_config["pad_tokens_multiple"] = 32 + sig_weight = state_dict.get('{}siglip_embedder.0.weight'.format(key_prefix), None) + if sig_weight is not None: + dit_config["siglip_feat_dim"] = sig_weight.shape[0] return dit_config diff --git a/comfy_extras/nodes_zimage.py b/comfy_extras/nodes_zimage.py new file mode 100644 index 000000000..2ee3c43b1 --- /dev/null +++ b/comfy_extras/nodes_zimage.py @@ -0,0 +1,88 @@ +import node_helpers +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +import math +import comfy.utils + + +class TextEncodeZImageOmni(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="TextEncodeZImageOmni", + category="advanced/conditioning", + is_experimental=True, + inputs=[ + io.Clip.Input("clip"), + io.ClipVision.Input("image_encoder", optional=True), + io.String.Input("prompt", multiline=True, dynamic_prompts=True), + io.Boolean.Input("auto_resize_images", default=True), + io.Vae.Input("vae", optional=True), + io.Image.Input("image1", optional=True), + io.Image.Input("image2", optional=True), + io.Image.Input("image3", optional=True), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) + + @classmethod + def execute(cls, clip, prompt, image_encoder=None, auto_resize_images=True, vae=None, image1=None, image2=None, image3=None) -> io.NodeOutput: + ref_latents = [] + images = list(filter(lambda a: a is not None, [image1, image2, image3])) + + prompt_list = [] + template = None + if len(images) > 0: + prompt_list = ["<|im_start|>user\n<|vision_start|>"] + prompt_list += ["<|vision_end|><|vision_start|>"] * (len(images) - 1) + prompt_list += ["<|vision_end|><|im_end|>"] + template = "<|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n<|vision_start|>" + + encoded_images = [] + + for i, image in enumerate(images): + if image_encoder is not None: + encoded_images.append(image_encoder.encode_image(image)) + + if vae is not None: + if auto_resize_images: + samples = image.movedim(-1, 1) + total = int(1024 * 1024) + scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) + width = round(samples.shape[3] * scale_by / 8.0) * 8 + height = round(samples.shape[2] * scale_by / 8.0) * 8 + + image = comfy.utils.common_upscale(samples, width, height, "area", "disabled").movedim(1, -1) + ref_latents.append(vae.encode(image)) + + tokens = clip.tokenize(prompt, llama_template=template) + conditioning = clip.encode_from_tokens_scheduled(tokens) + + extra_text_embeds = [] + for p in prompt_list: + tokens = clip.tokenize(p, llama_template="{}") + text_embeds = clip.encode_from_tokens_scheduled(tokens) + extra_text_embeds.append(text_embeds[0][0]) + + if len(ref_latents) > 0: + conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": ref_latents}, append=True) + if len(encoded_images) > 0: + conditioning = node_helpers.conditioning_set_values(conditioning, {"clip_vision_outputs": encoded_images}, append=True) + if len(extra_text_embeds) > 0: + conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents_text_embeds": extra_text_embeds}, append=True) + + return io.NodeOutput(conditioning) + + +class ZImageExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + TextEncodeZImageOmni, + ] + + +async def comfy_entrypoint() -> ZImageExtension: + return ZImageExtension() diff --git a/nodes.py b/nodes.py index cba8eacc2..ea5d6e525 100644 --- a/nodes.py +++ b/nodes.py @@ -2373,6 +2373,7 @@ async def init_builtin_extra_nodes(): "nodes_kandinsky5.py", "nodes_wanmove.py", "nodes_image_compare.py", + "nodes_zimage.py", ] import_failed = []