From c38e7d6599be1bdce580ccfdbb20b928315af05e Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Thu, 27 Nov 2025 12:28:44 +0800 Subject: [PATCH 01/64] block info (#10841) --- comfy/ldm/flux/model.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index 1a24e6d95..d5674dea6 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -171,7 +171,10 @@ class Flux(nn.Module): pe = None blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -215,7 +218,10 @@ class Flux(nn.Module): if self.params.global_modulation: vec, _ = self.single_stream_modulation(vec_orig) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} From f17251bec65b5760cfedec29eace7d77f4b35130 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 27 Nov 2025 16:03:03 +1000 Subject: [PATCH 02/64] Account for the VRAM cost of weight offloading (#10733) * mm: default to 0 for NUM_STREAMS Dont count the compute stream as an offload stream. This makes async offload accounting easier. * mm: remove 128MB minimum This is from a previous offloading system requirement. Remove it to make behaviour of the loader and partial unloader consistent. * mp: order the module list by offload expense Calculate an approximate offloading temporary VRAM cost to offload a weight and primary order the module load list by that. In the simple case this is just the same as the module weight, but with Loras, a weight with a lora consumes considerably more VRAM to do the Lora application on-the-fly. This will slightly prioritize lora weights, but is really for proper VRAM offload accounting. * mp: Account for the VRAM cost of weight offloading when checking the VRAM headroom, assume that the weight needs to be offloaded, and only load if it has space for both the load and offload * the number of streams. As the weights are ordered from largest to smallest by offload cost this is guaranteed to fit in VRAM (tm), as all weights that follow will be smaller. Make the partial unload aware of this system as well by saving the budget for offload VRAM to the model state and accounting accordingly. Its possible that partial unload increases the size of the largest offloaded weights, and thus needs to unload a little bit more than asked to accomodate the bigger temp buffers. Honor the existing codes floor on model weight loading of 128MB by having the patcher honor this separately withough regard to offloading. Otherwise when MM specifies its 128MB minimum, MP will see the biggest weights, and budget that 128MB to only offload buffer and load nothing which isnt the intent of these minimums. The same clamp applies in case of partial offload of the currently loading model. --- comfy/model_management.py | 6 ++-- comfy/model_patcher.py | 59 +++++++++++++++++++++++++++++---------- 2 files changed, 48 insertions(+), 17 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index a9327ac80..9c403d580 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -689,7 +689,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu loaded_memory = loaded_model.model_loaded_memory() current_free_mem = get_free_memory(torch_dev) + loaded_memory - lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) + lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) lowvram_model_memory = lowvram_model_memory - loaded_memory if lowvram_model_memory == 0: @@ -1012,7 +1012,7 @@ def force_channels_last(): STREAMS = {} -NUM_STREAMS = 1 +NUM_STREAMS = 0 if args.async_offload: NUM_STREAMS = 2 logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS)) @@ -1030,7 +1030,7 @@ def current_stream(device): stream_counters = {} def get_offload_stream(device): stream_counter = stream_counters.get(device, 0) - if NUM_STREAMS <= 1: + if NUM_STREAMS == 0: return None if device in STREAMS: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 73adc7f70..3eac77275 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -148,6 +148,15 @@ class LowVramPatch: else: return out +#The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3 +LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3 + +def low_vram_patch_estimate_vram(model, key): + weight, set_func, convert_func = get_key_weight(model, key) + if weight is None: + return 0 + return weight.numel() * torch.float32.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR + def get_key_weight(model, key): set_func = None convert_func = None @@ -269,6 +278,9 @@ class ModelPatcher: if not hasattr(self.model, 'current_weight_patches_uuid'): self.model.current_weight_patches_uuid = None + if not hasattr(self.model, 'model_offload_buffer_memory'): + self.model.model_offload_buffer_memory = 0 + def model_size(self): if self.size > 0: return self.size @@ -662,7 +674,16 @@ class ModelPatcher: skip = True # skip random weights in non leaf modules break if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): - loading.append((comfy.model_management.module_size(m), n, m, params)) + module_mem = comfy.model_management.module_size(m) + module_offload_mem = module_mem + if hasattr(m, "comfy_cast_weights"): + weight_key = "{}.weight".format(n) + bias_key = "{}.bias".format(n) + if weight_key in self.patches: + module_offload_mem += low_vram_patch_estimate_vram(self.model, weight_key) + if bias_key in self.patches: + module_offload_mem += low_vram_patch_estimate_vram(self.model, bias_key) + loading.append((module_offload_mem, module_mem, n, m, params)) return loading def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): @@ -676,20 +697,22 @@ class ModelPatcher: load_completely = [] offloaded = [] + offload_buffer = 0 loading.sort(reverse=True) for x in loading: - n = x[1] - m = x[2] - params = x[3] - module_mem = x[0] + module_offload_mem, module_mem, n, m, params = x lowvram_weight = False + potential_offload = max(offload_buffer, module_offload_mem * (comfy.model_management.NUM_STREAMS + 1)) + lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory + weight_key = "{}.weight".format(n) bias_key = "{}.bias".format(n) if not full_load and hasattr(m, "comfy_cast_weights"): - if mem_counter + module_mem >= lowvram_model_memory: + if not lowvram_fits: + offload_buffer = potential_offload lowvram_weight = True lowvram_counter += 1 lowvram_mem_counter += module_mem @@ -723,9 +746,11 @@ class ModelPatcher: if hasattr(m, "comfy_cast_weights"): wipe_lowvram_weight(m) - if full_load or mem_counter + module_mem < lowvram_model_memory: + if full_load or lowvram_fits: mem_counter += module_mem load_completely.append((module_mem, n, m, params)) + else: + offload_buffer = potential_offload if cast_weight and hasattr(m, "comfy_cast_weights"): m.prev_comfy_cast_weights = m.comfy_cast_weights @@ -766,7 +791,7 @@ class ModelPatcher: self.pin_weight_to_device("{}.{}".format(n, param)) if lowvram_counter > 0: - logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter)) + logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) @@ -778,6 +803,7 @@ class ModelPatcher: self.model.lowvram_patch_counter += patch_counter self.model.device = device_to self.model.model_loaded_weight_memory = mem_counter + self.model.model_offload_buffer_memory = offload_buffer self.model.current_weight_patches_uuid = self.patches_uuid for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): @@ -831,6 +857,7 @@ class ModelPatcher: self.model.to(device_to) self.model.device = device_to self.model.model_loaded_weight_memory = 0 + self.model.model_offload_buffer_memory = 0 for m in self.model.modules(): if hasattr(m, "comfy_patched_weights"): @@ -849,13 +876,14 @@ class ModelPatcher: patch_counter = 0 unload_list = self._load_list() unload_list.sort() + offload_buffer = self.model.model_offload_buffer_memory + for unload in unload_list: - if memory_to_free < memory_freed: + if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed: break - module_mem = unload[0] - n = unload[1] - m = unload[2] - params = unload[3] + module_offload_mem, module_mem, n, m, params = unload + + potential_offload = (comfy.model_management.NUM_STREAMS + 1) * module_offload_mem lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: @@ -906,15 +934,18 @@ class ModelPatcher: m.comfy_cast_weights = True m.comfy_patched_weights = False memory_freed += module_mem + offload_buffer = max(offload_buffer, potential_offload) logging.debug("freed {}".format(n)) for param in params: self.pin_weight_to_device("{}.{}".format(n, param)) + self.model.model_lowvram = True self.model.lowvram_patch_counter += patch_counter self.model.model_loaded_weight_memory -= memory_freed - logging.info("loaded partially: {:.2f} MB loaded, lowvram patches: {}".format(self.model.model_loaded_weight_memory / (1024 * 1024), self.model.lowvram_patch_counter)) + self.model.model_offload_buffer_memory = offload_buffer + logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter)) return memory_freed def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): From 3f382a4f9884f7b672557028adb9bb85d075820d Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 28 Nov 2025 02:06:30 +1000 Subject: [PATCH 03/64] quant ops: Dequantize weight in-place (#10935) In flux2 these weights are huge (200MB). As plain_tensor is a throw-away deep copy, do this multiplication in-place to save VRAM. --- comfy/quant_ops.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index d2f3e7397..9b924560b 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -425,7 +425,8 @@ class TensorCoreFP8Layout(QuantizedLayout): @staticmethod def dequantize(qdata, scale, orig_dtype, **kwargs): plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype) - return plain_tensor * scale + plain_tensor.mul_(scale) + return plain_tensor @classmethod def get_plain_tensors(cls, qtensor): From b59750a86a4687056528f1d59470e207063a73a3 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Fri, 28 Nov 2025 06:12:56 +0800 Subject: [PATCH 04/64] Update template to 0.7.23 (#10949) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9291552d3..e0b2c566b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.32.9 -comfyui-workflow-templates==0.7.20 +comfyui-workflow-templates==0.7.23 comfyui-embedded-docs==0.3.1 torch torchsde From 9d8a817985bb069685e440b38762f95dc834d242 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 27 Nov 2025 14:46:12 -0800 Subject: [PATCH 05/64] Enable async offloading by default on Nvidia. (#10953) Add --disable-async-offload to disable it. If this causes OOMs that go away when you --disable-async-offload please report it. --- comfy/cli_args.py | 3 ++- comfy/model_management.py | 13 +++++++++++-- 2 files changed, 13 insertions(+), 3 deletions(-) diff --git a/comfy/cli_args.py b/comfy/cli_args.py index d2b60e347..5f0dfaa10 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -131,7 +131,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.") -parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.") +parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.") +parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.") parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.") diff --git a/comfy/model_management.py b/comfy/model_management.py index 9c403d580..38c506df5 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1013,8 +1013,17 @@ def force_channels_last(): STREAMS = {} NUM_STREAMS = 0 -if args.async_offload: - NUM_STREAMS = 2 +if args.async_offload is not None: + NUM_STREAMS = args.async_offload +else: + # Enable by default on Nvidia + if is_nvidia(): + NUM_STREAMS = 2 + +if args.disable_async_offload: + NUM_STREAMS = 0 + +if NUM_STREAMS > 0: logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS)) def current_stream(device): From 52e778fff3c1d6f32c8d14cba9864faddba8475d Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 28 Nov 2025 12:52:59 +0200 Subject: [PATCH 06/64] feat(Kling-API-Nodes): add v2-5-turbo model to FirstLastFrame node (#10938) --- comfy_api_nodes/nodes_kling.py | 60 +++++++++++++++------------------- 1 file changed, 26 insertions(+), 34 deletions(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 36852038b..23a7f55f1 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -4,8 +4,6 @@ For source of truth on the allowed permutations of request fields, please refere - [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) """ -from __future__ import annotations -from typing import Optional, TypeVar import math import logging @@ -66,9 +64,7 @@ from comfy_api_nodes.util import ( poll_op, ) from comfy_api.input_impl import VideoFromFile -from comfy_api.input.basic_types import AudioInput -from comfy_api.input.video_types import VideoInput -from comfy_api.latest import ComfyExtension, IO +from comfy_api.latest import ComfyExtension, IO, Input KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" @@ -94,8 +90,6 @@ AVERAGE_DURATION_IMAGE_GEN = 32 AVERAGE_DURATION_VIDEO_EFFECTS = 320 AVERAGE_DURATION_VIDEO_EXTEND = 320 -R = TypeVar("R") - MODE_TEXT2VIDEO = { "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), @@ -130,6 +124,8 @@ MODE_START_END_FRAME = { "pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"), "pro mode / 5s duration / kling-v2-1": ("pro", "5", "kling-v2-1"), "pro mode / 10s duration / kling-v2-1": ("pro", "10", "kling-v2-1"), + "pro mode / 5s duration / kling-v2-5-turbo": ("pro", "5", "kling-v2-5-turbo"), + "pro mode / 10s duration / kling-v2-5-turbo": ("pro", "10", "kling-v2-5-turbo"), } """ Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. @@ -296,7 +292,7 @@ def get_video_from_response(response) -> KlingVideoResult: return video -def get_video_url_from_response(response) -> Optional[str]: +def get_video_url_from_response(response) -> str | None: """Returns the first video url from the Kling video generation task result. Will not raise an error if the response is not valid. """ @@ -315,7 +311,7 @@ def get_images_from_response(response) -> list[KlingImageResult]: return images -def get_images_urls_from_response(response) -> Optional[str]: +def get_images_urls_from_response(response) -> str | None: """Returns the list of image urls from the Kling image generation task result. Will not raise an error if the response is not valid. If there is only one image, returns the url as a string. If there are multiple images, returns a list of urls. """ @@ -349,7 +345,7 @@ async def execute_text2video( model_mode: str, duration: str, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, + camera_control: KlingCameraControl | None = None, ) -> IO.NodeOutput: validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) task_creation_response = await sync_op( @@ -394,8 +390,8 @@ async def execute_image2video( model_mode: str, aspect_ratio: str, duration: str, - camera_control: Optional[KlingCameraControl] = None, - end_frame: Optional[torch.Tensor] = None, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, ) -> IO.NodeOutput: validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_I2V) validate_input_image(start_frame) @@ -451,8 +447,8 @@ async def execute_video_effect( model_name: str, duration: KlingVideoGenDuration, image_1: torch.Tensor, - image_2: Optional[torch.Tensor] = None, - model_mode: Optional[KlingVideoGenMode] = None, + image_2: torch.Tensor | None = None, + model_mode: KlingVideoGenMode | None = None, ) -> tuple[VideoFromFile, str, str]: if dual_character: request_input_field = KlingDualCharacterEffectInput( @@ -499,13 +495,13 @@ async def execute_video_effect( async def execute_lipsync( cls: type[IO.ComfyNode], - video: VideoInput, - audio: Optional[AudioInput] = None, - voice_language: Optional[str] = None, - model_mode: Optional[str] = None, - text: Optional[str] = None, - voice_speed: Optional[float] = None, - voice_id: Optional[str] = None, + video: Input.Video, + audio: Input.Audio | None = None, + voice_language: str | None = None, + model_mode: str | None = None, + text: str | None = None, + voice_speed: float | None = None, + voice_id: str | None = None, ) -> IO.NodeOutput: if text: validate_string(text, field_name="Text", max_length=MAX_PROMPT_LENGTH_LIP_SYNC) @@ -787,7 +783,7 @@ class KlingCameraControlT2VNode(IO.ComfyNode): negative_prompt: str, cfg_scale: float, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, + camera_control: KlingCameraControl | None = None, ) -> IO.NodeOutput: return await execute_text2video( cls, @@ -854,8 +850,8 @@ class KlingImage2VideoNode(IO.ComfyNode): mode: str, aspect_ratio: str, duration: str, - camera_control: Optional[KlingCameraControl] = None, - end_frame: Optional[torch.Tensor] = None, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, ) -> IO.NodeOutput: return await execute_image2video( cls, @@ -965,15 +961,11 @@ class KlingStartEndFrameNode(IO.ComfyNode): IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), IO.Float.Input("cfg_scale", default=0.5, min=0.0, max=1.0), - IO.Combo.Input( - "aspect_ratio", - options=[i.value for i in KlingVideoGenAspectRatio], - default="16:9", - ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), IO.Combo.Input( "mode", options=modes, - default=modes[2], + default=modes[8], tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", ), ], @@ -1254,8 +1246,8 @@ class KlingLipSyncAudioToVideoNode(IO.ComfyNode): @classmethod async def execute( cls, - video: VideoInput, - audio: AudioInput, + video: Input.Video, + audio: Input.Audio, voice_language: str, ) -> IO.NodeOutput: return await execute_lipsync( @@ -1314,7 +1306,7 @@ class KlingLipSyncTextToVideoNode(IO.ComfyNode): @classmethod async def execute( cls, - video: VideoInput, + video: Input.Video, text: str, voice: str, voice_speed: float, @@ -1471,7 +1463,7 @@ class KlingImageGenerationNode(IO.ComfyNode): human_fidelity: float, n: int, aspect_ratio: KlingImageGenAspectRatio, - image: Optional[torch.Tensor] = None, + image: torch.Tensor | None = None, ) -> IO.NodeOutput: validate_string(prompt, field_name="prompt", min_length=1, max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) validate_string(negative_prompt, field_name="negative_prompt", max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) From ca7808f240d4d53e594d3b95753240313864c992 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 29 Nov 2025 05:43:17 +0900 Subject: [PATCH 07/64] fix(user_manager): fix typo in move_userdata dest validation (#10967) Check `dest` instead of `source` when validating destination path in move_userdata endpoint. --- app/user_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/app/user_manager.py b/app/user_manager.py index a2d376c0c..675f6c0c6 100644 --- a/app/user_manager.py +++ b/app/user_manager.py @@ -424,7 +424,7 @@ class UserManager(): return source dest = get_user_data_path(request, check_exists=False, param="dest") - if not isinstance(source, str): + if not isinstance(dest, str): return dest overwrite = request.query.get("overwrite", 'true') != "false" From f55c98a89f76fc06c435a728bc2e76b6b4051463 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 13:16:46 -0800 Subject: [PATCH 08/64] Disable offload stream when torch compile. (#10961) --- comfy/model_management.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 38c506df5..d8ce80010 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1042,6 +1042,9 @@ def get_offload_stream(device): if NUM_STREAMS == 0: return None + if torch.compiler.is_compiling(): + return None + if device in STREAMS: ss = STREAMS[device] #Sync the oldest stream in the queue with the current From 6484ac89dc683b178d9ef3f7406800f7132147ba Mon Sep 17 00:00:00 2001 From: Urle Sistiana <55231606+urlesistiana@users.noreply.github.com> Date: Sat, 29 Nov 2025 05:33:07 +0800 Subject: [PATCH 09/64] fix QuantizedTensor.is_contiguous (#10956) (#10959) --- comfy/quant_ops.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 9b924560b..bb1fb860c 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -235,8 +235,8 @@ class QuantizedTensor(torch.Tensor): def is_pinned(self): return self._qdata.is_pinned() - def is_contiguous(self): - return self._qdata.is_contiguous() + def is_contiguous(self, *arg, **kwargs): + return self._qdata.is_contiguous(*arg, **kwargs) # ============================================================================== # Generic Utilities (Layout-Agnostic Operations) From 0ff0457892467ef8a6ea235dcd0618c10ca44ee3 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Sat, 29 Nov 2025 07:38:12 +1000 Subject: [PATCH 10/64] mm: wrap the raw stream in context manager (#10958) The documentation of torch.foo.Stream being usable with with: suggests it starts at version 2.7. Use the old API for backwards compatibility. --- comfy/model_management.py | 19 +++++++++++++++---- comfy/ops.py | 2 ++ 2 files changed, 17 insertions(+), 4 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index d8ce80010..aeddbaefe 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1055,7 +1055,9 @@ def get_offload_stream(device): elif is_device_cuda(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.cuda.Stream(device=device, priority=0)) + s1 = torch.cuda.Stream(device=device, priority=0) + s1.as_context = torch.cuda.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter @@ -1063,7 +1065,9 @@ def get_offload_stream(device): elif is_device_xpu(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.xpu.Stream(device=device, priority=0)) + s1 = torch.xpu.Stream(device=device, priority=0) + s1.as_context = torch.xpu.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter @@ -1081,12 +1085,19 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str if dtype is None or weight.dtype == dtype: return weight if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: return weight.to(dtype=dtype, copy=copy) return weight.to(dtype=dtype, copy=copy) + if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) else: diff --git a/comfy/ops.py b/comfy/ops.py index a0ff4e8f1..61a2f0754 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -95,6 +95,8 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if offload_stream is not None: wf_context = offload_stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(offload_stream) else: wf_context = contextlib.nullcontext() From 065a2fbbec6af5c8e19a3add29703f83faf672d6 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 16:37:39 -0800 Subject: [PATCH 11/64] Update driver link in AMD portable README (#10974) --- .ci/windows_amd_base_files/README_VERY_IMPORTANT.txt | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt index 96a500be2..2cbb00d99 100755 --- a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt +++ b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt @@ -1,5 +1,5 @@ -As of the time of writing this you need this preview driver for best results: -https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html +As of the time of writing this you need this driver for best results: +https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html HOW TO RUN: @@ -25,3 +25,4 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor. + From b9070857092a78cc952d70025fdcc0ff540d96ec Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 29 Nov 2025 02:40:19 +0200 Subject: [PATCH 12/64] Support video tiny VAEs (#10884) * Support video tiny VAEs * lighttaew scaling fix * Also support video taes in previews Only first frame for now as live preview playback is currently only available through VHS custom nodes. * Support Wan 2.1 lightVAE * Relocate elif block and set Wan VAE dim directly without using pruning rate for lightvae --- comfy/latent_formats.py | 5 +- comfy/sd.py | 34 +++++++- comfy/taesd/taehv.py | 171 ++++++++++++++++++++++++++++++++++++++++ latent_preview.py | 28 +++++-- nodes.py | 18 ++++- 5 files changed, 244 insertions(+), 12 deletions(-) create mode 100644 comfy/taesd/taehv.py diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 8e110f45d..f1ca0151e 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -431,6 +431,7 @@ class HunyuanVideo(LatentFormat): ] latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761] + taesd_decoder_name = "taehv" class Cosmos1CV8x8x8(LatentFormat): latent_channels = 16 @@ -494,7 +495,7 @@ class Wan21(LatentFormat): ]).view(1, self.latent_channels, 1, 1, 1) - self.taesd_decoder_name = None #TODO + self.taesd_decoder_name = "lighttaew2_1" def process_in(self, latent): latents_mean = self.latents_mean.to(latent.device, latent.dtype) @@ -565,6 +566,7 @@ class Wan22(Wan21): def __init__(self): self.scale_factor = 1.0 + self.taesd_decoder_name = "lighttaew2_2" self.latents_mean = torch.tensor([ -0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557, -0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825, @@ -719,6 +721,7 @@ class HunyuanVideo15(LatentFormat): latent_channels = 32 latent_dimensions = 3 scale_factor = 1.03682 + taesd_decoder_name = "lighttaehy1_5" class Hunyuan3Dv2(LatentFormat): latent_channels = 64 diff --git a/comfy/sd.py b/comfy/sd.py index 350fae92b..9eeb0c45a 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -60,6 +60,8 @@ import comfy.lora_convert import comfy.hooks import comfy.t2i_adapter.adapter import comfy.taesd.taesd +import comfy.taesd.taehv +import comfy.latent_formats import comfy.ldm.flux.redux @@ -508,13 +510,14 @@ class VAE: self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype) else: # Wan 2.1 VAE + dim = sd["decoder.head.0.gamma"].shape[0] self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) self.upscale_index_formula = (4, 8, 8) self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) self.downscale_index_formula = (4, 8, 8) self.latent_dim = 3 self.latent_channels = 16 - ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} + ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype) @@ -584,6 +587,35 @@ class VAE: self.process_input = lambda audio: audio self.working_dtypes = [torch.float32] self.crop_input = False + elif "decoder.22.bias" in sd: # taehv, taew and lighttae + self.latent_channels = sd["decoder.1.weight"].shape[1] + self.latent_dim = 3 + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16) + self.upscale_index_formula = (4, 16, 16) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16) + self.downscale_index_formula = (4, 16, 16) + if self.latent_channels == 48: # Wan 2.2 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.process_output = lambda image: image + self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)) + elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15) + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) + else: + if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical + latent_format=comfy.latent_formats.HunyuanVideo + else: + latent_format=None # lighttaew2_1 doesn't need scaling + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format) + self.process_input = self.process_output = lambda image: image + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) + self.upscale_index_formula = (4, 8, 8) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) + self.downscale_index_formula = (4, 8, 8) + self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)) + self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) else: logging.warning("WARNING: No VAE weights detected, VAE not initalized.") self.first_stage_model = None diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py new file mode 100644 index 000000000..3dfe1e4d4 --- /dev/null +++ b/comfy/taesd/taehv.py @@ -0,0 +1,171 @@ +# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv + +import torch +import torch.nn as nn +import torch.nn.functional as F +from tqdm.auto import tqdm +from collections import namedtuple, deque + +import comfy.ops +operations=comfy.ops.disable_weight_init + +DecoderResult = namedtuple("DecoderResult", ("frame", "memory")) +TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index")) + +def conv(n_in, n_out, **kwargs): + return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + +class Clamp(nn.Module): + def forward(self, x): + return torch.tanh(x / 3) * 3 + +class MemBlock(nn.Module): + def __init__(self, n_in, n_out, act_func): + super().__init__() + self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out)) + self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.act = act_func + def forward(self, x, past): + return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x)) + +class TPool(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + return self.conv(x.reshape(-1, self.stride * C, H, W)) + +class TGrow(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + x = self.conv(x) + return x.reshape(-1, C, H, W) + +def apply_model_with_memblocks(model, x, parallel, show_progress_bar): + + B, T, C, H, W = x.shape + if parallel: + x = x.reshape(B*T, C, H, W) + # parallel over input timesteps, iterate over blocks + for b in tqdm(model, disable=not show_progress_bar): + if isinstance(b, MemBlock): + BT, C, H, W = x.shape + T = BT // B + _x = x.reshape(B, T, C, H, W) + mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape) + x = b(x, mem) + else: + x = b(x) + BT, C, H, W = x.shape + T = BT // B + x = x.view(B, T, C, H, W) + else: + out = [] + work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))]) + progress_bar = tqdm(range(T), disable=not show_progress_bar) + mem = [None] * len(model) + while work_queue: + xt, i = work_queue.popleft() + if i == 0: + progress_bar.update(1) + if i == len(model): + out.append(xt) + del xt + else: + b = model[i] + if isinstance(b, MemBlock): + if mem[i] is None: + xt_new = b(xt, xt * 0) + mem[i] = xt.detach().clone() + else: + xt_new = b(xt, mem[i]) + mem[i] = xt.detach().clone() + del xt + work_queue.appendleft(TWorkItem(xt_new, i+1)) + elif isinstance(b, TPool): + if mem[i] is None: + mem[i] = [] + mem[i].append(xt.detach().clone()) + if len(mem[i]) == b.stride: + B, C, H, W = xt.shape + xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W)) + mem[i] = [] + work_queue.appendleft(TWorkItem(xt, i+1)) + elif isinstance(b, TGrow): + xt = b(xt) + NT, C, H, W = xt.shape + for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)): + work_queue.appendleft(TWorkItem(xt_next, i+1)) + del xt + else: + xt = b(xt) + work_queue.appendleft(TWorkItem(xt, i+1)) + progress_bar.close() + x = torch.stack(out, 1) + return x + + +class TAEHV(nn.Module): + def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None, show_progress_bar=True): + super().__init__() + self.image_channels = 3 + self.patch_size = 1 + self.latent_channels = latent_channels + self.parallel = parallel + self.latent_format = latent_format + self.show_progress_bar = show_progress_bar + self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x) + self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x) + if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5 + self.patch_size = 2 + if self.latent_channels == 32: # HunyuanVideo1.5 + act_func = nn.LeakyReLU(0.2, inplace=True) + else: # HunyuanVideo, Wan 2.1 + act_func = nn.ReLU(inplace=True) + + self.encoder = nn.Sequential( + conv(self.image_channels*self.patch_size**2, 64), act_func, + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + conv(64, self.latent_channels), + ) + n_f = [256, 128, 64, 64] + self.frames_to_trim = 2**sum(decoder_time_upscale) - 1 + self.decoder = nn.Sequential( + Clamp(), conv(self.latent_channels, n_f[0]), act_func, + MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False), + MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False), + MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False), + act_func, conv(n_f[3], self.image_channels*self.patch_size**2), + ) + @property + def show_progress_bar(self): + return self._show_progress_bar + + @show_progress_bar.setter + def show_progress_bar(self, value): + self._show_progress_bar = value + + def encode(self, x, **kwargs): + if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + if x.shape[1] % 4 != 0: + # pad at end to multiple of 4 + n_pad = 4 - x.shape[1] % 4 + padding = x[:, -1:].repeat_interleave(n_pad, dim=1) + x = torch.cat([x, padding], 1) + x = apply_model_with_memblocks(self.encoder, x, self.parallel, self.show_progress_bar).movedim(2, 1) + return self.process_out(x) + + def decode(self, x, **kwargs): + x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) + if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/latent_preview.py b/latent_preview.py index ddf6dcf49..66bded4b9 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -2,17 +2,24 @@ import torch from PIL import Image from comfy.cli_args import args, LatentPreviewMethod from comfy.taesd.taesd import TAESD +from comfy.sd import VAE import comfy.model_management import folder_paths import comfy.utils import logging MAX_PREVIEW_RESOLUTION = args.preview_size +VIDEO_TAES = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] -def preview_to_image(latent_image): - latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 - .mul(0xFF) # to 0..255 - ) +def preview_to_image(latent_image, do_scale=True): + if do_scale: + latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 + .mul(0xFF) # to 0..255 + ) + else: + latents_ubyte = (latent_image.clamp(0, 1) + .mul(0xFF) # to 0..255 + ) if comfy.model_management.directml_enabled: latents_ubyte = latents_ubyte.to(dtype=torch.uint8) latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) @@ -35,6 +42,10 @@ class TAESDPreviewerImpl(LatentPreviewer): x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) return preview_to_image(x_sample) +class TAEHVPreviewerImpl(TAESDPreviewerImpl): + def decode_latent_to_preview(self, x0): + x_sample = self.taesd.decode(x0[:1, :, :1])[0][0] + return preview_to_image(x_sample, do_scale=False) class Latent2RGBPreviewer(LatentPreviewer): def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None, latent_rgb_factors_reshape=None): @@ -81,8 +92,13 @@ def get_previewer(device, latent_format): if method == LatentPreviewMethod.TAESD: if taesd_decoder_path: - taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) - previewer = TAESDPreviewerImpl(taesd) + if latent_format.taesd_decoder_name in VIDEO_TAES: + taesd = VAE(comfy.utils.load_torch_file(taesd_decoder_path)) + taesd.first_stage_model.show_progress_bar = False + previewer = TAEHVPreviewerImpl(taesd) + else: + taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) + previewer = TAESDPreviewerImpl(taesd) else: logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) diff --git a/nodes.py b/nodes.py index bf73eb90e..495dec806 100644 --- a/nodes.py +++ b/nodes.py @@ -692,8 +692,10 @@ class LoraLoaderModelOnly(LoraLoader): return (self.load_lora(model, None, lora_name, strength_model, 0)[0],) class VAELoader: + video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] + image_taes = ["taesd", "taesdxl", "taesd3", "taef1"] @staticmethod - def vae_list(): + def vae_list(s): vaes = folder_paths.get_filename_list("vae") approx_vaes = folder_paths.get_filename_list("vae_approx") sdxl_taesd_enc = False @@ -722,6 +724,11 @@ class VAELoader: f1_taesd_dec = True elif v.startswith("taef1_decoder."): f1_taesd_enc = True + else: + for tae in s.video_taes: + if v.startswith(tae): + vaes.append(v) + if sd1_taesd_dec and sd1_taesd_enc: vaes.append("taesd") if sdxl_taesd_dec and sdxl_taesd_enc: @@ -765,7 +772,7 @@ class VAELoader: @classmethod def INPUT_TYPES(s): - return {"required": { "vae_name": (s.vae_list(), )}} + return {"required": { "vae_name": (s.vae_list(s), )}} RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" @@ -776,10 +783,13 @@ class VAELoader: if vae_name == "pixel_space": sd = {} sd["pixel_space_vae"] = torch.tensor(1.0) - elif vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]: + elif vae_name in self.image_taes: sd = self.load_taesd(vae_name) else: - vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) + if os.path.splitext(vae_name)[0] in self.video_taes: + vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name) + else: + vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) sd = comfy.utils.load_torch_file(vae_path) vae = comfy.sd.VAE(sd=sd) vae.throw_exception_if_invalid() From 52a32e2b323b90295ab05a8c299590c890f2ecb6 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 18:12:42 -0800 Subject: [PATCH 13/64] Support some z image lora formats. (#10978) --- comfy/lora.py | 8 ++++++++ comfy/utils.py | 45 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 53 insertions(+) diff --git a/comfy/lora.py b/comfy/lora.py index 36d26293a..360cd128f 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -313,6 +313,14 @@ def model_lora_keys_unet(model, key_map={}): key_map["transformer.{}".format(key_lora)] = k key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format + if isinstance(model, comfy.model_base.Lumina2): + diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") + for k in diffusers_keys: + to = diffusers_keys[k] + key_lora = k[:-len(".weight")] + key_map["diffusion_model.{}".format(key_lora)] = to + key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + return key_map diff --git a/comfy/utils.py b/comfy/utils.py index 4bd281057..21bd6e8cf 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -675,6 +675,51 @@ def flux_to_diffusers(mmdit_config, output_prefix=""): return key_map +def z_image_to_diffusers(mmdit_config, output_prefix=""): + n_layers = mmdit_config.get("n_layers", 0) + hidden_size = mmdit_config.get("dim", 0) + + key_map = {} + + for index in range(n_layers): + prefix_from = "layers.{}".format(index) + prefix_to = "{}layers.{}".format(output_prefix, index) + + for end in ("weight", "bias"): + k = "{}.attention.".format(prefix_from) + qkv = "{}.attention.qkv.{}".format(prefix_to, end) + + key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) + key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) + key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) + + block_map = { + "attention.norm_q.weight": "attention.q_norm.weight", + "attention.norm_k.weight": "attention.k_norm.weight", + "attention.to_out.0.weight": "attention.out.weight", + "attention.to_out.0.bias": "attention.out.bias", + } + + for k in block_map: + key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) + + MAP_BASIC = { + # Final layer + ("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"), + ("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"), + ("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"), + ("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"), + # X embedder + ("x_embedder.weight", "all_x_embedder.2-1.weight"), + ("x_embedder.bias", "all_x_embedder.2-1.bias"), + } + + for k in MAP_BASIC: + key_map[k[1]] = "{}{}".format(output_prefix, k[0]) + + return key_map + + def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) From af96d9812de3e420abd43275d9a5960535b6333c Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 29 Nov 2025 11:28:42 +0900 Subject: [PATCH 14/64] feat(security): add System User protection with `__` prefix (#10966) * feat(security): add System User protection with `__` prefix Add protected namespace for custom nodes to store sensitive data (API keys, licenses) that cannot be accessed via HTTP endpoints. Key changes: - New API: get_system_user_directory() for internal access - New API: get_public_user_directory() with structural blocking - 3-layer defense: header validation, path blocking, creation prevention - 54 tests covering security, edge cases, and backward compatibility System Users use `__` prefix (e.g., __system, __cache) following Python's private member convention. They exist in user_directory/ but are completely blocked from /userdata HTTP endpoints. * style: remove unused imports --- app/user_manager.py | 21 +- folder_paths.py | 65 +++ .../app_test/user_manager_system_user_test.py | 193 +++++++++ .../folder_paths_test/system_user_test.py | 206 ++++++++++ .../system_user_endpoint_test.py | 375 ++++++++++++++++++ 5 files changed, 855 insertions(+), 5 deletions(-) create mode 100644 tests-unit/app_test/user_manager_system_user_test.py create mode 100644 tests-unit/folder_paths_test/system_user_test.py create mode 100644 tests-unit/prompt_server_test/system_user_endpoint_test.py diff --git a/app/user_manager.py b/app/user_manager.py index 675f6c0c6..e2c00dab2 100644 --- a/app/user_manager.py +++ b/app/user_manager.py @@ -59,6 +59,9 @@ class UserManager(): user = "default" if args.multi_user and "comfy-user" in request.headers: user = request.headers["comfy-user"] + # Block System Users (use same error message to prevent probing) + if user.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise KeyError("Unknown user: " + user) if user not in self.users: raise KeyError("Unknown user: " + user) @@ -66,15 +69,16 @@ class UserManager(): return user def get_request_user_filepath(self, request, file, type="userdata", create_dir=True): - user_directory = folder_paths.get_user_directory() - if type == "userdata": - root_dir = user_directory + root_dir = folder_paths.get_user_directory() else: raise KeyError("Unknown filepath type:" + type) user = self.get_request_user_id(request) - path = user_root = os.path.abspath(os.path.join(root_dir, user)) + user_root = folder_paths.get_public_user_directory(user) + if user_root is None: + return None + path = user_root # prevent leaving /{type} if os.path.commonpath((root_dir, user_root)) != root_dir: @@ -101,7 +105,11 @@ class UserManager(): name = name.strip() if not name: raise ValueError("username not provided") + if name.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name) + if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = user_id + "_" + str(uuid.uuid4()) self.users[user_id] = name @@ -132,7 +140,10 @@ class UserManager(): if username in self.users.values(): return web.json_response({"error": "Duplicate username."}, status=400) - user_id = self.add_user(username) + try: + user_id = self.add_user(username) + except ValueError as e: + return web.json_response({"error": str(e)}, status=400) return web.json_response(user_id) @routes.get("/userdata") diff --git a/folder_paths.py b/folder_paths.py index ffdc4d020..9c96540e3 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -137,6 +137,71 @@ def set_user_directory(user_dir: str) -> None: user_directory = user_dir +# System User Protection - Protects system directories from HTTP endpoint access +# System Users are internal-only users that cannot be accessed via HTTP endpoints. +# They use the '__' prefix convention (similar to Python's private member convention). +SYSTEM_USER_PREFIX = "__" + + +def get_system_user_directory(name: str = "system") -> str: + """ + Get the path to a System User directory. + + System User directories (prefixed with '__') are only accessible via internal API, + not through HTTP endpoints. Use this for storing system-internal data that + should not be exposed to users. + + Args: + name: System user name (e.g., "system", "cache"). Must be alphanumeric + with underscores allowed, but cannot start with underscore. + + Returns: + Absolute path to the system user directory. + + Raises: + ValueError: If name is empty, invalid, or starts with underscore. + + Example: + >>> get_system_user_directory("cache") + '/path/to/user/__cache' + """ + if not name or not isinstance(name, str): + raise ValueError("System user name cannot be empty") + if not name.replace("_", "").isalnum(): + raise ValueError(f"Invalid system user name: '{name}'") + if name.startswith("_"): + raise ValueError("System user name should not start with underscore") + return os.path.join(get_user_directory(), f"{SYSTEM_USER_PREFIX}{name}") + + +def get_public_user_directory(user_id: str) -> str | None: + """ + Get the path to a Public User directory for HTTP endpoint access. + + This function provides structural security by returning None for any + System User (prefixed with '__'). All HTTP endpoints should use this + function instead of directly constructing user paths. + + Args: + user_id: User identifier from HTTP request. + + Returns: + Absolute path to the user directory, or None if user_id is invalid + or refers to a System User. + + Example: + >>> get_public_user_directory("default") + '/path/to/user/default' + >>> get_public_user_directory("__system") + None + """ + if not user_id or not isinstance(user_id, str): + return None + if user_id.startswith(SYSTEM_USER_PREFIX): + return None + return os.path.join(get_user_directory(), user_id) + + #NOTE: used in http server so don't put folders that should not be accessed remotely def get_directory_by_type(type_name: str) -> str | None: if type_name == "output": diff --git a/tests-unit/app_test/user_manager_system_user_test.py b/tests-unit/app_test/user_manager_system_user_test.py new file mode 100644 index 000000000..63b1ac5e5 --- /dev/null +++ b/tests-unit/app_test/user_manager_system_user_test.py @@ -0,0 +1,193 @@ +"""Tests for System User Protection in user_manager.py + +Tests cover: +- get_request_user_id(): 1st defense layer - blocks System Users from HTTP headers +- get_request_user_filepath(): 2nd defense layer - structural blocking via get_public_user_directory() +- add_user(): 3rd defense layer - prevents creation of System User names +- Defense layers integration tests +""" + +import pytest +from unittest.mock import MagicMock, patch +import tempfile + +import folder_paths +from app.user_manager import UserManager + + +@pytest.fixture +def mock_user_directory(): + """Create a temporary user directory.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(temp_dir) + yield temp_dir + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager(mock_user_directory): + """Create a UserManager instance for testing.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + manager = UserManager() + # Add a default user for testing + manager.users = {"default": "default", "test_user_123": "Test User"} + yield manager + + +@pytest.fixture +def mock_request(): + """Create a mock request object.""" + request = MagicMock() + request.headers = {} + return request + + +class TestGetRequestUserId: + """Tests for get_request_user_id() - 1st defense layer. + + Verifies: + - System Users (__ prefix) in HTTP header are rejected with KeyError + - Public Users pass through successfully + """ + + def test_system_user_raises_error(self, user_manager, mock_request): + """Test System User in header raises KeyError.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_system_user_cache_raises_error(self, user_manager, mock_request): + """Test System User cache raises KeyError.""" + mock_request.headers = {"comfy-user": "__cache"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_normal_user_works(self, user_manager, mock_request): + """Test normal user access works.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + user_id = user_manager.get_request_user_id(mock_request) + assert user_id == "default" + + def test_unknown_user_raises_error(self, user_manager, mock_request): + """Test unknown user raises KeyError.""" + mock_request.headers = {"comfy-user": "unknown_user"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + +class TestGetRequestUserFilepath: + """Tests for get_request_user_filepath() - 2nd defense layer. + + Verifies: + - Returns None when get_public_user_directory() returns None (System User) + - Acts as backup defense if 1st layer is bypassed + """ + + def test_system_user_returns_none(self, user_manager, mock_request, mock_user_directory): + """Test System User returns None (structural blocking).""" + # First, we need to mock get_request_user_id to return System User + # But actually, get_request_user_id will raise KeyError first + # So we test via get_public_user_directory returning None + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Patch get_public_user_directory to return None for testing + with patch.object(folder_paths, 'get_public_user_directory', return_value=None): + result = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert result is None + + def test_normal_user_gets_path(self, user_manager, mock_request, mock_user_directory): + """Test normal user gets valid filepath.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + path = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert path is not None + assert "default" in path + assert path.endswith("test.txt") + + +class TestAddUser: + """Tests for add_user() - 3rd defense layer (creation-time blocking). + + Verifies: + - System User name (__ prefix) creation is rejected with ValueError + - Sanitized usernames that become System User are also rejected + """ + + def test_system_user_prefix_name_raises(self, user_manager): + """Test System User prefix in name raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__system") + + def test_system_user_prefix_cache_raises(self, user_manager): + """Test System User cache prefix raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__cache") + + def test_sanitized_system_user_prefix_raises(self, user_manager): + """Test sanitized name becoming System User prefix raises ValueError (bypass prevention).""" + # "__test" directly starts with System User prefix + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__test") + + def test_normal_user_creation(self, user_manager, mock_user_directory): + """Test normal user creation works.""" + user_id = user_manager.add_user("Normal User") + assert user_id is not None + assert not user_id.startswith("__") + assert "Normal-User" in user_id or "Normal_User" in user_id + + def test_empty_name_raises(self, user_manager): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user("") + + def test_whitespace_only_raises(self, user_manager): + """Test whitespace-only name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user(" ") + + +class TestDefenseLayers: + """Integration tests for all three defense layers. + + Verifies: + - Each defense layer blocks System Users independently + - System User bypass is impossible through any layer + """ + + def test_layer1_get_request_user_id(self, user_manager, mock_request): + """Test 1st defense layer blocks System Users.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError): + user_manager.get_request_user_id(mock_request) + + def test_layer2_get_public_user_directory(self): + """Test 2nd defense layer blocks System Users.""" + result = folder_paths.get_public_user_directory("__system") + assert result is None + + def test_layer3_add_user(self, user_manager): + """Test 3rd defense layer blocks System User creation.""" + with pytest.raises(ValueError): + user_manager.add_user("__system") diff --git a/tests-unit/folder_paths_test/system_user_test.py b/tests-unit/folder_paths_test/system_user_test.py new file mode 100644 index 000000000..cd46459f1 --- /dev/null +++ b/tests-unit/folder_paths_test/system_user_test.py @@ -0,0 +1,206 @@ +"""Tests for System User Protection in folder_paths.py + +Tests cover: +- get_system_user_directory(): Internal API for custom nodes to access System User directories +- get_public_user_directory(): HTTP endpoint access with System User blocking +- Backward compatibility: Existing APIs unchanged +- Security: Path traversal and injection prevention +""" + +import pytest +import os +import tempfile + +from folder_paths import ( + get_system_user_directory, + get_public_user_directory, + get_user_directory, + set_user_directory, +) + + +@pytest.fixture(scope="module") +def mock_user_directory(): + """Create a temporary user directory for testing.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = get_user_directory() + set_user_directory(temp_dir) + yield temp_dir + set_user_directory(original_dir) + + +class TestGetSystemUserDirectory: + """Tests for get_system_user_directory() - internal API for System User directories. + + Verifies: + - Custom nodes can access System User directories via internal API + - Input validation prevents path traversal attacks + """ + + def test_default_name(self, mock_user_directory): + """Test default 'system' name.""" + path = get_system_user_directory() + assert path.endswith("__system") + assert mock_user_directory in path + + def test_custom_name(self, mock_user_directory): + """Test custom system user name.""" + path = get_system_user_directory("cache") + assert path.endswith("__cache") + assert "__cache" in path + + def test_name_with_underscore(self, mock_user_directory): + """Test name with underscore in middle.""" + path = get_system_user_directory("my_cache") + assert "__my_cache" in path + + def test_empty_name_raises(self): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory("") + + def test_none_name_raises(self): + """Test None name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory(None) + + def test_name_starting_with_underscore_raises(self): + """Test name starting with underscore raises ValueError.""" + with pytest.raises(ValueError, match="should not start with underscore"): + get_system_user_directory("_system") + + def test_path_traversal_raises(self): + """Test path traversal attempt raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("../escape") + + def test_path_traversal_middle_raises(self): + """Test path traversal in middle raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system/../other") + + def test_special_chars_raise(self): + """Test special characters raise ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system!") + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_system_user_directory("test") + assert os.path.isabs(path) + + +class TestGetPublicUserDirectory: + """Tests for get_public_user_directory() - HTTP endpoint access with System User blocking. + + Verifies: + - System Users (__ prefix) return None, blocking HTTP access + - Public Users get valid paths + - New endpoints using this function are automatically protected + """ + + def test_normal_user(self, mock_user_directory): + """Test normal user returns valid path.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + assert mock_user_directory in path + + def test_system_user_returns_none(self): + """Test System User (__ prefix) returns None - blocks HTTP access.""" + assert get_public_user_directory("__system") is None + + def test_system_user_cache_returns_none(self): + """Test System User cache returns None.""" + assert get_public_user_directory("__cache") is None + + def test_empty_user_returns_none(self): + """Test empty user returns None.""" + assert get_public_user_directory("") is None + + def test_none_user_returns_none(self): + """Test None user returns None.""" + assert get_public_user_directory(None) is None + + def test_header_injection_returns_none(self): + """Test header injection attempt returns None (security).""" + assert get_public_user_directory("__system\r\nX-Injected: true") is None + + def test_null_byte_injection_returns_none(self): + """Test null byte injection handling (security).""" + # Note: startswith check happens before any path operations + result = get_public_user_directory("user\x00__system") + # This should return a path since it doesn't start with __ + # The actual security comes from the path not being __* + assert result is not None or result is None # Depends on validation + + def test_path_traversal_attempt(self, mock_user_directory): + """Test path traversal attempt handling.""" + # This function doesn't validate paths, only reserved prefix + # Path traversal should be handled by the caller + path = get_public_user_directory("../../../etc/passwd") + # Returns path but doesn't start with __, so not None + # Actual path validation happens in user_manager + assert path is not None or "__" not in "../../../etc/passwd" + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_public_user_directory("testuser") + assert path is not None + assert os.path.isabs(path) + + +class TestBackwardCompatibility: + """Tests for backward compatibility with existing APIs. + + Verifies: + - get_user_directory() API unchanged + - Existing user data remains accessible + """ + + def test_get_user_directory_unchanged(self, mock_user_directory): + """Test get_user_directory() still works as before.""" + user_dir = get_user_directory() + assert user_dir is not None + assert os.path.isabs(user_dir) + assert user_dir == mock_user_directory + + def test_existing_user_accessible(self, mock_user_directory): + """Test existing users can access their directories.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + + +class TestEdgeCases: + """Tests for edge cases in System User detection. + + Verifies: + - Only __ prefix is blocked (not _, not middle __) + - Bypass attempts are prevented + """ + + def test_prefix_only(self): + """Test prefix-only string is blocked.""" + assert get_public_user_directory("__") is None + + def test_single_underscore_allowed(self): + """Test single underscore prefix is allowed (not System User).""" + path = get_public_user_directory("_system") + assert path is not None + assert "_system" in path + + def test_triple_underscore_blocked(self): + """Test triple underscore is blocked (starts with __).""" + assert get_public_user_directory("___system") is None + + def test_underscore_in_middle_allowed(self): + """Test underscore in middle is allowed.""" + path = get_public_user_directory("my__system") + assert path is not None + assert "my__system" in path + + def test_leading_space_allowed(self): + """Test leading space + prefix is allowed (doesn't start with __).""" + path = get_public_user_directory(" __system") + assert path is not None diff --git a/tests-unit/prompt_server_test/system_user_endpoint_test.py b/tests-unit/prompt_server_test/system_user_endpoint_test.py new file mode 100644 index 000000000..22ac00af9 --- /dev/null +++ b/tests-unit/prompt_server_test/system_user_endpoint_test.py @@ -0,0 +1,375 @@ +"""E2E Tests for System User Protection HTTP Endpoints + +Tests cover: +- HTTP endpoint blocking: System Users cannot access /userdata (GET, POST, DELETE, move) +- User creation blocking: System User names cannot be created via POST /users +- Backward compatibility: Public Users work as before +- Custom node scenario: Internal API works while HTTP is blocked +- Structural security: get_public_user_directory() provides automatic protection +""" + +import pytest +import os +from aiohttp import web +from app.user_manager import UserManager +from unittest.mock import patch +import folder_paths + + +@pytest.fixture +def mock_user_directory(tmp_path): + """Create a temporary user directory.""" + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(str(tmp_path)) + yield tmp_path + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager_multi_user(mock_user_directory): + """Create UserManager in multi-user mode.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + um = UserManager() + # Add test users + um.users = {"default": "default", "test_user_123": "Test User"} + yield um + + +@pytest.fixture +def app_multi_user(user_manager_multi_user): + """Create app with multi-user mode enabled.""" + app = web.Application() + routes = web.RouteTableDef() + user_manager_multi_user.add_routes(routes) + app.add_routes(routes) + return app + + +class TestSystemUserEndpointBlocking: + """E2E tests for System User blocking on all HTTP endpoints. + + Verifies: + - GET /userdata blocked for System Users + - POST /userdata blocked for System Users + - DELETE /userdata blocked for System Users + - POST /userdata/.../move/... blocked for System Users + """ + + @pytest.mark.asyncio + async def test_userdata_get_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /userdata with System User header should be blocked. + """ + # Create test directory for System User (simulating internal creation) + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "secret.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Attempt to access System User's data via HTTP + resp = await client.get( + "/userdata?dir=.", + headers={"comfy-user": "__system"} + ) + + # Should be blocked (403 Forbidden or similar error) + assert resp.status in [400, 403, 500], \ + f"System User access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_userdata_post_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/test.txt", + headers={"comfy-user": "__system"}, + data=b"malicious content" + ) + + assert resp.status in [400, 403, 500], \ + f"System User write should be blocked, got {resp.status}" + + # Verify no file was created + assert not (mock_user_directory / "__system" / "test.txt").exists() + + @pytest.mark.asyncio + async def test_userdata_delete_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + DELETE /userdata with System User header should be blocked. + """ + # Create a file in System User directory + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + secret_file = system_user_dir / "secret.txt" + secret_file.write_text("do not delete") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.delete( + "/userdata/secret.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User delete should be blocked, got {resp.status}" + + # Verify file still exists + assert secret_file.exists() + + @pytest.mark.asyncio + async def test_v2_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /v2/userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/v2/userdata", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User v2 access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_move_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata/{file}/move/{dest} with System User header should be blocked. + """ + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "source.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/source.txt/move/dest.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User move should be blocked, got {resp.status}" + + # Verify source file still exists (move was blocked) + assert (system_user_dir / "source.txt").exists() + + +class TestSystemUserCreationBlocking: + """E2E tests for blocking System User name creation via POST /users. + + Verifies: + - POST /users returns 400 for System User name (not 500) + """ + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_name( + self, aiohttp_client, app_multi_user + ): + """POST /users with System User name should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + resp = await client.post( + "/users", + json={"username": "__system"} + ) + + assert resp.status == 400, \ + f"System User creation should return 400, got {resp.status}" + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_prefix_variations( + self, aiohttp_client, app_multi_user + ): + """POST /users with any System User prefix variation should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + system_user_names = ["__system", "__cache", "__config", "__anything"] + + for name in system_user_names: + resp = await client.post("/users", json={"username": name}) + assert resp.status == 400, \ + f"System User name '{name}' should return 400, got {resp.status}" + + +class TestPublicUserStillWorks: + """E2E tests for backward compatibility - Public Users should work as before. + + Verifies: + - Public Users can access their data via HTTP + - Public Users can create files via HTTP + """ + + @pytest.mark.asyncio + async def test_public_user_can_access_userdata( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to access their data. + """ + # Create test directory for Public User + user_dir = mock_user_directory / "default" + user_dir.mkdir() + test_dir = user_dir / "workflows" + test_dir.mkdir() + (test_dir / "test.json").write_text('{"test": true}') + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata?dir=workflows", + headers={"comfy-user": "default"} + ) + + assert resp.status == 200 + data = await resp.json() + assert "test.json" in data + + @pytest.mark.asyncio + async def test_public_user_can_create_files( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to create files. + """ + # Create user directory + user_dir = mock_user_directory / "default" + user_dir.mkdir() + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/newfile.txt", + headers={"comfy-user": "default"}, + data=b"user content" + ) + + assert resp.status == 200 + assert (user_dir / "newfile.txt").exists() + + +class TestCustomNodeScenario: + """Tests for custom node use case: internal API access vs HTTP blocking. + + Verifies: + - Internal API (get_system_user_directory) works for custom nodes + - HTTP endpoint cannot access data created via internal API + """ + + def test_internal_api_can_access_system_user(self, mock_user_directory): + """ + Internal API (get_system_user_directory) should work for custom nodes. + """ + # Custom node uses internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + + assert system_path is not None + assert "__mynode_config" in system_path + + # Can create and write to System User directory + os.makedirs(system_path, exist_ok=True) + config_file = os.path.join(system_path, "settings.json") + with open(config_file, "w") as f: + f.write('{"api_key": "secret"}') + + assert os.path.exists(config_file) + + @pytest.mark.asyncio + async def test_http_cannot_access_internal_data( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + HTTP endpoint cannot access data created via internal API. + """ + # Custom node creates data via internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + os.makedirs(system_path, exist_ok=True) + with open(os.path.join(system_path, "secret.json"), "w") as f: + f.write('{"api_key": "secret"}') + + client = await aiohttp_client(app_multi_user) + + # Attacker tries to access via HTTP + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata/secret.json", + headers={"comfy-user": "__mynode_config"} + ) + + # Should be blocked + assert resp.status in [400, 403, 500] + + +class TestStructuralSecurity: + """Tests for structural security pattern. + + Verifies: + - get_public_user_directory() automatically blocks System Users + - New endpoints using this function are automatically protected + """ + + def test_get_public_user_directory_blocks_system_user(self): + """ + Any code using get_public_user_directory() is automatically protected. + """ + # This is the structural security - any new endpoint using this function + # will automatically block System Users + assert folder_paths.get_public_user_directory("__system") is None + assert folder_paths.get_public_user_directory("__cache") is None + assert folder_paths.get_public_user_directory("__anything") is None + + # Public Users work + assert folder_paths.get_public_user_directory("default") is not None + assert folder_paths.get_public_user_directory("user123") is not None + + def test_structural_security_pattern(self, mock_user_directory): + """ + Demonstrate the structural security pattern for new endpoints. + + Any new endpoint should follow this pattern: + 1. Get user from request + 2. Use get_public_user_directory() - automatically blocks System Users + 3. If None, return error + """ + def new_endpoint_handler(user_id: str) -> str | None: + """Example of how new endpoints should be implemented.""" + user_path = folder_paths.get_public_user_directory(user_id) + if user_path is None: + return None # Blocked + return user_path + + # System Users are automatically blocked + assert new_endpoint_handler("__system") is None + assert new_endpoint_handler("__secret") is None + + # Public Users work + assert new_endpoint_handler("default") is not None From 5151cff293607c2191981fd16c62c1b1a6939695 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 20:55:00 -0800 Subject: [PATCH 15/64] Add some missing z image lora layers. (#10980) --- comfy/lora.py | 9 +++++---- comfy/utils.py | 51 +++++++++++++++++++++++++++++++++++--------------- 2 files changed, 41 insertions(+), 19 deletions(-) diff --git a/comfy/lora.py b/comfy/lora.py index 360cd128f..3a9077869 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -316,10 +316,11 @@ def model_lora_keys_unet(model, key_map={}): if isinstance(model, comfy.model_base.Lumina2): diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") for k in diffusers_keys: - to = diffusers_keys[k] - key_lora = k[:-len(".weight")] - key_map["diffusion_model.{}".format(key_lora)] = to - key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + if k.endswith(".weight"): + to = diffusers_keys[k] + key_lora = k[:-len(".weight")] + key_map["diffusion_model.{}".format(key_lora)] = to + key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to return key_map diff --git a/comfy/utils.py b/comfy/utils.py index 21bd6e8cf..37485e497 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -678,17 +678,14 @@ def flux_to_diffusers(mmdit_config, output_prefix=""): def z_image_to_diffusers(mmdit_config, output_prefix=""): n_layers = mmdit_config.get("n_layers", 0) hidden_size = mmdit_config.get("dim", 0) - + n_context_refiner = mmdit_config.get("n_refiner_layers", 2) + n_noise_refiner = mmdit_config.get("n_refiner_layers", 2) key_map = {} - for index in range(n_layers): - prefix_from = "layers.{}".format(index) - prefix_to = "{}layers.{}".format(output_prefix, index) - + def add_block_keys(prefix_from, prefix_to, has_adaln=True): for end in ("weight", "bias"): k = "{}.attention.".format(prefix_from) qkv = "{}.attention.qkv.{}".format(prefix_to, end) - key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) @@ -698,28 +695,52 @@ def z_image_to_diffusers(mmdit_config, output_prefix=""): "attention.norm_k.weight": "attention.k_norm.weight", "attention.to_out.0.weight": "attention.out.weight", "attention.to_out.0.bias": "attention.out.bias", + "attention_norm1.weight": "attention_norm1.weight", + "attention_norm2.weight": "attention_norm2.weight", + "feed_forward.w1.weight": "feed_forward.w1.weight", + "feed_forward.w2.weight": "feed_forward.w2.weight", + "feed_forward.w3.weight": "feed_forward.w3.weight", + "ffn_norm1.weight": "ffn_norm1.weight", + "ffn_norm2.weight": "ffn_norm2.weight", } + if has_adaln: + block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight" + block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias" + for k, v in block_map.items(): + key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v) - for k in block_map: - key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) + for i in range(n_layers): + add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i)) - MAP_BASIC = { - # Final layer + for i in range(n_context_refiner): + add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i)) + + for i in range(n_noise_refiner): + add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i)) + + MAP_BASIC = [ ("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"), ("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"), ("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"), ("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"), - # X embedder ("x_embedder.weight", "all_x_embedder.2-1.weight"), ("x_embedder.bias", "all_x_embedder.2-1.bias"), - } + ("x_pad_token", "x_pad_token"), + ("cap_embedder.0.weight", "cap_embedder.0.weight"), + ("cap_embedder.1.weight", "cap_embedder.1.weight"), + ("cap_embedder.1.bias", "cap_embedder.1.bias"), + ("cap_pad_token", "cap_pad_token"), + ("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"), + ("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"), + ("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"), + ("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"), + ] - for k in MAP_BASIC: - key_map[k[1]] = "{}{}".format(output_prefix, k[0]) + for c, diffusers in MAP_BASIC: + key_map[diffusers] = "{}{}".format(output_prefix, c) return key_map - def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) From 0a6746898d6864d65e2fc7504e5e875f8c19c0ba Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 29 Nov 2025 15:00:55 -0800 Subject: [PATCH 16/64] Make the ScaleRope node work on Z Image and Lumina. (#10994) --- comfy/ldm/lumina/model.py | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 565400b54..7d7e9112c 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -517,11 +517,23 @@ class NextDiT(nn.Module): B, C, H, W = x.shape x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) + rope_options = transformer_options.get("rope_options", None) + h_scale = 1.0 + w_scale = 1.0 + h_start = 0 + w_start = 0 + if rope_options is not None: + h_scale = rope_options.get("scale_y", 1.0) + w_scale = rope_options.get("scale_x", 1.0) + + h_start = rope_options.get("shift_y", 0.0) + w_start = rope_options.get("shift_x", 0.0) + H_tokens, W_tokens = H // pH, W // pW x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device) x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1 - x_pos_ids[:, :, 1] = torch.arange(H_tokens, dtype=torch.float32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() - x_pos_ids[:, :, 2] = torch.arange(W_tokens, dtype=torch.float32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() + x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() + x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() if self.pad_tokens_multiple is not None: pad_extra = (-x.shape[1]) % self.pad_tokens_multiple From 4967f81778f84b41acc40ed03536dd71dd88e5f2 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sun, 30 Nov 2025 10:07:26 +0800 Subject: [PATCH 17/64] update template to 0.7.25 (#10996) * update template to 0.7.24 * Update template to 0.7.25 --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index e0b2c566b..386477808 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.32.9 -comfyui-workflow-templates==0.7.23 +comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch torchsde From f8b981ae9a5676311624bbafa636a1874db79459 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 30 Nov 2025 01:21:31 -0800 Subject: [PATCH 18/64] Next AMD portable will have pytorch with ROCm 7.1.1 (#11002) --- .github/workflows/release-stable-all.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/release-stable-all.yml b/.github/workflows/release-stable-all.yml index 9274b4170..d72ece2ce 100644 --- a/.github/workflows/release-stable-all.yml +++ b/.github/workflows/release-stable-all.yml @@ -65,11 +65,11 @@ jobs: contents: "write" packages: "write" pull-requests: "read" - name: "Release AMD ROCm 6.4.4" + name: "Release AMD ROCm 7.1.1" uses: ./.github/workflows/stable-release.yml with: git_tag: ${{ inputs.git_tag }} - cache_tag: "rocm644" + cache_tag: "rocm711" python_minor: "12" python_patch: "10" rel_name: "amd" From 7dbd5dfe91f057b83dcba0c127f712f6d71f7def Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 1 Dec 2025 10:27:17 -0800 Subject: [PATCH 19/64] bump comfyui-frontend-package to 1.32.10 (#11018) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 386477808..045b2ac54 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.32.9 +comfyui-frontend-package==1.32.10 comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch From 2640acb31ccfddee57ba22d5245bf456e8dffe53 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 1 Dec 2025 14:13:48 -0800 Subject: [PATCH 20/64] Update qwen tokenizer to add qwen 3 tokens. (#11029) Doesn't actually change anything for current workflows because none of the current models have a template with the think tokens. --- .../qwen25_tokenizer/tokenizer_config.json | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json index 67688e82c..df5b5d7fe 100644 --- a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json +++ b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json @@ -179,36 +179,36 @@ "special": false }, "151665": { - "content": "<|img|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151666": { - "content": "<|endofimg|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151667": { - "content": "<|meta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151668": { - "content": "<|endofmeta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false } }, "additional_special_tokens": [ From 1cb7e22a95701f2619d1ddf5683ea221b58a0c13 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 2 Dec 2025 02:11:52 +0200 Subject: [PATCH 21/64] [API Nodes] add Kling O1 model support (#11025) * feat(api-nodes): add Kling O1 model support * fix: increase max allowed duration to 10.05 seconds * fix(VideoInput): respect "format" argument --- comfy_api/latest/_input_impl/video_types.py | 5 +- comfy_api_nodes/apis/kling_api.py | 66 +++ comfy_api_nodes/nodes_kling.py | 444 +++++++++++++++++++- comfy_api_nodes/util/upload_helpers.py | 3 +- 4 files changed, 499 insertions(+), 19 deletions(-) create mode 100644 comfy_api_nodes/apis/kling_api.py diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index bde37f90a..7231bf13c 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -336,7 +336,10 @@ class VideoFromComponents(VideoInput): raise ValueError("Only MP4 format is supported for now") if codec != VideoCodec.AUTO and codec != VideoCodec.H264: raise ValueError("Only H264 codec is supported for now") - with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output: + extra_kwargs = {} + if format != VideoContainer.AUTO: + extra_kwargs["format"] = format.value + with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output: # Add metadata before writing any streams if metadata is not None: for key, value in metadata.items(): diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py new file mode 100644 index 000000000..0a3b447c5 --- /dev/null +++ b/comfy_api_nodes/apis/kling_api.py @@ -0,0 +1,66 @@ +from pydantic import BaseModel, Field + + +class OmniProText2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniParamImage(BaseModel): + image_url: str = Field(...) + type: str | None = Field(None, description="Can be 'first_frame' or 'end_frame'") + + +class OmniParamVideo(BaseModel): + video_url: str = Field(...) + refer_type: str | None = Field(..., description="Can be 'base' or 'feature'") + keep_original_sound: str = Field(..., description="'yes' or 'no'") + + +class OmniProFirstLastFrameRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + image_list: list[OmniParamImage] = Field(..., min_length=1, max_length=7) + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniProReferences2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str | None = Field(..., description="'16:9', '9:16' or '1:1'") + image_list: list[OmniParamImage] | None = Field( + None, max_length=7, description="Max length 4 when video is present." + ) + video_list: list[OmniParamVideo] | None = Field(None, max_length=1) + duration: str | None = Field(..., description="From 3 to 10.") + prompt: str = Field(...) + mode: str = Field("pro") + + +class TaskStatusVideoResult(BaseModel): + duration: str | None = Field(None, description="Total video duration") + id: str | None = Field(None, description="Generated video ID") + url: str | None = Field(None, description="URL for generated video") + + +class TaskStatusVideoResults(BaseModel): + videos: list[TaskStatusVideoResult] | None = Field(None) + + +class TaskStatusVideoResponseData(BaseModel): + created_at: int | None = Field(None, description="Task creation time") + updated_at: int | None = Field(None, description="Task update time") + task_status: str | None = None + task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") + task_id: str | None = Field(None, description="Task ID") + task_result: TaskStatusVideoResults | None = Field(None) + + +class TaskStatusVideoResponse(BaseModel): + code: int | None = Field(None, description="Error code") + message: str | None = Field(None, description="Error message") + request_id: str | None = Field(None, description="Request ID") + data: TaskStatusVideoResponseData | None = Field(None) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 23a7f55f1..850c44db6 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -4,13 +4,13 @@ For source of truth on the allowed permutations of request fields, please refere - [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) """ -import math import logging - -from typing_extensions import override +import math import torch +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis import ( KlingCameraControl, KlingCameraConfig, @@ -48,23 +48,31 @@ from comfy_api_nodes.apis import ( KlingCharacterEffectModelName, KlingSingleImageEffectModelName, ) +from comfy_api_nodes.apis.kling_api import ( + OmniParamImage, + OmniParamVideo, + OmniProFirstLastFrameRequest, + OmniProReferences2VideoRequest, + OmniProText2VideoRequest, + TaskStatusVideoResponse, +) from comfy_api_nodes.util import ( - validate_image_dimensions, + ApiEndpoint, + download_url_to_image_tensor, + download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, + tensor_to_base64_string, + upload_audio_to_comfyapi, + upload_images_to_comfyapi, + upload_video_to_comfyapi, validate_image_aspect_ratio, + validate_image_dimensions, + validate_string, validate_video_dimensions, validate_video_duration, - tensor_to_base64_string, - validate_string, - upload_audio_to_comfyapi, - download_url_to_image_tensor, - upload_video_to_comfyapi, - download_url_to_video_output, - sync_op, - ApiEndpoint, - poll_op, ) -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import ComfyExtension, IO, Input KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" @@ -202,6 +210,20 @@ VOICES_CONFIG = { } +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVideoResponse) -> IO.NodeOutput: + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), + response_model=TaskStatusVideoResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + def is_valid_camera_control_configs(configs: list[float]) -> bool: """Verifies that at least one camera control configuration is non-zero.""" return any(not math.isclose(value, 0.0) for value in configs) @@ -449,7 +471,7 @@ async def execute_video_effect( image_1: torch.Tensor, image_2: torch.Tensor | None = None, model_mode: KlingVideoGenMode | None = None, -) -> tuple[VideoFromFile, str, str]: +) -> tuple[InputImpl.VideoFromFile, str, str]: if dual_character: request_input_field = KlingDualCharacterEffectInput( model_name=model_name, @@ -736,6 +758,386 @@ class KlingTextToVideoNode(IO.ComfyNode): ) +class OmniProTextToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProTextToVideoNode", + display_name="Kling Omni Text to Video (Pro)", + category="api node/video/Kling", + description="Use text prompts to generate videos with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input("duration", options=[5, 10]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProText2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProFirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProFirstLastFrameNode", + display_name="Kling Omni First-Last-Frame to Video (Pro)", + category="api node/video/Kling", + description="Use a start frame, an optional end frame, or reference images with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("duration", options=["5", "10"]), + IO.Image.Input("first_frame"), + IO.Image.Input( + "end_frame", + optional=True, + tooltip="An optional end frame for the video. " + "This cannot be used simultaneously with 'reference_images'.", + ), + IO.Image.Input( + "reference_images", + optional=True, + tooltip="Up to 6 additional reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + duration: int, + first_frame: Input.Image, + end_frame: Input.Image | None = None, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + if end_frame is not None and reference_images is not None: + raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") + validate_image_dimensions(first_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [ + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, first_frame, wait_label="Uploading first frame"))[0], + type="first_frame", + ) + ] + if end_frame is not None: + validate_image_dimensions(end_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(end_frame, (1, 2.5), (2.5, 1)) + image_list.append( + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, end_frame, wait_label="Uploading end frame"))[0], + type="end_frame", + ) + ) + if reference_images is not None: + if get_number_of_images(reference_images) > 6: + raise ValueError("The maximum number of reference images allowed is 6.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference frame(s)"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProFirstLastFrameRequest( + model_name=model_name, + prompt=prompt, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProImageToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageToVideoNode", + display_name="Kling Omni Image to Video (Pro)", + category="api node/video/Kling", + description="Use up to 7 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Image.Input( + "reference_images", + tooltip="Up to 7 reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_images: Input.Image, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + if get_number_of_images(reference_images) > 7: + raise ValueError("The maximum number of reference images is 7.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [] + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProVideoToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProVideoToVideoNode", + display_name="Kling Omni Video to Video (Pro)", + category="api node/video/Kling", + description="Use a video and up to 4 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Video.Input("reference_video", tooltip="Video to use as a reference."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(reference_video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, reference_video, wait_label="Uploading reference video"), + refer_type="feature", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProEditVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProEditVideoNode", + display_name="Kling Omni Edit Video (Pro)", + category="api node/video/Kling", + description="Edit an existing video with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Video.Input("video", tooltip="Video for editing. The output video length will be the same."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, video, wait_label="Uploading base video"), + refer_type="base", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=None, + duration=None, + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + class KlingCameraControlT2VNode(IO.ComfyNode): """ Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. @@ -1162,7 +1564,10 @@ class KlingSingleImageVideoEffectNode(IO.ComfyNode): category="api node/video/Kling", description="Achieve different special effects when generating a video based on the effect_scene.", inputs=[ - IO.Image.Input("image", tooltip=" Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1"), + IO.Image.Input( + "image", + tooltip=" Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1", + ), IO.Combo.Input( "effect_scene", options=[i.value for i in KlingSingleImageEffectsScene], @@ -1525,6 +1930,11 @@ class KlingExtension(ComfyExtension): KlingImageGenerationNode, KlingSingleImageVideoEffectNode, KlingDualCharacterVideoEffectNode, + OmniProTextToVideoNode, + OmniProFirstLastFrameNode, + OmniProImageToVideoNode, + OmniProVideoToVideoNode, + OmniProEditVideoNode, ] diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index b9019841f..0532bea9a 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -103,6 +103,7 @@ async def upload_video_to_comfyapi( container: VideoContainer = VideoContainer.MP4, codec: VideoCodec = VideoCodec.H264, max_duration: Optional[int] = None, + wait_label: str | None = "Uploading", ) -> str: """ Uploads a single video to ComfyUI API and returns its download URL. @@ -127,7 +128,7 @@ async def upload_video_to_comfyapi( video.save_to(video_bytes_io, format=container, codec=codec) video_bytes_io.seek(0) - return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type) + return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label) async def upload_file_to_comfyapi( From 30c259cac8c08ff8d015f9aff3151cb525c9b702 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Mon, 1 Dec 2025 20:25:35 -0500 Subject: [PATCH 22/64] ComfyUI version v0.3.76 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index fa4b4f4b0..4b039356e 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.75" +__version__ = "0.3.76" diff --git a/pyproject.toml b/pyproject.toml index 9009e65fe..02b94a0ce 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.75" +version = "0.3.76" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 878db3a727c1c6049bc1c4959cdfabc35eaf3d56 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 1 Dec 2025 17:56:17 -0800 Subject: [PATCH 23/64] Implement the Ovis image model. (#11030) --- comfy/ldm/chroma/model.py | 3 +- comfy/ldm/flux/layers.py | 68 +++++++++++++++++++++-------------- comfy/ldm/flux/model.py | 21 ++++++++--- comfy/model_detection.py | 10 +++++- comfy/sd.py | 13 +++++-- comfy/text_encoders/llama.py | 31 ++++++++++++++++ comfy/text_encoders/ovis.py | 69 ++++++++++++++++++++++++++++++++++++ nodes.py | 2 +- 8 files changed, 182 insertions(+), 35 deletions(-) create mode 100644 comfy/text_encoders/ovis.py diff --git a/comfy/ldm/chroma/model.py b/comfy/ldm/chroma/model.py index a72f8cc47..2e8ef0687 100644 --- a/comfy/ldm/chroma/model.py +++ b/comfy/ldm/chroma/model.py @@ -40,7 +40,8 @@ class ChromaParams: out_dim: int hidden_dim: int n_layers: int - + txt_ids_dims: list + vec_in_dim: int diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py index 2472ab79c..60f2bdae2 100644 --- a/comfy/ldm/flux/layers.py +++ b/comfy/ldm/flux/layers.py @@ -57,6 +57,35 @@ class MLPEmbedder(nn.Module): def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) +class YakMLP(nn.Module): + def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None): + super().__init__() + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device) + self.act_fn = nn.SiLU() + + def forward(self, x: Tensor) -> Tensor: + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + +def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None): + if yak_mlp: + return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations) + if mlp_silu_act: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), + SiLUActivation(), + operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), + ) + else: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): @@ -140,7 +169,7 @@ class SiLUActivation(nn.Module): class DoubleStreamBlock(nn.Module): - def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) @@ -156,18 +185,7 @@ class DoubleStreamBlock(nn.Module): self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - if mlp_silu_act: - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), - SiLUActivation(), - operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), - ) - else: - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) if self.modulation: self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) @@ -177,18 +195,7 @@ class DoubleStreamBlock(nn.Module): self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - if mlp_silu_act: - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), - SiLUActivation(), - operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), - ) - else: - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) self.flipped_img_txt = flipped_img_txt @@ -275,6 +282,7 @@ class SingleStreamBlock(nn.Module): modulation=True, mlp_silu_act=False, bias=True, + yak_mlp=False, dtype=None, device=None, operations=None @@ -288,12 +296,17 @@ class SingleStreamBlock(nn.Module): self.mlp_hidden_dim = int(hidden_size * mlp_ratio) self.mlp_hidden_dim_first = self.mlp_hidden_dim + self.yak_mlp = yak_mlp if mlp_silu_act: self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2) self.mlp_act = SiLUActivation() else: self.mlp_act = nn.GELU(approximate="tanh") + if self.yak_mlp: + self.mlp_hidden_dim_first *= 2 + self.mlp_act = nn.SiLU() + # qkv and mlp_in self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device) # proj and mlp_out @@ -325,7 +338,10 @@ class SingleStreamBlock(nn.Module): attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) del q, k, v # compute activation in mlp stream, cat again and run second linear layer - mlp = self.mlp_act(mlp) + if self.yak_mlp: + mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2] + else: + mlp = self.mlp_act(mlp) output = self.linear2(torch.cat((attn, mlp), 2)) x += apply_mod(output, mod.gate, None, modulation_dims) if x.dtype == torch.float16: diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index d5674dea6..f40c2a7a9 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -15,7 +15,8 @@ from .layers import ( MLPEmbedder, SingleStreamBlock, timestep_embedding, - Modulation + Modulation, + RMSNorm ) @dataclass @@ -34,11 +35,14 @@ class FluxParams: patch_size: int qkv_bias: bool guidance_embed: bool + txt_ids_dims: list global_modulation: bool = False mlp_silu_act: bool = False ops_bias: bool = True default_ref_method: str = "offset" ref_index_scale: float = 1.0 + yak_mlp: bool = False + txt_norm: bool = False class Flux(nn.Module): @@ -76,6 +80,11 @@ class Flux(nn.Module): ) self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) + if params.txt_norm: + self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations) + else: + self.txt_norm = None + self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( @@ -86,6 +95,7 @@ class Flux(nn.Module): modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, proj_bias=params.ops_bias, + yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -94,7 +104,7 @@ class Flux(nn.Module): self.single_blocks = nn.ModuleList( [ - SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) @@ -150,6 +160,8 @@ class Flux(nn.Module): y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + if self.txt_norm is not None: + txt = self.txt_norm(txt) txt = self.txt_in(txt) vec_orig = vec @@ -332,8 +344,9 @@ class Flux(nn.Module): txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32) - if len(self.params.axes_dim) == 4: # Flux 2 - txt_ids[:, :, 3] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) + if len(self.params.txt_ids_dims) > 0: + for i in self.params.txt_ids_dims: + txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) out = out[:, :img_tokens] diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 7afe4a798..7d0517e61 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -208,12 +208,12 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["theta"] = 2000 dit_config["out_channels"] = 128 dit_config["global_modulation"] = True - dit_config["vec_in_dim"] = None dit_config["mlp_silu_act"] = True dit_config["qkv_bias"] = False dit_config["ops_bias"] = False dit_config["default_ref_method"] = "index" dit_config["ref_index_scale"] = 10.0 + dit_config["txt_ids_dims"] = [3] patch_size = 1 else: dit_config["image_model"] = "flux" @@ -223,6 +223,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["theta"] = 10000 dit_config["out_channels"] = 16 dit_config["qkv_bias"] = True + dit_config["txt_ids_dims"] = [] patch_size = 2 dit_config["in_channels"] = 16 @@ -245,6 +246,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix) if vec_in_key in state_dict_keys: dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1] + else: + dit_config["vec_in_dim"] = None dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') @@ -270,6 +273,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_embedder_dtype"] = torch.float32 else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys + dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys + dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys + if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model + dit_config["txt_ids_dims"] = [1, 2] + return dit_config if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview diff --git a/comfy/sd.py b/comfy/sd.py index 9eeb0c45a..f9e5efab5 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -53,6 +53,7 @@ import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image +import comfy.text_encoders.ovis import comfy.model_patcher import comfy.lora @@ -956,6 +957,7 @@ class CLIPType(Enum): QWEN_IMAGE = 18 HUNYUAN_IMAGE = 19 HUNYUAN_VIDEO_15 = 20 + OVIS = 21 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -987,6 +989,7 @@ class TEModel(Enum): MISTRAL3_24B = 14 MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 + QWEN3_2B = 17 def detect_te_model(sd): @@ -1020,9 +1023,12 @@ def detect_te_model(sd): if weight.shape[0] == 512: return TEModel.QWEN25_7B if "model.layers.0.post_attention_layernorm.weight" in sd: - if 'model.layers.0.self_attn.q_norm.weight' in sd: - return TEModel.QWEN3_4B weight = sd['model.layers.0.post_attention_layernorm.weight'] + if 'model.layers.0.self_attn.q_norm.weight' in sd: + if weight.shape[0] == 2560: + return TEModel.QWEN3_4B + elif weight.shape[0] == 2048: + return TEModel.QWEN3_2B if weight.shape[0] == 5120: if "model.layers.39.post_attention_layernorm.weight" in sd: return TEModel.MISTRAL3_24B @@ -1150,6 +1156,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif te_model == TEModel.QWEN3_4B: clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer + elif te_model == TEModel.QWEN3_2B: + clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer else: # clip_l if clip_type == CLIPType.SD3: diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index cd4b5f76c..0d07ac8c6 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -100,6 +100,28 @@ class Qwen3_4BConfig: rope_scale = None final_norm: bool = True +@dataclass +class Ovis25_2BConfig: + vocab_size: int = 151936 + hidden_size: int = 2048 + intermediate_size: int = 6144 + num_hidden_layers: int = 28 + num_attention_heads: int = 16 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True + @dataclass class Qwen25_7BVLI_Config: vocab_size: int = 152064 @@ -542,6 +564,15 @@ class Qwen3_4B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Ovis25_2B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Ovis25_2BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_7BVLI(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() diff --git a/comfy/text_encoders/ovis.py b/comfy/text_encoders/ovis.py new file mode 100644 index 000000000..81c9bd51c --- /dev/null +++ b/comfy/text_encoders/ovis.py @@ -0,0 +1,69 @@ +from transformers import Qwen2Tokenizer +import comfy.text_encoders.llama +from comfy import sd1_clip +import os +import torch +import numbers + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data) + + +class OvisTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer) + self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n\n\n\n\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class Ovis25_2BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options) + + +class OvisTEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs, template_end=-1): + out, pooled = super().encode_token_weights(token_weight_pairs) + tok_pairs = token_weight_pairs["qwen3_2b"][0] + count_im_start = 0 + if template_end == -1: + for i, v in enumerate(tok_pairs): + elem = v[0] + if not torch.is_tensor(elem): + if isinstance(elem, numbers.Integral): + if elem == 4004 and count_im_start < 1: + template_end = i + count_im_start += 1 + + if out.shape[1] > (template_end + 1): + if tok_pairs[template_end + 1][0] == 25: + template_end += 1 + + out = out[:, template_end:] + return out, pooled, {} + + +def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): + class OvisTEModel_(OvisTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, dtype=dtype, model_options=model_options) + return OvisTEModel_ diff --git a/nodes.py b/nodes.py index 495dec806..d5e5dc228 100644 --- a/nodes.py +++ b/nodes.py @@ -939,7 +939,7 @@ class CLIPLoader: @classmethod def INPUT_TYPES(s): return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2"], ), + "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2", "ovis"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), From c55dc857d5da5af203caf720ed7056047d382544 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 1 Dec 2025 17:56:38 -0800 Subject: [PATCH 24/64] bump comfyui-frontend-package to 1.33.10 (#11028) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 045b2ac54..f98848e20 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.32.10 +comfyui-frontend-package==1.33.10 comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch From b4a20acc54b0b94dc05a1bd09dc0b54dd12203f1 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Tue, 2 Dec 2025 12:32:52 +0900 Subject: [PATCH 25/64] feat: Support ComfyUI-Manager for pip version (#7555) --- comfy/cli_args.py | 7 +++++++ comfy_api/feature_flags.py | 1 + main.py | 30 ++++++++++++++++++++++++++++++ manager_requirements.txt | 1 + nodes.py | 9 +++++++++ server.py | 8 +++++++- 6 files changed, 55 insertions(+), 1 deletion(-) create mode 100644 manager_requirements.txt diff --git a/comfy/cli_args.py b/comfy/cli_args.py index 5f0dfaa10..209fc185b 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -121,6 +121,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.") +parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.") +manager_group = parser.add_mutually_exclusive_group() +manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.") +manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager") + + vram_group = parser.add_mutually_exclusive_group() vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") @@ -168,6 +174,7 @@ parser.add_argument("--multi-user", action="store_true", help="Enables per-user parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level') parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).") + # The default built-in provider hosted under web/ DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest" diff --git a/comfy_api/feature_flags.py b/comfy_api/feature_flags.py index 0d4389a6e..bfb77eb5f 100644 --- a/comfy_api/feature_flags.py +++ b/comfy_api/feature_flags.py @@ -13,6 +13,7 @@ from comfy.cli_args import args SERVER_FEATURE_FLAGS: Dict[str, Any] = { "supports_preview_metadata": True, "max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes + "extension": {"manager": {"supports_v4": True}}, } diff --git a/main.py b/main.py index e1b0f1620..0cd815d9e 100644 --- a/main.py +++ b/main.py @@ -15,6 +15,7 @@ from comfy_execution.progress import get_progress_state from comfy_execution.utils import get_executing_context from comfy_api import feature_flags + if __name__ == "__main__": #NOTE: These do not do anything on core ComfyUI, they are for custom nodes. os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' @@ -22,6 +23,23 @@ if __name__ == "__main__": setup_logger(log_level=args.verbose, use_stdout=args.log_stdout) + +def handle_comfyui_manager_unavailable(): + if not args.windows_standalone_build: + logging.warning(f"\n\nYou appear to be running comfyui-manager from source, this is not recommended. Please install comfyui-manager using the following command:\ncommand:\n\t{sys.executable} -m pip install --pre comfyui_manager\n") + args.enable_manager = False + + +if args.enable_manager: + if importlib.util.find_spec("comfyui_manager"): + import comfyui_manager + + if not comfyui_manager.__file__ or not comfyui_manager.__file__.endswith('__init__.py'): + handle_comfyui_manager_unavailable() + else: + handle_comfyui_manager_unavailable() + + def apply_custom_paths(): # extra model paths extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml") @@ -79,6 +97,11 @@ def execute_prestartup_script(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + continue + if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__": continue @@ -101,6 +124,10 @@ def execute_prestartup_script(): logging.info("") apply_custom_paths() + +if args.enable_manager: + comfyui_manager.prestartup() + execute_prestartup_script() @@ -323,6 +350,9 @@ def start_comfyui(asyncio_loop=None): asyncio.set_event_loop(asyncio_loop) prompt_server = server.PromptServer(asyncio_loop) + if args.enable_manager and not args.disable_manager_ui: + comfyui_manager.start() + hook_breaker_ac10a0.save_functions() asyncio_loop.run_until_complete(nodes.init_extra_nodes( init_custom_nodes=(not args.disable_all_custom_nodes) or len(args.whitelist_custom_nodes) > 0, diff --git a/manager_requirements.txt b/manager_requirements.txt new file mode 100644 index 000000000..52cc5389c --- /dev/null +++ b/manager_requirements.txt @@ -0,0 +1 @@ +comfyui_manager==4.0.3b3 diff --git a/nodes.py b/nodes.py index d5e5dc228..4c910a34b 100644 --- a/nodes.py +++ b/nodes.py @@ -43,6 +43,9 @@ import folder_paths import latent_preview import node_helpers +if args.enable_manager: + import comfyui_manager + def before_node_execution(): comfy.model_management.throw_exception_if_processing_interrupted() @@ -2243,6 +2246,12 @@ async def init_external_custom_nodes(): if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + logging.info(f"Blocked by policy: {module_path}") + continue + time_before = time.perf_counter() success = await load_custom_node(module_path, base_node_names, module_parent="custom_nodes") node_import_times.append((time.perf_counter() - time_before, module_path, success)) diff --git a/server.py b/server.py index fca5050bd..e3bd056d9 100644 --- a/server.py +++ b/server.py @@ -44,6 +44,9 @@ from protocol import BinaryEventTypes # Import cache control middleware from middleware.cache_middleware import cache_control +if args.enable_manager: + import comfyui_manager + async def send_socket_catch_exception(function, message): try: await function(message) @@ -212,6 +215,9 @@ class PromptServer(): if args.disable_api_nodes: middlewares.append(create_block_external_middleware()) + if args.enable_manager: + middlewares.append(comfyui_manager.create_middleware()) + max_upload_size = round(args.max_upload_size * 1024 * 1024) self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) self.sockets = dict() @@ -599,7 +605,7 @@ class PromptServer(): system_stats = { "system": { - "os": os.name, + "os": sys.platform, "ram_total": ram_total, "ram_free": ram_free, "comfyui_version": __version__, From a17cf1c3871ad582c85c2bb6fddb63ec9c6df0ce Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Mon, 1 Dec 2025 19:40:44 -0800 Subject: [PATCH 26/64] Add @guill as a code owner (#11031) --- CODEOWNERS | 1 + 1 file changed, 1 insertion(+) diff --git a/CODEOWNERS b/CODEOWNERS index b7aca9b26..51acc4986 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -1,3 +1,4 @@ # Admins * @comfyanonymous * @kosinkadink +* @guill From 44baa0b7f32dd0c2ff0a9898aeb6c7929d855cd3 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 2 Dec 2025 11:46:29 -0800 Subject: [PATCH 27/64] Fix CODEOWNERS formatting to have all on the same line, otherwise only last line applies (#11053) --- CODEOWNERS | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/CODEOWNERS b/CODEOWNERS index 51acc4986..4d5448636 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -1,4 +1,2 @@ # Admins -* @comfyanonymous -* @kosinkadink -* @guill +* @comfyanonymous @kosinkadink @guill From 33d6aec3b70bc6f3e5bba26c85bd8f3bb1380d08 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 2 Dec 2025 21:50:13 +0200 Subject: [PATCH 28/64] add check for the format arg type in VideoFromComponents.save_to function (#11046) * add check for the format var type in VideoFromComponents.save_to function * convert "format" to VideoContainer enum --- comfy_api/latest/_input_impl/video_types.py | 2 +- comfy_extras/nodes_video.py | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index 7231bf13c..a4cd3737d 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -337,7 +337,7 @@ class VideoFromComponents(VideoInput): if codec != VideoCodec.AUTO and codec != VideoCodec.H264: raise ValueError("Only H264 codec is supported for now") extra_kwargs = {} - if format != VideoContainer.AUTO: + if isinstance(format, VideoContainer) and format != VideoContainer.AUTO: extra_kwargs["format"] = format.value with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output: # Add metadata before writing any streams diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index 69fabb12e..6cf6e39bf 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -88,7 +88,7 @@ class SaveVideo(io.ComfyNode): ) @classmethod - def execute(cls, video: VideoInput, filename_prefix, format, codec) -> io.NodeOutput: + def execute(cls, video: VideoInput, filename_prefix, format: str, codec) -> io.NodeOutput: width, height = video.get_dimensions() full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( filename_prefix, @@ -108,7 +108,7 @@ class SaveVideo(io.ComfyNode): file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}" video.save_to( os.path.join(full_output_folder, file), - format=format, + format=VideoContainer(format), codec=codec, metadata=saved_metadata ) From daaceac769a1355ab975758ede064317ea7514b4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 14:11:58 -0800 Subject: [PATCH 29/64] Hack to make zimage work in fp16. (#11057) --- comfy/ldm/lumina/model.py | 18 +++++++++++------- comfy/supported_models.py | 2 ++ 2 files changed, 13 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 7d7e9112c..070b5da09 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -22,6 +22,10 @@ def modulate(x, scale): # Core NextDiT Model # ############################################################################# +def clamp_fp16(x): + if x.dtype == torch.float16: + return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) + return x class JointAttention(nn.Module): """Multi-head attention module.""" @@ -169,7 +173,7 @@ class FeedForward(nn.Module): # @torch.compile def _forward_silu_gating(self, x1, x3): - return F.silu(x1) * x3 + return clamp_fp16(F.silu(x1) * x3) def forward(self, x): return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) @@ -273,27 +277,27 @@ class JointTransformerBlock(nn.Module): scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( - self.attention( + clamp_fp16(self.attention( modulate(self.attention_norm1(x), scale_msa), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( - self.feed_forward( + clamp_fp16(self.feed_forward( modulate(self.ffn_norm1(x), scale_mlp), - ) + )) ) else: assert adaln_input is None x = x + self.attention_norm2( - self.attention( + clamp_fp16(self.attention( self.attention_norm1(x), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + self.ffn_norm2( self.feed_forward( diff --git a/comfy/supported_models.py b/comfy/supported_models.py index af8120400..afd97160b 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1027,6 +1027,8 @@ class ZImage(Lumina2): memory_usage_factor = 1.7 + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] + def clip_target(self, state_dict={}): pref = self.text_encoder_key_prefix[0] hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref)) From 277237ccc1499bac7fcd221a666dfe7a32ac4206 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 08:24:19 +1000 Subject: [PATCH 30/64] attention: use flag based OOM fallback (#11038) Exception ref all local variables for the lifetime of exception context. Just set a flag and then if to dump the exception before falling back. --- comfy/ldm/modules/attention.py | 3 +++ comfy/ldm/modules/diffusionmodules/model.py | 3 +++ 2 files changed, 6 insertions(+) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 7437e0567..a8800ded0 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -517,6 +517,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha @wrap_attn def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False if skip_reshape: b, _, _, dim_head = q.shape tensor_layout = "HND" @@ -541,6 +542,8 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout) except Exception as e: logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e)) + exception_fallback = True + if exception_fallback: if tensor_layout == "NHD": q, k, v = map( lambda t: t.transpose(1, 2), diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 4245eedca..de1e01cc8 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -279,6 +279,7 @@ def pytorch_attention(q, k, v): orig_shape = q.shape B = orig_shape[0] C = orig_shape[1] + oom_fallback = False q, k, v = map( lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), (q, k, v), @@ -289,6 +290,8 @@ def pytorch_attention(q, k, v): out = out.transpose(2, 3).reshape(orig_shape) except model_management.OOM_EXCEPTION: logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") + oom_fallback = True + if oom_fallback: out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) return out From b94d394a64dd0af06bca44b96c66549bb463331d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 18:38:31 -0800 Subject: [PATCH 31/64] Support Z Image alibaba pai fun controlnets. (#11062) These are not actual controlnets so put it in the models/model_patches folder and use the ModelPatchLoader + QwenImageDiffsynthControlnet node to use it. --- comfy/ldm/lumina/controlnet.py | 113 ++++++++++++++++++++++++++++++ comfy/ldm/lumina/model.py | 24 ++++--- comfy_extras/nodes_model_patch.py | 101 +++++++++++++++++++++++++- 3 files changed, 229 insertions(+), 9 deletions(-) create mode 100644 comfy/ldm/lumina/controlnet.py diff --git a/comfy/ldm/lumina/controlnet.py b/comfy/ldm/lumina/controlnet.py new file mode 100644 index 000000000..fd7ce3b5c --- /dev/null +++ b/comfy/ldm/lumina/controlnet.py @@ -0,0 +1,113 @@ +import torch +from torch import nn + +from .model import JointTransformerBlock + +class ZImageControlTransformerBlock(JointTransformerBlock): + def __init__( + self, + layer_id: int, + dim: int, + n_heads: int, + n_kv_heads: int, + multiple_of: int, + ffn_dim_multiplier: float, + norm_eps: float, + qk_norm: bool, + modulation=True, + block_id=0, + operation_settings=None, + ): + super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings) + self.block_id = block_id + if block_id == 0: + self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, c, x, **kwargs): + if self.block_id == 0: + c = self.before_proj(c) + x + c = super().forward(c, **kwargs) + c_skip = self.after_proj(c) + return c_skip, c + +class ZImage_Control(torch.nn.Module): + def __init__( + self, + dim: int = 3840, + n_heads: int = 30, + n_kv_heads: int = 30, + multiple_of: int = 256, + ffn_dim_multiplier: float = (8.0 / 3.0), + norm_eps: float = 1e-5, + qk_norm: bool = True, + dtype=None, + device=None, + operations=None, + **kwargs + ): + super().__init__() + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.additional_in_dim = 0 + self.control_in_dim = 16 + n_refiner_layers = 2 + self.n_control_layers = 6 + self.control_layers = nn.ModuleList( + [ + ZImageControlTransformerBlock( + i, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + block_id=i, + operation_settings=operation_settings, + ) + for i in range(self.n_control_layers) + ] + ) + + all_x_embedder = {} + patch_size = 2 + f_patch_size = 1 + x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True, device=device, dtype=dtype) + all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder + + self.control_all_x_embedder = nn.ModuleDict(all_x_embedder) + self.control_noise_refiner = nn.ModuleList( + [ + JointTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + modulation=True, + z_image_modulation=True, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + + def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input): + patch_size = 2 + f_patch_size = 1 + pH = pW = patch_size + B, C, H, W = control_context.shape + control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) + + x_attn_mask = None + for layer in self.control_noise_refiner: + control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input) + return control_context + + def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): + return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 070b5da09..f1c1a0ec3 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -568,7 +568,7 @@ class NextDiT(nn.Module): ).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs) # def forward(self, x, t, cap_feats, cap_mask): - def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): + def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs): t = 1.0 - timesteps cap_feats = context cap_mask = attention_mask @@ -585,16 +585,24 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute + patches = transformer_options.get("patches", {}) transformer_options = kwargs.get("transformer_options", {}) x_is_tensor = isinstance(x, torch.Tensor) - x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) - freqs_cis = freqs_cis.to(x.device) + img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) + freqs_cis = freqs_cis.to(img.device) - for layer in self.layers: - x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + for i, layer in enumerate(self.layers): + img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + if "double_block" in patches: + for p in patches["double_block"]: + out = p({"img": img[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) + if "img" in out: + img[:, cap_size[0]:] = out["img"] + if "txt" in out: + img[:, :cap_size[0]] = out["txt"] - x = self.final_layer(x, adaln_input) - x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w] + img = self.final_layer(img, adaln_input) + img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w] - return -x + return -img diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 783c59b6b..c61810dbf 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -6,6 +6,7 @@ import comfy.ops import comfy.model_management import comfy.ldm.common_dit import comfy.latent_formats +import comfy.ldm.lumina.controlnet class BlockWiseControlBlock(torch.nn.Module): @@ -189,6 +190,35 @@ class SigLIPMultiFeatProjModel(torch.nn.Module): return embedding +def z_image_convert(sd): + replace_keys = {".attention.to_out.0.bias": ".attention.out.bias", + ".attention.norm_k.weight": ".attention.k_norm.weight", + ".attention.norm_q.weight": ".attention.q_norm.weight", + ".attention.to_out.0.weight": ".attention.out.weight" + } + + out_sd = {} + for k in sorted(sd.keys()): + w = sd[k] + + k_out = k + if k_out.endswith(".attention.to_k.weight"): + cc = [w] + continue + if k_out.endswith(".attention.to_q.weight"): + cc = [w] + cc + continue + if k_out.endswith(".attention.to_v.weight"): + cc = cc + [w] + w = torch.cat(cc, dim=0) + k_out = k_out.replace(".attention.to_v.weight", ".attention.qkv.weight") + + for r, rr in replace_keys.items(): + k_out = k_out.replace(r, rr) + out_sd[k_out] = w + + return out_sd + class ModelPatchLoader: @classmethod def INPUT_TYPES(s): @@ -211,6 +241,9 @@ class ModelPatchLoader: elif 'feature_embedder.mid_layer_norm.bias' in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True) model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) + elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet + sd = z_image_convert(sd) + model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) @@ -263,6 +296,69 @@ class DiffSynthCnetPatch: def models(self): return [self.model_patch] +class ZImageControlPatch: + def __init__(self, model_patch, vae, image, strength): + self.model_patch = model_patch + self.vae = vae + self.image = image + self.strength = strength + self.encoded_image = self.encode_latent_cond(image) + self.encoded_image_size = (image.shape[1], image.shape[2]) + self.temp_data = None + + def encode_latent_cond(self, image): + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image)) + return latent_image + + def __call__(self, kwargs): + x = kwargs.get("x") + img = kwargs.get("img") + txt = kwargs.get("txt") + pe = kwargs.get("pe") + vec = kwargs.get("vec") + block_index = kwargs.get("block_index") + spacial_compression = self.vae.spacial_compression_encode() + if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): + image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") + loaded_models = comfy.model_management.loaded_models(only_currently_used=True) + self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1)) + self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) + comfy.model_management.load_models_gpu(loaded_models) + + cnet_index = (block_index // 5) + cnet_index_float = (block_index / 5) + + kwargs.pop("img") # we do ops in place + kwargs.pop("txt") + + cnet_blocks = self.model_patch.model.n_control_layers + if cnet_index_float > (cnet_blocks - 1): + self.temp_data = None + return kwargs + + if self.temp_data is None or self.temp_data[0] > cnet_index: + self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + + while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks: + next_layer = self.temp_data[0] + 1 + self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + + if cnet_index_float == self.temp_data[0]: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + if cnet_blocks == self.temp_data[0] + 1: + self.temp_data = None + + return kwargs + + def to(self, device_or_dtype): + if isinstance(device_or_dtype, torch.device): + self.encoded_image = self.encoded_image.to(device_or_dtype) + self.temp_data = None + return self + + def models(self): + return [self.model_patch] + class QwenImageDiffsynthControlnet: @classmethod def INPUT_TYPES(s): @@ -289,7 +385,10 @@ class QwenImageDiffsynthControlnet: mask = mask.unsqueeze(2) mask = 1.0 - mask - model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) + if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control): + model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength)) + else: + model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) From 3f512f5659cfbb3c53999cde6ff557591740252b Mon Sep 17 00:00:00 2001 From: Jim Heising Date: Tue, 2 Dec 2025 19:29:27 -0800 Subject: [PATCH 32/64] Added PATCH method to CORS headers (#11066) Added PATCH http method to access-control-allow-header-methods header because there are now PATCH endpoints exposed in the API. See https://github.com/comfyanonymous/ComfyUI/blob/277237ccc1499bac7fcd221a666dfe7a32ac4206/api_server/routes/internal/internal_routes.py#L34 for an example of an API endpoint that uses the PATCH method. --- server.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/server.py b/server.py index e3bd056d9..ac4f42222 100644 --- a/server.py +++ b/server.py @@ -98,7 +98,7 @@ def create_cors_middleware(allowed_origin: str): response = await handler(request) response.headers['Access-Control-Allow-Origin'] = allowed_origin - response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS' + response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS, PATCH' response.headers['Access-Control-Allow-Headers'] = 'Content-Type, Authorization' response.headers['Access-Control-Allow-Credentials'] = 'true' return response From 73f5649196f472d3719e2e7513e0a9d029cc3e38 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 13:49:29 +1000 Subject: [PATCH 33/64] Implement temporal rolling VAE (Major VRAM reductions in Hunyuan and Kandinsky) (#10995) * hunyuan upsampler: rework imports Remove the transitive import of VideoConv3d and Resnet and takes these from actual implementation source. * model: remove unused give_pre_end According to git grep, this is not used now, and was not used in the initial commit that introduced it (see below). This semantic is difficult to implement temporal roll VAE for (and would defeat the purpose). Rather than implement the complex if, just delete the unused feature. (venv) rattus@rattus-box2:~/ComfyUI$ git log --oneline 220afe33 (HEAD) Initial commit. (venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre comfy/ldm/modules/diffusionmodules/model.py: resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, comfy/ldm/modules/diffusionmodules/model.py: self.give_pre_end = give_pre_end comfy/ldm/modules/diffusionmodules/model.py: if self.give_pre_end: (venv) rattus@rattus-box2:~/ComfyUI$ git co origin/master Previous HEAD position was 220afe33 Initial commit. HEAD is now at 9d8a8179 Enable async offloading by default on Nvidia. (#10953) (venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre comfy/ldm/modules/diffusionmodules/model.py: resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, comfy/ldm/modules/diffusionmodules/model.py: self.give_pre_end = give_pre_end comfy/ldm/modules/diffusionmodules/model.py: if self.give_pre_end: * move refiner VAE temporal roller to core Move the carrying conv op to the common VAE code and give it a better name. Roll the carry implementation logic for Resnet into the base class and scrap the Hunyuan specific subclass. * model: Add temporal roll to main VAE decoder If there are no attention layers, its a standard resnet and VideoConv3d is asked for, substitute in the temporal rolloing VAE algorithm. This reduces VAE usage by the temporal dimension (can be huge VRAM savings). * model: Add temporal roll to main VAE encoder If there are no attention layers, its a standard resnet and VideoConv3d is asked for, substitute in the temporal rolling VAE algorithm. This reduces VAE usage by the temporal dimension (can be huge VRAM savings). --- comfy/ldm/hunyuan_video/upsampler.py | 3 +- comfy/ldm/hunyuan_video/vae_refiner.py | 94 +++------ comfy/ldm/modules/diffusionmodules/model.py | 207 ++++++++++++++------ 3 files changed, 174 insertions(+), 130 deletions(-) diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 9f5e91a59..85f515f67 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -1,7 +1,8 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm, ResnetBlock, VideoConv3d +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d +from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm import model_management, model_patcher class SRResidualCausalBlock3D(nn.Module): diff --git a/comfy/ldm/hunyuan_video/vae_refiner.py b/comfy/ldm/hunyuan_video/vae_refiner.py index 9f750dcc4..ddf77cd0e 100644 --- a/comfy/ldm/hunyuan_video/vae_refiner.py +++ b/comfy/ldm/hunyuan_video/vae_refiner.py @@ -1,42 +1,12 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed import comfy.ops import comfy.ldm.models.autoencoder import comfy.model_management ops = comfy.ops.disable_weight_init -class NoPadConv3d(nn.Module): - def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): - super().__init__() - self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) - - def forward(self, x): - return self.conv(x) - - -def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): - - x = xl[0] - xl.clear() - - if conv_carry_out is not None: - to_push = x[:, :, -2:, :, :].clone() - conv_carry_out.append(to_push) - - if isinstance(op, NoPadConv3d): - if conv_carry_in is None: - x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') - else: - carry_len = conv_carry_in[0].shape[2] - x = torch.cat([conv_carry_in.pop(0), x], dim=2) - x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') - - out = op(x) - - return out - class RMS_norm(nn.Module): def __init__(self, dim): @@ -49,7 +19,7 @@ class RMS_norm(nn.Module): return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) class DnSmpl(nn.Module): - def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tds, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tds else 1 * 2 * 2 assert oc % fct == 0 @@ -109,7 +79,7 @@ class DnSmpl(nn.Module): class UpSmpl(nn.Module): - def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tus, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tus else 1 * 2 * 2 self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1) @@ -163,23 +133,6 @@ class UpSmpl(nn.Module): return h + x -class HunyuanRefinerResnetBlock(ResnetBlock): - def __init__(self, in_channels, out_channels, conv_op=NoPadConv3d, norm_op=RMS_norm): - super().__init__(in_channels=in_channels, out_channels=out_channels, temb_channels=0, conv_op=conv_op, norm_op=norm_op) - - def forward(self, x, conv_carry_in=None, conv_carry_out=None): - h = x - h = [ self.swish(self.norm1(x)) ] - h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) - - h = [ self.dropout(self.swish(self.norm2(h))) ] - h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) - - if self.in_channels != self.out_channels: - x = self.nin_shortcut(x) - - return x+h - class Encoder(nn.Module): def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks, ffactor_spatial, ffactor_temporal, downsample_match_channel=True, refiner_vae=True, **_): @@ -191,7 +144,7 @@ class Encoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = NoPadConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -206,9 +159,10 @@ class Encoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks)]) ch = tgt if i < depth: @@ -218,9 +172,9 @@ class Encoder(nn.Module): self.down.append(stage) self.mid = nn.Module() - self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.norm_out = norm_op(ch) self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1) @@ -246,22 +200,20 @@ class Encoder(nn.Module): conv_carry_out = [] if i == len(x) - 1: conv_carry_out = None + x1 = [ x1 ] x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) for stage in self.down: for blk in stage.block: - x1 = blk(x1, conv_carry_in, conv_carry_out) + x1 = blk(x1, None, conv_carry_in, conv_carry_out) if hasattr(stage, 'downsample'): x1 = stage.downsample(x1, conv_carry_in, conv_carry_out) out.append(x1) conv_carry_in = conv_carry_out - if len(out) > 1: - out = torch.cat(out, dim=2) - else: - out = out[0] + out = torch_cat_if_needed(out, dim=2) x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out))) del out @@ -288,7 +240,7 @@ class Decoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = NoPadConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -298,9 +250,9 @@ class Decoder(nn.Module): self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1) self.mid = nn.Module() - self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.up = nn.ModuleList() depth = (ffactor_spatial >> 1).bit_length() @@ -308,9 +260,10 @@ class Decoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks + 1)]) ch = tgt if i < depth: @@ -340,7 +293,7 @@ class Decoder(nn.Module): conv_carry_out = None for stage in self.up: for blk in stage.block: - x1 = blk(x1, conv_carry_in, conv_carry_out) + x1 = blk(x1, None, conv_carry_in, conv_carry_out) if hasattr(stage, 'upsample'): x1 = stage.upsample(x1, conv_carry_in, conv_carry_out) @@ -350,10 +303,7 @@ class Decoder(nn.Module): conv_carry_in = conv_carry_out del x - if len(out) > 1: - out = torch.cat(out, dim=2) - else: - out = out[0] + out = torch_cat_if_needed(out, dim=2) if not self.refiner_vae: if z.shape[-3] == 1: diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index de1e01cc8..681a55db5 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -13,6 +13,12 @@ if model_management.xformers_enabled_vae(): import xformers import xformers.ops +def torch_cat_if_needed(xl, dim): + if len(xl) > 1: + return torch.cat(xl, dim) + else: + return xl[0] + def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: @@ -43,6 +49,37 @@ def Normalize(in_channels, num_groups=32): return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) +class CarriedConv3d(nn.Module): + def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): + super().__init__() + self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) + + def forward(self, x): + return self.conv(x) + + +def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): + + x = xl[0] + xl.clear() + + if isinstance(op, CarriedConv3d): + if conv_carry_in is None: + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') + else: + carry_len = conv_carry_in[0].shape[2] + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') + x = torch.cat([conv_carry_in.pop(0), x], dim=2) + + if conv_carry_out is not None: + to_push = x[:, :, -2:, :, :].clone() + conv_carry_out.append(to_push) + + out = op(x) + + return out + + class VideoConv3d(nn.Module): def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs): super().__init__() @@ -89,29 +126,24 @@ class Upsample(nn.Module): stride=1, padding=1) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): scale_factor = self.scale_factor if isinstance(scale_factor, (int, float)): scale_factor = (scale_factor,) * (x.ndim - 2) if x.ndim == 5 and scale_factor[0] > 1.0: - t = x.shape[2] - if t > 1: - a, b = x.split((1, t - 1), dim=2) - del x - b = interpolate_up(b, scale_factor) - else: - a = x - - a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2) - if t > 1: - x = torch.cat((a, b), dim=2) - else: - x = a + results = [] + if conv_carry_in is None: + first = x[:, :, :1, :, :] + results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)) + x = x[:, :, 1:, :, :] + if x.shape[2] > 0: + results.append(interpolate_up(x, scale_factor)) + x = torch_cat_if_needed(results, dim=2) else: x = interpolate_up(x, scale_factor) if self.with_conv: - x = self.conv(x) + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) return x @@ -127,17 +159,20 @@ class Downsample(nn.Module): stride=stride, padding=0) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): if self.with_conv: - if x.ndim == 4: + if isinstance(self.conv, CarriedConv3d): + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) + elif x.ndim == 4: pad = (0, 1, 0, 1) mode = "constant" x = torch.nn.functional.pad(x, pad, mode=mode, value=0) + x = self.conv(x) elif x.ndim == 5: pad = (1, 1, 1, 1, 2, 0) mode = "replicate" x = torch.nn.functional.pad(x, pad, mode=mode) - x = self.conv(x) + x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x @@ -183,23 +218,23 @@ class ResnetBlock(nn.Module): stride=1, padding=0) - def forward(self, x, temb=None): + def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None): h = x h = self.norm1(h) - h = self.swish(h) - h = self.conv1(h) + h = [ self.swish(h) ] + h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if temb is not None: h = h + self.temb_proj(self.swish(temb))[:,:,None,None] h = self.norm2(h) h = self.swish(h) - h = self.dropout(h) - h = self.conv2(h) + h = [ self.dropout(h) ] + h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if self.in_channels != self.out_channels: if self.use_conv_shortcut: - x = self.conv_shortcut(x) + x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) else: x = self.nin_shortcut(x) @@ -520,9 +555,14 @@ class Encoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels + self.carried = False if conv3d: - conv_op = VideoConv3d + if not attn_resolutions: + conv_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -535,6 +575,7 @@ class Encoder(nn.Module): stride=1, padding=1) + self.time_compress = 1 curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult @@ -561,10 +602,15 @@ class Encoder(nn.Module): if time_compress is not None: if (self.num_resolutions - 1 - i_level) > math.log2(time_compress): stride = (1, 2, 2) + else: + self.time_compress *= 2 down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op) curr_res = curr_res // 2 self.down.append(down) + if time_compress is not None: + self.time_compress = time_compress + # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, @@ -590,15 +636,42 @@ class Encoder(nn.Module): def forward(self, x): # timestep embedding temb = None - # downsampling - h = self.conv_in(x) - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](h, temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - if i_level != self.num_resolutions-1: - h = self.down[i_level].downsample(h) + + if self.carried: + xl = [x[:, :, :1, :, :]] + if x.shape[2] > self.time_compress: + tc = self.time_compress + xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2) + x = xl + else: + x = [x] + out = [] + + conv_carry_in = None + + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + + # downsampling + x1 = [ x1 ] + h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) + + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out) + if len(self.down[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.down[i_level].attn[i_block](h1) + if i_level != self.num_resolutions-1: + h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out) + + out.append(h1) + conv_carry_in = conv_carry_out + + h = torch_cat_if_needed(out, dim=2) + del out # middle h = self.mid.block_1(h, temb) @@ -607,15 +680,15 @@ class Encoder(nn.Module): # end h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) + h = [ nonlinearity(h) ] + h = conv_carry_causal_3d(h, self.conv_out) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + resolution, z_channels, tanh_out=False, use_linear_attn=False, conv_out_op=ops.Conv2d, resnet_op=ResnetBlock, attn_op=AttnBlock, @@ -629,12 +702,18 @@ class Decoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels - self.give_pre_end = give_pre_end self.tanh_out = tanh_out + self.carried = False if conv3d: - conv_op = VideoConv3d - conv_out_op = VideoConv3d + if not attn_resolutions and resnet_op == ResnetBlock: + conv_op = CarriedConv3d + conv_out_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d + conv_out_op = VideoConv3d + mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -709,29 +788,43 @@ class Decoder(nn.Module): temb = None # z to block_in - h = self.conv_in(z) + h = conv_carry_causal_3d([z], self.conv_in) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) + if self.carried: + h = torch.split(h, 2, dim=2) + else: + h = [ h ] + out = [] + + conv_carry_in = None + # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb, **kwargs) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h, **kwargs) - if i_level != 0: - h = self.up[i_level].upsample(h) + for i, h1 in enumerate(h): + conv_carry_out = [] + if i == len(h) - 1: + conv_carry_out = None + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs) + if len(self.up[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.up[i_level].attn[i_block](h1, **kwargs) + if i_level != 0: + h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out) - # end - if self.give_pre_end: - return h + h1 = self.norm_out(h1) + h1 = [ nonlinearity(h1) ] + h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out) + if self.tanh_out: + h1 = torch.tanh(h1) + out.append(h1) + conv_carry_in = conv_carry_out - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h, **kwargs) - if self.tanh_out: - h = torch.tanh(h) - return h + out = torch_cat_if_needed(out, dim=2) + + return out From c120eee5bacca643062657d2a7efad83c7d4d828 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 2 Dec 2025 21:17:13 -0800 Subject: [PATCH 34/64] Add MatchType, DynamicCombo, and Autogrow support to V3 Schema (#10832) * Added output_matchtypes to generated json for v3, initial backend support for MatchType, created nodes_logic.py and added SwitchNode * Fixed providing list of allowed_types * Add workaround in validation.py for V3 Combo outputs not working as Combo inputs * Make match type receive_type pass validation * Also add MatchType check to input_type in validation - will likely trigger when connecting to non-lazy stuff * Make sure this PR only has MatchType stuff * Initial work on DynamicCombo * Add get_dynamic function, not yet filled out correctly * Mark Switch node as Beta * Make sure other unfinished dynamic types are not accidentally used * Send DynamicCombo.Option inputs in the same format as normal v1 inputs * add dynamic combo test node * Support validation of inputs and outputs * Add missing input params to DynamicCombo.Input * Add get_all function to inputs for id validation purposes * Fix imports for v3 returning everything when doing io/ui/IO/UI instead of what is in __all__ of _io.py and _ui.py * Modifying behavior of get_dynamic in V3 + serialization so can be used in execution code * Fix v3 schema validation code after changes * Refactor hidden_values for v3 in execution.py to be more general v3_data, add helper functions for dynamic behavior, preparing for restructuring dynamic type into object (not finished yet) * Add nesting of inputs on DynamicCombo during execution * Work with latest frontend commits * Fix cringe arrows * frontend will no longer namespace dynamic inputs widgets so reflect that in code, refactor build_nested_inputs * Prepare Autogrow support for the love of the game * satisfy ruff * Create test nodes for Autogrow to collab with frontend development * Add nested combo to DCTestNode * Remove array support from build_nested_inputs, properly handle missing expected values * Make execution.validate_inputs properly validate required dynamic inputs, renamed dynamic_data to dynamic_paths for clarity * MatchType does not need any DynamicInput/Output features on backend; will increase compatibility with dynamic types * Probably need this for ruff check * Change MatchType to have template be the first and only required param; output id's do nothing right now, so no need * Fix merge regression with LatentUpscaleModel type not being put in __all__ for _io.py, fix invalid type hint for validate_inputs * Make Switch node inputs optional, disallow both inputs from being missing, and still work properly with lazy; when one input is missing, use the other no matter what the switch is set to * Satisfy ruff * Move MatchType code above the types that inherit from DynamicInput * Add DynamicSlot type, awaiting frontend support * Make curr_prefix creation happen in Autogrow, move curr_prefix in DynamicCombo to only be created if input exists in live_inputs * I was confused, fixing accidentally redundant curr_prefix addition in Autogrow * Make sure Autogrow inputs are force_input = True when WidgetInput, fix runtime validation by removing original input from expected inputs, fix min/max bounds, change test nodes slightly * Remove unnecessary id usage in Autogrow test node outputs * Commented out Switch node + test nodes * Remove commented out code from Autogrow * Make TemplatePrefix max more clear, allow max == 1 * Replace all dict[str] with dict[str, Any] * Renamed add_to_dict_live_inputs to expand_schema_for_dynamic * Fixed typo in DynamicSlot input code * note about live_inputs not being present soon in get_v1_info (internal function anyway) * For now, hide DynamicCombo and Autogrow from public interface * Removed comment --- comfy_api/latest/__init__.py | 4 +- comfy_api/latest/_io.py | 416 ++++++++++++++++++++++++++------- comfy_api/latest/_io_public.py | 1 + comfy_api/latest/_ui_public.py | 1 + comfy_api/v0_0_2/__init__.py | 6 +- comfy_execution/validation.py | 6 + comfy_extras/nodes_logic.py | 155 ++++++++++++ execution.py | 40 ++-- nodes.py | 1 + 9 files changed, 525 insertions(+), 105 deletions(-) create mode 100644 comfy_api/latest/_io_public.py create mode 100644 comfy_api/latest/_ui_public.py create mode 100644 comfy_extras/nodes_logic.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 176ae36e0..0fa01d1e7 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -8,8 +8,8 @@ from comfy_api.internal.async_to_sync import create_sync_class from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL -from . import _io as io -from . import _ui as ui +from . import _io_public as io +from . import _ui_public as ui # from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 79c0722a9..257f07c42 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -4,6 +4,7 @@ import copy import inspect from abc import ABC, abstractmethod from collections import Counter +from collections.abc import Iterable from dataclasses import asdict, dataclass from enum import Enum from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING @@ -150,6 +151,9 @@ class _IO_V3: def __init__(self): pass + def validate(self): + pass + @property def io_type(self): return self.Parent.io_type @@ -182,6 +186,9 @@ class Input(_IO_V3): def get_io_type(self): return _StringIOType(self.io_type) + def get_all(self) -> list[Input]: + return [self] + class WidgetInput(Input): ''' Base class for a V3 Input with widget. @@ -814,13 +821,61 @@ class MultiType: else: return super().as_dict() +@comfytype(io_type="COMFY_MATCHTYPE_V3") +class MatchType(ComfyTypeIO): + class Template: + def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType] = AnyType): + self.template_id = template_id + # account for syntactic sugar + if not isinstance(allowed_types, Iterable): + allowed_types = [allowed_types] + for t in allowed_types: + if not isinstance(t, type): + if not isinstance(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__class__.__name__}") + else: + if not issubclass(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__name__}") + self.allowed_types = allowed_types + + def as_dict(self): + return { + "template_id": self.template_id, + "allowed_types": ",".join([t.io_type for t in self.allowed_types]), + } + + class Input(Input): + def __init__(self, id: str, template: MatchType.Template, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + + class Output(Output): + def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, + is_output_list=False): + super().__init__(id, display_name, tooltip, is_output_list) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - @abstractmethod def get_dynamic(self) -> list[Input]: - ... + return [] + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + pass + class DynamicOutput(Output, ABC): ''' @@ -830,99 +885,223 @@ class DynamicOutput(Output, ABC): is_output_list=False): super().__init__(id, display_name, tooltip, is_output_list) - @abstractmethod def get_dynamic(self) -> list[Output]: - ... + return [] @comfytype(io_type="COMFY_AUTOGROW_V3") -class AutogrowDynamic(ComfyTypeI): - Type = list[Any] - class Input(DynamicInput): - def __init__(self, id: str, template_input: Input, min: int=1, max: int=None, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template_input = template_input - if min is not None: - assert(min >= 1) - if max is not None: - assert(max >= 1) +class Autogrow(ComfyTypeI): + Type = dict[str, Any] + _MaxNames = 100 # NOTE: max 100 names for sanity + + class _AutogrowTemplate: + def __init__(self, input: Input): + # dynamic inputs are not allowed as the template input + assert(not isinstance(input, DynamicInput)) + self.input = copy.copy(input) + if isinstance(self.input, WidgetInput): + self.input.force_input = True + self.names: list[str] = [] + self.cached_inputs = {} + + def _create_input(self, input: Input, name: str): + new_input = copy.copy(self.input) + new_input.id = name + return new_input + + def _create_cached_inputs(self): + for name in self.names: + self.cached_inputs[name] = self._create_input(self.input, name) + + def get_all(self) -> list[Input]: + return list(self.cached_inputs.values()) + + def as_dict(self): + return prune_dict({ + "input": create_input_dict_v1([self.input]), + }) + + def validate(self): + self.input.validate() + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + real_inputs = [] + for name, input in self.cached_inputs.items(): + if name in live_inputs: + real_inputs.append(input) + add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, real_inputs, curr_prefix) + + class TemplatePrefix(_AutogrowTemplate): + def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): + super().__init__(input) + self.prefix = prefix + assert(min >= 0) + assert(max >= 1) + assert(max <= Autogrow._MaxNames) self.min = min self.max = max + self.names = [f"{self.prefix}{i}" for i in range(self.max)] + self._create_cached_inputs() + + def as_dict(self): + return super().as_dict() | prune_dict({ + "prefix": self.prefix, + "min": self.min, + "max": self.max, + }) + + class TemplateNames(_AutogrowTemplate): + def __init__(self, input: Input, names: list[str], min: int=1): + super().__init__(input) + self.names = names[:Autogrow._MaxNames] + assert(min >= 0) + self.min = min + self._create_cached_inputs() + + def as_dict(self): + return super().as_dict() | prune_dict({ + "names": self.names, + "min": self.min, + }) + + class Input(DynamicInput): + def __init__(self, id: str, template: Autogrow.TemplatePrefix | Autogrow.TemplateNames, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) def get_dynamic(self) -> list[Input]: - curr_count = 1 - new_inputs = [] - for i in range(self.min): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = self.optional or new_input.optional - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - # pretend to expand up to max - for i in range(curr_count-1, self.max): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = True - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - return new_inputs + return self.template.get_all() -@comfytype(io_type="COMFY_COMBODYNAMIC_V3") -class ComboDynamic(ComfyTypeI): - class Input(DynamicInput): - def __init__(self, id: str): - pass + def get_all(self) -> list[Input]: + return [self] + self.template.get_all() -@comfytype(io_type="COMFY_MATCHTYPE_V3") -class MatchType(ComfyTypeIO): - class Template: - def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType]): - self.template_id = template_id - self.allowed_types = [allowed_types] if isinstance(allowed_types, _ComfyType) else allowed_types + def validate(self): + self.template.validate() + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + curr_prefix = f"{curr_prefix}{self.id}." + # need to remove self from expected inputs dictionary; replaced by template inputs in frontend + for inner_dict in d.values(): + if self.id in inner_dict: + del inner_dict[self.id] + self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + +@comfytype(io_type="COMFY_DYNAMICCOMBO_V3") +class DynamicCombo(ComfyTypeI): + Type = dict[str, Any] + + class Option: + def __init__(self, key: str, inputs: list[Input]): + self.key = key + self.inputs = inputs def as_dict(self): return { - "template_id": self.template_id, - "allowed_types": "".join(t.io_type for t in self.allowed_types), + "key": self.key, + "inputs": create_input_dict_v1(self.inputs), } class Input(DynamicInput): - def __init__(self, id: str, template: MatchType.Template, + def __init__(self, id: str, options: list[DynamicCombo.Option], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template = template + self.options = options + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + # check if dynamic input's id is in live_inputs + if self.id in live_inputs: + curr_prefix = f"{curr_prefix}{self.id}." + key = live_inputs[self.id] + selected_option = None + for option in self.options: + if option.key == key: + selected_option = option + break + if selected_option is not None: + add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self) def get_dynamic(self) -> list[Input]: - return [self] + return [input for option in self.options for input in option.inputs] + + def get_all(self) -> list[Input]: + return [self] + [input for option in self.options for input in option.inputs] def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "options": [o.as_dict() for o in self.options], }) - class Output(DynamicOutput): - def __init__(self, id: str, template: MatchType.Template, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) - self.template = template + def validate(self): + # make sure all nested inputs are validated + for option in self.options: + for input in option.inputs: + input.validate() - def get_dynamic(self) -> list[Output]: - return [self] +@comfytype(io_type="COMFY_DYNAMICSLOT_V3") +class DynamicSlot(ComfyTypeI): + Type = dict[str, Any] + + class Input(DynamicInput): + def __init__(self, slot: Input, inputs: list[Input], + display_name: str=None, tooltip: str=None, lazy: bool=None, extra_dict=None): + assert(not isinstance(slot, DynamicInput)) + self.slot = copy.copy(slot) + self.slot.display_name = slot.display_name if slot.display_name is not None else display_name + optional = True + self.slot.tooltip = slot.tooltip if slot.tooltip is not None else tooltip + self.slot.lazy = slot.lazy if slot.lazy is not None else lazy + self.slot.extra_dict = slot.extra_dict if slot.extra_dict is not None else extra_dict + super().__init__(slot.id, self.slot.display_name, optional, self.slot.tooltip, self.slot.lazy, self.slot.extra_dict) + self.inputs = inputs + self.force_input = None + # force widget inputs to have no widgets, otherwise this would be awkward + if isinstance(self.slot, WidgetInput): + self.force_input = True + self.slot.force_input = True + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + if self.id in live_inputs: + curr_prefix = f"{curr_prefix}{self.id}." + add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix) + + def get_dynamic(self) -> list[Input]: + return [self.slot] + self.inputs + + def get_all(self) -> list[Input]: + return [self] + [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "slotType": str(self.slot.get_io_type()), + "inputs": create_input_dict_v1(self.inputs), + "forceInput": self.force_input, }) + def validate(self): + self.slot.validate() + for input in self.inputs: + input.validate() + +def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): + dynamic = d.setdefault("dynamic_paths", {}) + if self is not None: + dynamic[self.id] = f"{curr_prefix}{self.id}" + for i in inputs: + if not isinstance(i, DynamicInput): + dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" + +class V3Data(TypedDict): + hidden_inputs: dict[str, Any] + dynamic_paths: dict[str, Any] class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -984,6 +1163,7 @@ class NodeInfoV1: output_is_list: list[bool]=None output_name: list[str]=None output_tooltips: list[str]=None + output_matchtypes: list[str]=None name: str=None display_name: str=None description: str=None @@ -1061,7 +1241,11 @@ class Schema: '''Validate the schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' - input_ids = [i.id for i in self.inputs] if self.inputs is not None else [] + nested_inputs: list[Input] = [] + if self.inputs is not None: + for input in self.inputs: + nested_inputs.extend(input.get_all()) + input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] input_set = set(input_ids) output_set = set(output_ids) @@ -1077,6 +1261,13 @@ class Schema: issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) + # validate inputs and outputs + if self.inputs is not None: + for input in self.inputs: + input.validate() + if self.outputs is not None: + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" @@ -1102,19 +1293,10 @@ class Schema: if output.id is None: output.id = f"_{i}_{output.io_type}_" - def get_v1_info(self, cls) -> NodeInfoV1: + def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: + # NOTE: live_inputs will not be used anymore very soon and this will be done another way # get V1 inputs - input = { - "required": {} - } - if self.inputs: - for i in self.inputs: - if isinstance(i, DynamicInput): - dynamic_inputs = i.get_dynamic() - for d in dynamic_inputs: - add_to_dict_v1(d, input) - else: - add_to_dict_v1(i, input) + input = create_input_dict_v1(self.inputs, live_inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1123,12 +1305,24 @@ class Schema: output_is_list = [] output_name = [] output_tooltips = [] + output_matchtypes = [] + any_matchtypes = False if self.outputs: for o in self.outputs: output.append(o.io_type) output_is_list.append(o.is_output_list) output_name.append(o.display_name if o.display_name else o.io_type) output_tooltips.append(o.tooltip if o.tooltip else None) + # special handling for MatchType + if isinstance(o, MatchType.Output): + output_matchtypes.append(o.template.template_id) + any_matchtypes = True + else: + output_matchtypes.append(None) + + # clear out lists that are all None + if not any_matchtypes: + output_matchtypes = None info = NodeInfoV1( input=input, @@ -1137,6 +1331,7 @@ class Schema: output_is_list=output_is_list, output_name=output_name, output_tooltips=output_tooltips, + output_matchtypes=output_matchtypes, name=self.node_id, display_name=self.display_name, category=self.category, @@ -1182,16 +1377,57 @@ class Schema: return info -def add_to_dict_v1(i: Input, input: dict): +def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: + input = { + "required": {} + } + add_to_input_dict_v1(input, inputs, live_inputs) + return input + +def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): + for i in inputs: + if isinstance(i, DynamicInput): + add_to_dict_v1(i, d) + if live_inputs is not None: + i.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + else: + add_to_dict_v1(i, d) + +def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - input.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) + if dynamic_dict is None: + value = (i.get_io_type(), as_dict) + else: + value = (i.get_io_type(), as_dict, dynamic_dict) + d.setdefault(key, {})[i.id] = value def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) +def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): + paths = v3_data.get("dynamic_paths", None) + if paths is None: + return values + values = values.copy() + result = {} + + for key, path in paths.items(): + parts = path.split(".") + current = result + + for i, p in enumerate(parts): + is_last = (i == len(parts) - 1) + + if is_last: + current[p] = values.pop(key, None) + else: + current = current.setdefault(p, {}) + + values.update(result) + return values class _ComfyNodeBaseInternal(_ComfyNodeInternal): @@ -1311,12 +1547,12 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def PREPARE_CLASS_CLONE(cls, hidden_inputs: dict) -> type[ComfyNode]: + def PREPARE_CLASS_CLONE(cls, v3_data: V3Data) -> type[ComfyNode]: """Creates clone of real node class to prevent monkey-patching.""" c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(hidden_inputs) + type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"]) return type_clone @final @@ -1433,14 +1669,18 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False) -> dict[str, dict] | tuple[dict[str, dict], Schema]: + def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: schema = cls.FINALIZE_SCHEMA() - info = schema.get_v1_info(cls) + info = schema.get_v1_info(cls, live_inputs) input = info.input if not include_hidden: input.pop("hidden", None) if return_schema: - return input, schema + v3_data: V3Data = {} + dynamic = input.pop("dynamic_paths", None) + if dynamic is not None: + v3_data["dynamic_paths"] = dynamic + return input, schema, v3_data return input @final @@ -1513,7 +1753,7 @@ class ComfyNode(_ComfyNodeBaseInternal): raise NotImplementedError @classmethod - def validate_inputs(cls, **kwargs) -> bool: + def validate_inputs(cls, **kwargs) -> bool | str: """Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS.""" raise NotImplementedError @@ -1628,6 +1868,7 @@ __all__ = [ "StyleModel", "Gligen", "UpscaleModel", + "LatentUpscaleModel", "Audio", "Video", "SVG", @@ -1651,6 +1892,10 @@ __all__ = [ "SEGS", "AnyType", "MultiType", + # Dynamic Types + "MatchType", + # "DynamicCombo", + # "Autogrow", # Other classes "HiddenHolder", "Hidden", @@ -1661,4 +1906,5 @@ __all__ = [ "NodeOutput", "add_to_dict_v1", "add_to_dict_v3", + "V3Data", ] diff --git a/comfy_api/latest/_io_public.py b/comfy_api/latest/_io_public.py new file mode 100644 index 000000000..43c7680f3 --- /dev/null +++ b/comfy_api/latest/_io_public.py @@ -0,0 +1 @@ +from ._io import * # noqa: F403 diff --git a/comfy_api/latest/_ui_public.py b/comfy_api/latest/_ui_public.py new file mode 100644 index 000000000..85b11d78b --- /dev/null +++ b/comfy_api/latest/_ui_public.py @@ -0,0 +1 @@ +from ._ui import * # noqa: F403 diff --git a/comfy_api/v0_0_2/__init__.py b/comfy_api/v0_0_2/__init__.py index de0f95001..c4fa1d971 100644 --- a/comfy_api/v0_0_2/__init__.py +++ b/comfy_api/v0_0_2/__init__.py @@ -6,7 +6,7 @@ from comfy_api.latest import ( ) from typing import Type, TYPE_CHECKING from comfy_api.internal.async_to_sync import create_sync_class -from comfy_api.latest import io, ui, ComfyExtension #noqa: F401 +from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401 class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest): @@ -42,4 +42,8 @@ __all__ = [ "InputImpl", "Types", "ComfyExtension", + "io", + "IO", + "ui", + "UI", ] diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index cec105fc9..24c0b4ed7 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -1,4 +1,5 @@ from __future__ import annotations +from comfy_api.latest import IO def validate_node_input( @@ -23,6 +24,11 @@ def validate_node_input( if not received_type != input_type: return True + # If the received type or input_type is a MatchType, we can return True immediately; + # validation for this is handled by the frontend + if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py new file mode 100644 index 000000000..95a6ba788 --- /dev/null +++ b/comfy_extras/nodes_logic.py @@ -0,0 +1,155 @@ +from typing import TypedDict +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_api.latest import _io + + + +class SwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySwitchNode", + display_name="Switch", + category="logic", + is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True, optional=True), + io.MatchType.Input("on_true", template=template, lazy=True, optional=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=..., on_true=...): + # We use ... instead of None, as None is passed for connected-but-unevaluated inputs. + # This trick allows us to ignore the value of the switch and still be able to run execute(). + + # One of the inputs may be missing, in which case we need to evaluate the other input + if on_false is ...: + return ["on_true"] + if on_true is ...: + return ["on_false"] + # Normal lazy switch operation + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def validate_inputs(cls, switch, on_false=..., on_true=...): + # This check happens before check_lazy_status(), so we can eliminate the case where + # both inputs are missing. + if on_false is ... and on_true is ...: + return "At least one of on_false or on_true must be connected to Switch node" + return True + + @classmethod + def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: + if on_true is ...: + return io.NodeOutput(on_false) + if on_false is ...: + return io.NodeOutput(on_true) + return io.NodeOutput(on_true if switch else on_false) + + +class DCTestNode(io.ComfyNode): + class DCValues(TypedDict): + combo: str + string: str + integer: int + image: io.Image.Type + subcombo: dict[str] + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="DCTestNode", + display_name="DCTest", + category="logic", + is_output_node=True, + inputs=[_io.DynamicCombo.Input("combo", options=[ + _io.DynamicCombo.Option("option1", [io.String.Input("string")]), + _io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + _io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + _io.DynamicCombo.Option("option4", [ + _io.DynamicCombo.Input("subcombo", options=[ + _io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + _io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + ]) + ])] + )], + outputs=[io.AnyType.Output()], + ) + + @classmethod + def execute(cls, combo: DCValues) -> io.NodeOutput: + combo_val = combo["combo"] + if combo_val == "option1": + return io.NodeOutput(combo["string"]) + elif combo_val == "option2": + return io.NodeOutput(combo["integer"]) + elif combo_val == "option3": + return io.NodeOutput(combo["image"]) + elif combo_val == "option4": + return io.NodeOutput(f"{combo['subcombo']}") + else: + raise ValueError(f"Invalid combo: {combo_val}") + + +class AutogrowNamesTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplateNames(input=io.Float.Input("float"), names=["a", "b", "c"]) + return io.Schema( + node_id="AutogrowNamesTestNode", + display_name="AutogrowNamesTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class AutogrowPrefixTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplatePrefix(input=io.Float.Input("float"), prefix="float", min=1, max=10) + return io.Schema( + node_id="AutogrowPrefixTestNode", + display_name="AutogrowPrefixTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class LogicExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + # SwitchNode, + # DCTestNode, + # AutogrowNamesTestNode, + # AutogrowPrefixTestNode, + ] + +async def comfy_entrypoint() -> LogicExtension: + return LogicExtension() diff --git a/execution.py b/execution.py index 17c77beab..c2186ac98 100644 --- a/execution.py +++ b/execution.py @@ -34,7 +34,7 @@ from comfy_execution.validation import validate_node_input from comfy_execution.progress import get_progress_state, reset_progress_state, add_progress_handler, WebUIProgressHandler from comfy_execution.utils import CurrentNodeContext from comfy_api.internal import _ComfyNodeInternal, _NodeOutputInternal, first_real_override, is_class, make_locked_method_func -from comfy_api.latest import io +from comfy_api.latest import io, _io class ExecutionResult(Enum): @@ -76,7 +76,7 @@ class IsChangedCache: return self.is_changed[node_id] # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED - input_data_all, _, hidden_inputs = get_input_data(node["inputs"], class_def, node_id, None) + input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) is_changed = await resolve_map_node_over_list_results(is_changed) @@ -146,8 +146,9 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) + v3_data: io.V3Data = {} if is_v3: - valid_inputs, schema = class_def.INPUT_TYPES(include_hidden=False, return_schema=True) + valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) else: valid_inputs = class_def.INPUT_TYPES() input_data_all = {} @@ -207,7 +208,8 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt= input_data_all[x] = [extra_data.get("auth_token_comfy_org", None)] if h[x] == "API_KEY_COMFY_ORG": input_data_all[x] = [extra_data.get("api_key_comfy_org", None)] - return input_data_all, missing_keys, hidden_inputs_v3 + v3_data["hidden_inputs"] = hidden_inputs_v3 + return input_data_all, missing_keys, v3_data map_node_over_list = None #Don't hook this please @@ -223,7 +225,7 @@ async def resolve_map_node_over_list_results(results): raise exc return [x.result() if isinstance(x, asyncio.Task) else x for x in results] -async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): +async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, v3_data=None): # check if node wants the lists input_is_list = getattr(obj, "INPUT_IS_LIST", False) @@ -259,13 +261,16 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() - class_clone = obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = obj.PREPARE_CLASS_CLONE(v3_data) # otherwise, use class instance to populate/reuse some fields else: type_obj = type(obj) type_obj.VALIDATE_CLASS() - class_clone = type_obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = type_obj.PREPARE_CLASS_CLONE(v3_data) f = make_locked_method_func(type_obj, func, class_clone) + # in case of dynamic inputs, restructure inputs to expected nested dict + if v3_data is not None: + inputs = _io.build_nested_inputs(inputs, v3_data) # V1 else: f = getattr(obj, func) @@ -320,8 +325,8 @@ def merge_result_data(results, obj): output.append([o[i] for o in results]) return output -async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): - return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) +async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, v3_data=None): + return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) has_pending_task = any(isinstance(r, asyncio.Task) and not r.done() for r in return_values) if has_pending_task: return return_values, {}, False, has_pending_task @@ -460,7 +465,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, has_subgraph = False else: get_progress_state().start_progress(unique_id) - input_data_all, missing_keys, hidden_inputs = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data) + input_data_all, missing_keys, v3_data = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data) if server.client_id is not None: server.last_node_id = display_node_id server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id) @@ -475,7 +480,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, hidden_inputs=hidden_inputs) + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -507,7 +512,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, def pre_execute_cb(call_index): # TODO - How to handle this with async functions without contextvars (which requires Python 3.12)? GraphBuilder.set_default_prefix(unique_id, call_index, 0) - output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) + output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) if has_pending_tasks: pending_async_nodes[unique_id] = output_data unblock = execution_list.add_external_block(unique_id) @@ -745,18 +750,17 @@ async def validate_inputs(prompt_id, prompt, item, validated): class_type = prompt[unique_id]['class_type'] obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] - class_inputs = obj_class.INPUT_TYPES() - valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) - errors = [] valid = True validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): + class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: + class_inputs = obj_class.INPUT_TYPES() validate_function_name = "VALIDATE_INPUTS" validate_function = getattr(obj_class, validate_function_name, None) if validate_function is not None: @@ -765,6 +769,8 @@ async def validate_inputs(prompt_id, prompt, item, validated): validate_has_kwargs = argspec.varkw is not None received_types = {} + valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) + for x in valid_inputs: input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs) assert extra_info is not None @@ -935,7 +941,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): continue if len(validate_function_inputs) > 0 or validate_has_kwargs: - input_data_all, _, hidden_inputs = get_input_data(inputs, obj_class, unique_id) + input_data_all, _, v3_data = get_input_data(inputs, obj_class, unique_id) input_filtered = {} for x in input_data_all: if x in validate_function_inputs or validate_has_kwargs: @@ -943,7 +949,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): if 'input_types' in validate_function_inputs: input_filtered['input_types'] = [received_types] - ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, hidden_inputs=hidden_inputs) + ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, v3_data=v3_data) ret = await resolve_map_node_over_list_results(ret) for x in input_filtered: for i, r in enumerate(ret): diff --git a/nodes.py b/nodes.py index 4c910a34b..356aa63df 100644 --- a/nodes.py +++ b/nodes.py @@ -2355,6 +2355,7 @@ async def init_builtin_extra_nodes(): "nodes_easycache.py", "nodes_audio_encoder.py", "nodes_rope.py", + "nodes_logic.py", "nodes_nop.py", ] From 861817d22d2659099811b56005c9eaea18d64c73 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 21:47:51 -0800 Subject: [PATCH 35/64] Fix issue with portable updater. (#11070) This should fix the problem with the portable updater not working with portables created from a separate branch on the repo. This does not affect any current portables who were all created on the master branch. --- .ci/update_windows/update.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/.ci/update_windows/update.py b/.ci/update_windows/update.py index 51a263203..59ece5130 100755 --- a/.ci/update_windows/update.py +++ b/.ci/update_windows/update.py @@ -66,8 +66,10 @@ if branch is None: try: ref = repo.lookup_reference('refs/remotes/origin/master') except: - print("pulling.") # noqa: T201 - pull(repo) + print("fetching.") # noqa: T201 + for remote in repo.remotes: + if remote.name == "origin": + remote.fetch() ref = repo.lookup_reference('refs/remotes/origin/master') repo.checkout(ref) branch = repo.lookup_branch('master') @@ -149,3 +151,4 @@ try: shutil.copy(stable_update_script, stable_update_script_to) except: pass + From 519c9411653df99761053c30e101816e0ca3c24b Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 17:28:45 +1000 Subject: [PATCH 36/64] Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069) * mp: only count the offload cost of math once This was previously bundling the combined weight storage and computation cost * ops: put all post async transfer compute on the main stream Some models have massive weights that need either complex dequantization or lora patching. Don't do these patchings on the offload stream, instead do them on the main stream to syncrhonize the potentially large vram spikes for these compute processes. This avoids having to assume a worst case scenario of multiple offload streams all spiking VRAM is parallel with whatever the main stream is doing. --- comfy/model_patcher.py | 4 ++-- comfy/ops.py | 39 ++++++++++++++++++++++----------------- 2 files changed, 24 insertions(+), 19 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 3eac77275..df2d8e827 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -704,7 +704,7 @@ class ModelPatcher: lowvram_weight = False - potential_offload = max(offload_buffer, module_offload_mem * (comfy.model_management.NUM_STREAMS + 1)) + potential_offload = max(offload_buffer, module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem)) lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory weight_key = "{}.weight".format(n) @@ -883,7 +883,7 @@ class ModelPatcher: break module_offload_mem, module_mem, n, m, params = unload - potential_offload = (comfy.model_management.NUM_STREAMS + 1) * module_offload_mem + potential_offload = module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem) lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: diff --git a/comfy/ops.py b/comfy/ops.py index 61a2f0754..eae434e68 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -111,22 +111,24 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if s.bias is not None: bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream) - if bias_has_function: - with wf_context: - for f in s.bias_function: - bias = f(bias) + comfy.model_management.sync_stream(device, offload_stream) + + bias_a = bias + weight_a = weight + + if s.bias is not None: + for f in s.bias_function: + bias = f(bias) if weight_has_function or weight.dtype != dtype: - with wf_context: - weight = weight.to(dtype=dtype) - if isinstance(weight, QuantizedTensor): - weight = weight.dequantize() - for f in s.weight_function: - weight = f(weight) + weight = weight.to(dtype=dtype) + if isinstance(weight, QuantizedTensor): + weight = weight.dequantize() + for f in s.weight_function: + weight = f(weight) - comfy.model_management.sync_stream(device, offload_stream) if offloadable: - return weight, bias, offload_stream + return weight, bias, (offload_stream, weight_a, bias_a) else: #Legacy function signature return weight, bias @@ -135,13 +137,16 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of def uncast_bias_weight(s, weight, bias, offload_stream): if offload_stream is None: return - if weight is not None: - device = weight.device + os, weight_a, bias_a = offload_stream + if os is None: + return + if weight_a is not None: + device = weight_a.device else: - if bias is None: + if bias_a is None: return - device = bias.device - offload_stream.wait_stream(comfy.model_management.current_stream(device)) + device = bias_a.device + os.wait_stream(comfy.model_management.current_stream(device)) class CastWeightBiasOp: From 19f2192d69d13445131b72ad1d87167f59b66fc4 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 18:37:35 +0200 Subject: [PATCH 37/64] fix(V3-Schema): use empty list defaults for Schema.inputs/outputs/hidden to avoid None issues (#11083) --- comfy_api/latest/_io.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 257f07c42..866c3e0eb 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -5,7 +5,7 @@ import inspect from abc import ABC, abstractmethod from collections import Counter from collections.abc import Iterable -from dataclasses import asdict, dataclass +from dataclasses import asdict, dataclass, field from enum import Enum from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING from typing_extensions import NotRequired, final @@ -1199,9 +1199,9 @@ class Schema: """Display name of node.""" category: str = "sd" """The category of the node, as per the "Add Node" menu.""" - inputs: list[Input]=None - outputs: list[Output]=None - hidden: list[Hidden]=None + inputs: list[Input] = field(default_factory=list) + outputs: list[Output] = field(default_factory=list) + hidden: list[Hidden] = field(default_factory=list) description: str="" """Node description, shown as a tooltip when hovering over the node.""" is_input_list: bool = False From 87c104bfc1928f0b018a50f5867f425e10482929 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 18:55:44 +0200 Subject: [PATCH 38/64] add support for "@image" reference format in Kling Omni API nodes (#11082) --- comfy_api_nodes/apis/kling_api.py | 30 +++++-- comfy_api_nodes/nodes_kling.py | 138 ++++++++++++++++++++++++++++-- 2 files changed, 155 insertions(+), 13 deletions(-) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py index 0a3b447c5..d8949f8ac 100644 --- a/comfy_api_nodes/apis/kling_api.py +++ b/comfy_api_nodes/apis/kling_api.py @@ -46,21 +46,41 @@ class TaskStatusVideoResult(BaseModel): url: str | None = Field(None, description="URL for generated video") -class TaskStatusVideoResults(BaseModel): +class TaskStatusImageResult(BaseModel): + index: int = Field(..., description="Image Number,0-9") + url: str = Field(..., description="URL for generated image") + + +class OmniTaskStatusResults(BaseModel): videos: list[TaskStatusVideoResult] | None = Field(None) + images: list[TaskStatusImageResult] | None = Field(None) -class TaskStatusVideoResponseData(BaseModel): +class OmniTaskStatusResponseData(BaseModel): created_at: int | None = Field(None, description="Task creation time") updated_at: int | None = Field(None, description="Task update time") task_status: str | None = None task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") task_id: str | None = Field(None, description="Task ID") - task_result: TaskStatusVideoResults | None = Field(None) + task_result: OmniTaskStatusResults | None = Field(None) -class TaskStatusVideoResponse(BaseModel): +class OmniTaskStatusResponse(BaseModel): code: int | None = Field(None, description="Error code") message: str | None = Field(None, description="Error message") request_id: str | None = Field(None, description="Request ID") - data: TaskStatusVideoResponseData | None = Field(None) + data: OmniTaskStatusResponseData | None = Field(None) + + +class OmniImageParamImage(BaseModel): + image: str = Field(...) + + +class OmniProImageRequest(BaseModel): + model_name: str = Field(..., description="kling-image-o1") + resolution: str = Field(..., description="'1k' or '2k'") + aspect_ratio: str | None = Field(...) + prompt: str = Field(...) + mode: str = Field("pro") + n: int | None = Field(1, le=9) + image_list: list[OmniImageParamImage] | None = Field(..., max_length=10) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 850c44db6..6c840dc47 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -6,6 +6,7 @@ For source of truth on the allowed permutations of request fields, please refere import logging import math +import re import torch from typing_extensions import override @@ -49,12 +50,14 @@ from comfy_api_nodes.apis import ( KlingSingleImageEffectModelName, ) from comfy_api_nodes.apis.kling_api import ( + OmniImageParamImage, OmniParamImage, OmniParamVideo, OmniProFirstLastFrameRequest, + OmniProImageRequest, OmniProReferences2VideoRequest, OmniProText2VideoRequest, - TaskStatusVideoResponse, + OmniTaskStatusResponse, ) from comfy_api_nodes.util import ( ApiEndpoint, @@ -210,7 +213,36 @@ VOICES_CONFIG = { } -async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVideoResponse) -> IO.NodeOutput: +def normalize_omni_prompt_references(prompt: str) -> str: + """ + Rewrites Kling Omni-style placeholders used in the app, like: + + @image, @image1, @image2, ... @imageN + @video, @video1, @video2, ... @videoN + + into the API-compatible form: + + <<>>, <<>>, ... + <<>>, <<>>, ... + + This is a UX shim for ComfyUI so users can type the same syntax as in the Kling app. + """ + if not prompt: + return prompt + + def _image_repl(match): + return f"<<>>" + + def _video_repl(match): + return f"<<>>" + + # (? and not @imageFoo + prompt = re.sub(r"(?\d*)(?!\w)", _image_repl, prompt) + return re.sub(r"(?\d*)(?!\w)", _video_repl, prompt) + + +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: OmniTaskStatusResponse) -> IO.NodeOutput: if response.code: raise RuntimeError( f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" @@ -218,8 +250,9 @@ async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVi final_response = await poll_op( cls, ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, status_extractor=lambda r: (r.data.task_status if r.data else None), + max_poll_attempts=160, ) return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) @@ -801,7 +834,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProText2VideoRequest( model_name=model_name, prompt=prompt, @@ -864,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) if end_frame is not None and reference_images is not None: raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") @@ -895,7 +929,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProFirstLastFrameRequest( model_name=model_name, prompt=prompt, @@ -950,6 +984,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): duration: int, reference_images: Input.Image, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) if get_number_of_images(reference_images) > 7: raise ValueError("The maximum number of reference images is 7.") @@ -962,7 +997,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1023,6 +1058,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) validate_video_dimensions(reference_video, min_width=720, min_height=720, max_width=2160, max_height=2160) @@ -1045,7 +1081,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1103,6 +1139,7 @@ class OmniProEditVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(video, min_duration=3.0, max_duration=10.05) validate_video_dimensions(video, min_width=720, min_height=720, max_width=2160, max_height=2160) @@ -1125,7 +1162,7 @@ class OmniProEditVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1138,6 +1175,90 @@ class OmniProEditVideoNode(IO.ComfyNode): return await finish_omni_video_task(cls, response) +class OmniProImageNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageNode", + display_name="Kling Omni Image (Pro)", + category="api node/image/Kling", + description="Create or edit images with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-image-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the image content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("resolution", options=["1K", "2K"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16", "1:1", "4:3", "3:4", "3:2", "2:3", "21:9"], + ), + IO.Image.Input( + "reference_images", + tooltip="Up to 10 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + resolution: str, + aspect_ratio: str, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + image_list: list[OmniImageParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 10: + raise ValueError("The maximum number of reference images is 10.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniImageParamImage(image=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/images/omni-image", method="POST"), + response_model=OmniTaskStatusResponse, + data=OmniProImageRequest( + model_name=model_name, + prompt=prompt, + resolution=resolution.lower(), + aspect_ratio=aspect_ratio, + image_list=image_list if image_list else None, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/images/omni-image/{response.data.task_id}"), + response_model=OmniTaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.task_result.images[0].url)) + + class KlingCameraControlT2VNode(IO.ComfyNode): """ Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. @@ -1935,6 +2056,7 @@ class KlingExtension(ComfyExtension): OmniProImageToVideoNode, OmniProVideoToVideoNode, OmniProEditVideoNode, + # OmniProImageNode, # need support from backend ] From 440268d3940eb14a01595439bbc05c4aacde9c72 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 23:52:31 +0200 Subject: [PATCH 39/64] convert nodes_load_3d.py to V3 schema (#10990) --- comfy_api/latest/_ui.py | 13 +++- comfy_extras/nodes_load_3d.py | 127 ++++++++++++++++------------------ 2 files changed, 71 insertions(+), 69 deletions(-) diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index b0bbabe2a..6d1bea599 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -3,6 +3,7 @@ from __future__ import annotations import json import os import random +import uuid from io import BytesIO from typing import Type @@ -436,9 +437,19 @@ class PreviewUI3D(_UIOutput): def __init__(self, model_file, camera_info, **kwargs): self.model_file = model_file self.camera_info = camera_info + self.bg_image_path = None + bg_image = kwargs.get("bg_image", None) + if bg_image is not None: + img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) + img = PILImage.fromarray(img_array) + temp_dir = folder_paths.get_temp_directory() + filename = f"bg_{uuid.uuid4().hex}.png" + bg_image_path = os.path.join(temp_dir, filename) + img.save(bg_image_path, compress_level=1) + self.bg_image_path = f"temp/{filename}" def as_dict(self): - return {"result": [self.model_file, self.camera_info]} + return {"result": [self.model_file, self.camera_info, self.bg_image_path]} class PreviewText(_UIOutput): diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index 54c66ef68..545588ef8 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -2,22 +2,18 @@ import nodes import folder_paths import os -from comfy.comfy_types import IO -from comfy_api.input_impl import VideoFromFile +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, InputImpl, UI from pathlib import Path -from PIL import Image -import numpy as np - -import uuid def normalize_path(path): return path.replace('\\', '/') -class Load3D(): +class Load3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = os.path.join(folder_paths.get_input_directory(), "3d") os.makedirs(input_dir, exist_ok=True) @@ -30,23 +26,29 @@ class Load3D(): for file_path in input_path.rglob("*") if file_path.suffix.lower() in {'.gltf', '.glb', '.obj', '.fbx', '.stl'} ] + return IO.Schema( + node_id="Load3D", + display_name="Load 3D & Animation", + category="3d", + is_experimental=True, + inputs=[ + IO.Combo.Input("model_file", options=sorted(files), upload=IO.UploadType.model), + IO.Load3D.Input("image"), + IO.Int.Input("width", default=1024, min=1, max=4096, step=1), + IO.Int.Input("height", default=1024, min=1, max=4096, step=1), + ], + outputs=[ + IO.Image.Output(display_name="image"), + IO.Mask.Output(display_name="mask"), + IO.String.Output(display_name="mesh_path"), + IO.Image.Output(display_name="normal"), + IO.Load3DCamera.Output(display_name="camera_info"), + IO.Video.Output(display_name="recording_video"), + ], + ) - return {"required": { - "model_file": (sorted(files), {"file_upload": True}), - "image": ("LOAD_3D", {}), - "width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - }} - - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) - RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info", "recording_video") - - FUNCTION = "process" - EXPERIMENTAL = True - - CATEGORY = "3d" - - def process(self, model_file, image, **kwargs): + @classmethod + def execute(cls, model_file, image, **kwargs) -> IO.NodeOutput: image_path = folder_paths.get_annotated_filepath(image['image']) mask_path = folder_paths.get_annotated_filepath(image['mask']) normal_path = folder_paths.get_annotated_filepath(image['normal']) @@ -61,58 +63,47 @@ class Load3D(): if image['recording'] != "": recording_video_path = folder_paths.get_annotated_filepath(image['recording']) - video = VideoFromFile(recording_video_path) + video = InputImpl.VideoFromFile(recording_video_path) - return output_image, output_mask, model_file, normal_image, image['camera_info'], video + return IO.NodeOutput(output_image, output_mask, model_file, normal_image, image['camera_info'], video) -class Preview3D(): + process = execute # TODO: remove + + +class Preview3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "model_file": ("STRING", {"default": "", "multiline": False}), - }, - "optional": { - "camera_info": ("LOAD3D_CAMERA", {}), - "bg_image": ("IMAGE", {}) - }} + def define_schema(cls): + return IO.Schema( + node_id="Preview3D", + display_name="Preview 3D & Animation", + category="3d", + is_experimental=True, + is_output_node=True, + inputs=[ + IO.String.Input("model_file", default="", multiline=False), + IO.Load3DCamera.Input("camera_info", optional=True), + IO.Image.Input("bg_image", optional=True), + ], + outputs=[], + ) - OUTPUT_NODE = True - RETURN_TYPES = () - - CATEGORY = "3d" - - FUNCTION = "process" - EXPERIMENTAL = True - - def process(self, model_file, **kwargs): + @classmethod + def execute(cls, model_file, **kwargs) -> IO.NodeOutput: camera_info = kwargs.get("camera_info", None) bg_image = kwargs.get("bg_image", None) + return IO.NodeOutput(ui=UI.PreviewUI3D(model_file, camera_info, bg_image=bg_image)) - bg_image_path = None - if bg_image is not None: + process = execute # TODO: remove - img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) - img = Image.fromarray(img_array) - temp_dir = folder_paths.get_temp_directory() - filename = f"bg_{uuid.uuid4().hex}.png" - bg_image_path = os.path.join(temp_dir, filename) - img.save(bg_image_path, compress_level=1) +class Load3DExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + Load3D, + Preview3D, + ] - bg_image_path = f"temp/{filename}" - return { - "ui": { - "result": [model_file, camera_info, bg_image_path] - } - } - -NODE_CLASS_MAPPINGS = { - "Load3D": Load3D, - "Preview3D": Preview3D, -} - -NODE_DISPLAY_NAME_MAPPINGS = { - "Load3D": "Load 3D & Animation", - "Preview3D": "Preview 3D & Animation", -} +async def comfy_entrypoint() -> Load3DExtension: + return Load3DExtension() From dce518c2b4f99634b5fdde1924d9b0bd468fe1ce Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 4 Dec 2025 03:35:04 +0200 Subject: [PATCH 40/64] convert nodes_audio.py to V3 schema (#10798) --- comfy_api/latest/_ui.py | 9 +- comfy_extras/nodes_audio.py | 744 ++++++++++++++++++------------------ 2 files changed, 382 insertions(+), 371 deletions(-) diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 6d1bea599..5a75a3aae 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -319,9 +319,10 @@ class AudioSaveHelper: for key, value in metadata.items(): output_container.metadata[key] = value + layout = "mono" if waveform.shape[0] == 1 else "stereo" # Set up the output stream with appropriate properties if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate) + out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout) if quality == "64k": out_stream.bit_rate = 64000 elif quality == "96k": @@ -333,7 +334,7 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) + out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout) if quality == "V0": # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool out_stream.codec_context.qscale = 1 @@ -342,12 +343,12 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 else: # format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate) + out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout) frame = av.AudioFrame.from_ndarray( waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format="flt", - layout="mono" if waveform.shape[0] == 1 else "stereo", + layout=layout, ) frame.sample_rate = sample_rate frame.pts = 0 diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 2ed7e0b22..812301fb7 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -6,65 +6,80 @@ import torch import comfy.model_management import folder_paths import os -import io -import json -import random import hashlib import node_helpers import logging -from comfy.cli_args import args -from comfy.comfy_types import FileLocator +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI -class EmptyLatentAudio: - def __init__(self): - self.device = comfy.model_management.intermediate_device() +class EmptyLatentAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="EmptyLatentAudio", + display_name="Empty Latent Audio", + category="latent/audio", + inputs=[ + IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1), + IO.Int.Input( + "batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch." + ), + ], + outputs=[IO.Latent.Output()], + ) @classmethod - def INPUT_TYPES(s): - return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), - }} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" - - CATEGORY = "latent/audio" - - def generate(self, seconds, batch_size): + def execute(cls, seconds, batch_size) -> IO.NodeOutput: length = round((seconds * 44100 / 2048) / 2) * 2 - latent = torch.zeros([batch_size, 64, length], device=self.device) - return ({"samples":latent, "type": "audio"}, ) + latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device()) + return IO.NodeOutput({"samples":latent, "type": "audio"}) -class ConditioningStableAudio: + generate = execute # TODO: remove + + +class ConditioningStableAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - }} + def define_schema(cls): + return IO.Schema( + node_id="ConditioningStableAudio", + category="conditioning", + inputs=[ + IO.Conditioning.Input("positive"), + IO.Conditioning.Input("negative"), + IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1), + IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ], + ) - RETURN_TYPES = ("CONDITIONING","CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "append" - - CATEGORY = "conditioning" - - def append(self, positive, negative, seconds_start, seconds_total): + @classmethod + def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput: positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) - return (positive, negative) + return IO.NodeOutput(positive, negative) -class VAEEncodeAudio: + append = execute # TODO: remove + + +class VAEEncodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "encode" + def define_schema(cls): + return IO.Schema( + node_id="VAEEncodeAudio", + display_name="VAE Encode Audio", + category="latent/audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent/audio" - - def encode(self, vae, audio): + @classmethod + def execute(cls, vae, audio) -> IO.NodeOutput: sample_rate = audio["sample_rate"] if 44100 != sample_rate: waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) @@ -72,213 +87,134 @@ class VAEEncodeAudio: waveform = audio["waveform"] t = vae.encode(waveform.movedim(1, -1)) - return ({"samples":t}, ) + return IO.NodeOutput({"samples":t}) -class VAEDecodeAudio: + encode = execute # TODO: remove + + +class VAEDecodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} - RETURN_TYPES = ("AUDIO",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeAudio", + display_name="VAE Decode Audio", + category="latent/audio", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "latent/audio" - - def decode(self, vae, samples): + @classmethod + def execute(cls, vae, samples) -> IO.NodeOutput: audio = vae.decode(samples["samples"]).movedim(-1, 1) std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std - return ({"waveform": audio, "sample_rate": 44100}, ) + return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) + + decode = execute # TODO: remove -def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"): - - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results: list[FileLocator] = [] - - # Prepare metadata dictionary - metadata = {} - if not args.disable_metadata: - if prompt is not None: - metadata["prompt"] = json.dumps(prompt) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata[x] = json.dumps(extra_pnginfo[x]) - - # Opus supported sample rates - OPUS_RATES = [8000, 12000, 16000, 24000, 48000] - - for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): - filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) - file = f"{filename_with_batch_num}_{counter:05}_.{format}" - output_path = os.path.join(full_output_folder, file) - - # Use original sample rate initially - sample_rate = audio["sample_rate"] - - # Handle Opus sample rate requirements - if format == "opus": - if sample_rate > 48000: - sample_rate = 48000 - elif sample_rate not in OPUS_RATES: - # Find the next highest supported rate - for rate in sorted(OPUS_RATES): - if rate > sample_rate: - sample_rate = rate - break - if sample_rate not in OPUS_RATES: # Fallback if still not supported - sample_rate = 48000 - - # Resample if necessary - if sample_rate != audio["sample_rate"]: - waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) - - # Create output with specified format - output_buffer = io.BytesIO() - output_container = av.open(output_buffer, mode='w', format=format) - - # Set metadata on the container - for key, value in metadata.items(): - output_container.metadata[key] = value - - layout = 'mono' if waveform.shape[0] == 1 else 'stereo' - # Set up the output stream with appropriate properties - if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout) - if quality == "64k": - out_stream.bit_rate = 64000 - elif quality == "96k": - out_stream.bit_rate = 96000 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "192k": - out_stream.bit_rate = 192000 - elif quality == "320k": - out_stream.bit_rate = 320000 - elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout) - if quality == "V0": - #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool - out_stream.codec_context.qscale = 1 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "320k": - out_stream.bit_rate = 320000 - else: #format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout) - - frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout=layout) - frame.sample_rate = sample_rate - frame.pts = 0 - output_container.mux(out_stream.encode(frame)) - - # Flush encoder - output_container.mux(out_stream.encode(None)) - - # Close containers - output_container.close() - - # Write the output to file - output_buffer.seek(0) - with open(output_path, 'wb') as f: - f.write(output_buffer.getbuffer()) - - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - return { "ui": { "audio": results } } - -class SaveAudio: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudio", + display_name="Save Audio (FLAC)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format) + ) - RETURN_TYPES = () - FUNCTION = "save_flac" + save_flac = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo) - -class SaveAudioMP3: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioMP3(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioMP3", + display_name="Save Audio (MP3)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["V0", "128k", "320k"], {"default": "V0"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_mp3" + save_mp3 = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class SaveAudioOpus: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioOpus(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioOpus", + display_name="Save Audio (Opus)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_opus" + save_opus = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class PreviewAudio(SaveAudio): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) +class PreviewAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="PreviewAudio", + display_name="Preview Audio", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": - {"audio": ("AUDIO", ), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio) -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls)) + + save_flac = execute # TODO: remove + def f32_pcm(wav: torch.Tensor) -> torch.Tensor: """Convert audio to float 32 bits PCM format.""" @@ -316,26 +252,30 @@ def load(filepath: str) -> tuple[torch.Tensor, int]: wav = f32_pcm(wav) return wav, sr -class LoadAudio: +class LoadAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = folder_paths.get_input_directory() files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) - return {"required": {"audio": (sorted(files), {"audio_upload": True})}} + return IO.Schema( + node_id="LoadAudio", + display_name="Load Audio", + category="audio", + inputs=[ + IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) @classmethod - def IS_CHANGED(s, audio): + def fingerprint_inputs(cls, audio): image_path = folder_paths.get_annotated_filepath(audio) m = hashlib.sha256() with open(image_path, 'rb') as f: @@ -343,46 +283,69 @@ class LoadAudio: return m.digest().hex() @classmethod - def VALIDATE_INPUTS(s, audio): + def validate_inputs(cls, audio): if not folder_paths.exists_annotated_filepath(audio): return "Invalid audio file: {}".format(audio) return True -class RecordAudio: + load = execute # TODO: remove + + +class RecordAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"audio": ("AUDIO_RECORD", {})}} + def define_schema(cls): + return IO.Schema( + node_id="RecordAudio", + display_name="Record Audio", + category="audio", + inputs=[ + IO.Custom("AUDIO_RECORD").Input("audio"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) + + load = execute # TODO: remove -class TrimAudioDuration: +class TrimAudioDuration(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio": ("AUDIO",), - "start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}), - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TrimAudioDuration", + display_name="Trim Audio Duration", + description="Trim audio tensor into chosen time range.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Float.Input( + "start_index", + default=0.0, + min=-0xffffffffffffffff, + max=0xffffffffffffffff, + step=0.01, + tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).", + ), + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + step=0.01, + tooltip="Duration in seconds", + ), + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "trim" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Trim audio tensor into chosen time range." - - def trim(self, audio, start_index, duration): + @classmethod + def execute(cls, audio, start_index, duration) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] audio_length = waveform.shape[-1] @@ -399,23 +362,30 @@ class TrimAudioDuration: if start_frame >= end_frame: raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") - return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate}) + + trim = execute # TODO: remove -class SplitAudioChannels: +class SplitAudioChannels(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - }} + def define_schema(cls): + return IO.Schema( + node_id="SplitAudioChannels", + display_name="Split Audio Channels", + description="Separates the audio into left and right channels.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + outputs=[ + IO.Audio.Output(display_name="left"), + IO.Audio.Output(display_name="right"), + ], + ) - RETURN_TYPES = ("AUDIO", "AUDIO") - RETURN_NAMES = ("left", "right") - FUNCTION = "separate" - CATEGORY = "audio" - DESCRIPTION = "Separates the audio into left and right channels." - - def separate(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] @@ -425,7 +395,9 @@ class SplitAudioChannels: left_channel = waveform[..., 0:1, :] right_channel = waveform[..., 1:2, :] - return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + + separate = execute # TODO: remove def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): @@ -443,21 +415,29 @@ def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_ return waveform_1, waveform_2, output_sample_rate -class AudioConcat: +class AudioConcat(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioConcat", + display_name="Audio Concat", + description="Concatenates the audio1 to audio2 in the specified direction.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "direction", + options=['after', 'before'], + default="after", + tooltip="Whether to append audio2 after or before audio1.", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "concat" - CATEGORY = "audio" - DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction." - - def concat(self, audio1, audio2, direction): + @classmethod + def execute(cls, audio1, audio2, direction) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -477,26 +457,33 @@ class AudioConcat: elif direction == 'before': concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) - return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate}) + + concat = execute # TODO: remove -class AudioMerge: +class AudioMerge(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="AudioMerge", + display_name="Audio Merge", + description="Combine two audio tracks by overlaying their waveforms.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "merge_method", + options=["add", "mean", "subtract", "multiply"], + tooltip="The method used to combine the audio waveforms.", + ) + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "merge" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Combine two audio tracks by overlaying their waveforms." - - def merge(self, audio1, audio2, merge_method): + @classmethod + def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -530,85 +517,108 @@ class AudioMerge: if max_val > 1.0: waveform = waveform / max_val - return ({"waveform": waveform, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate}) + + merge = execute # TODO: remove -class AudioAdjustVolume: +class AudioAdjustVolume(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - "volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioAdjustVolume", + display_name="Audio Adjust Volume", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Int.Input( + "volume", + default=1, + min=-100, + max=100, + tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "adjust_volume" - CATEGORY = "audio" - - def adjust_volume(self, audio, volume): + @classmethod + def execute(cls, audio, volume) -> IO.NodeOutput: if volume == 0: - return (audio,) + return IO.NodeOutput(audio) waveform = audio["waveform"] sample_rate = audio["sample_rate"] gain = 10 ** (volume / 20) waveform = waveform * gain - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + adjust_volume = execute # TODO: remove -class EmptyAudio: +class EmptyAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}), - "sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}), - "channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="EmptyAudio", + display_name="Empty Audio", + category="audio", + inputs=[ + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + max=0xffffffffffffffff, + step=0.01, + tooltip="Duration of the empty audio clip in seconds", + ), + IO.Float.Input( + "sample_rate", + default=44100, + tooltip="Sample rate of the empty audio clip.", + ), + IO.Float.Input( + "channels", + default=2, + min=1, + max=2, + tooltip="Number of audio channels (1 for mono, 2 for stereo).", + ), + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "create_empty_audio" - CATEGORY = "audio" - - def create_empty_audio(self, duration, sample_rate, channels): + @classmethod + def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput: num_samples = int(round(duration * sample_rate)) waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + create_empty_audio = execute # TODO: remove -NODE_CLASS_MAPPINGS = { - "EmptyLatentAudio": EmptyLatentAudio, - "VAEEncodeAudio": VAEEncodeAudio, - "VAEDecodeAudio": VAEDecodeAudio, - "SaveAudio": SaveAudio, - "SaveAudioMP3": SaveAudioMP3, - "SaveAudioOpus": SaveAudioOpus, - "LoadAudio": LoadAudio, - "PreviewAudio": PreviewAudio, - "ConditioningStableAudio": ConditioningStableAudio, - "RecordAudio": RecordAudio, - "TrimAudioDuration": TrimAudioDuration, - "SplitAudioChannels": SplitAudioChannels, - "AudioConcat": AudioConcat, - "AudioMerge": AudioMerge, - "AudioAdjustVolume": AudioAdjustVolume, - "EmptyAudio": EmptyAudio, -} +class AudioExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + EmptyLatentAudio, + VAEEncodeAudio, + VAEDecodeAudio, + SaveAudio, + SaveAudioMP3, + SaveAudioOpus, + LoadAudio, + PreviewAudio, + ConditioningStableAudio, + RecordAudio, + TrimAudioDuration, + SplitAudioChannels, + AudioConcat, + AudioMerge, + AudioAdjustVolume, + EmptyAudio, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "EmptyLatentAudio": "Empty Latent Audio", - "VAEEncodeAudio": "VAE Encode Audio", - "VAEDecodeAudio": "VAE Decode Audio", - "PreviewAudio": "Preview Audio", - "LoadAudio": "Load Audio", - "SaveAudio": "Save Audio (FLAC)", - "SaveAudioMP3": "Save Audio (MP3)", - "SaveAudioOpus": "Save Audio (Opus)", - "RecordAudio": "Record Audio", - "TrimAudioDuration": "Trim Audio Duration", - "SplitAudioChannels": "Split Audio Channels", - "AudioConcat": "Audio Concat", - "AudioMerge": "Audio Merge", - "AudioAdjustVolume": "Audio Adjust Volume", - "EmptyAudio": "Empty Audio", -} +async def comfy_entrypoint() -> AudioExtension: + return AudioExtension() From ecdc8697d53919a9178bf53ef327a110582db8ea Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 3 Dec 2025 19:49:28 -0800 Subject: [PATCH 41/64] Qwen Image Lora training fix from #11090 (#11094) --- comfy_extras/nodes_train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index cb24ab709..19b8baaf4 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -623,7 +623,7 @@ class TrainLoraNode(io.ComfyNode): noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) if multi_res: # use first latent as dummy latent if multi_res - latents = latents[0].repeat(num_images, 1, 1, 1) + latents = latents[0].repeat((num_images,) + ((1,) * (latents[0].ndim - 1))) guider.sample( noise.generate_noise({"samples": latents}), latents, From ea17add3c62197b10fd0b71d9169d339adc55c47 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 3 Dec 2025 20:15:15 -0800 Subject: [PATCH 42/64] Fix case where text encoders where running on the CPU instead of GPU. (#11095) --- comfy/sd.py | 2 ++ comfy/sd1_clip.py | 9 ++++++++- 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/comfy/sd.py b/comfy/sd.py index f9e5efab5..734bd2845 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -193,6 +193,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) all_hooks.reset() self.patcher.patch_hooks(None) if show_pbar: @@ -240,6 +241,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) o = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = o[:2] if return_dict: diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 0fc9ab3db..503a51843 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -147,6 +147,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer_norm_hidden_state = layer_norm_hidden_state self.return_projected_pooled = return_projected_pooled self.return_attention_masks = return_attention_masks + self.execution_device = None if layer == "hidden": assert layer_idx is not None @@ -163,6 +164,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) + self.execution_device = options.get("execution_device", self.execution_device) if isinstance(self.layer, list) or self.layer == "all": pass elif layer_idx is None or abs(layer_idx) > self.num_layers: @@ -175,6 +177,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer = self.options_default[0] self.layer_idx = self.options_default[1] self.return_projected_pooled = self.options_default[2] + self.execution_device = None def process_tokens(self, tokens, device): end_token = self.special_tokens.get("end", None) @@ -258,7 +261,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info def forward(self, tokens): - device = self.transformer.get_input_embeddings().weight.device + if self.execution_device is None: + device = self.transformer.get_input_embeddings().weight.device + else: + device = self.execution_device + embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device) attention_mask_model = None From 6be85c7920224b45bbc6417e00147815e78c12a9 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 4 Dec 2025 14:28:44 +1000 Subject: [PATCH 43/64] mp: use look-ahead actuals for stream offload VRAM calculation (#11096) TIL that the WAN TE has a 2GB weight followed by 16MB as the next size down. This means that team 8GB VRAM would fully offload the TE in async offload mode as it just multiplied this giant size my the num streams. Do the more complex logic of summing up the upcoming to-load weight sizes to avoid triple counting this massive weight. partial unload does the converse of recording the NS most recent unloads as they go. --- comfy/model_patcher.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index df2d8e827..3dcac3eef 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -699,12 +699,12 @@ class ModelPatcher: offloaded = [] offload_buffer = 0 loading.sort(reverse=True) - for x in loading: + for i, x in enumerate(loading): module_offload_mem, module_mem, n, m, params = x lowvram_weight = False - potential_offload = max(offload_buffer, module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem)) + potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]])) lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory weight_key = "{}.weight".format(n) @@ -876,14 +876,18 @@ class ModelPatcher: patch_counter = 0 unload_list = self._load_list() unload_list.sort() + offload_buffer = self.model.model_offload_buffer_memory + if len(unload_list) > 0: + NS = comfy.model_management.NUM_STREAMS + offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS for unload in unload_list: if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed: break module_offload_mem, module_mem, n, m, params = unload - potential_offload = module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem) + potential_offload = module_offload_mem + sum(offload_weight_factor) lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: @@ -935,6 +939,8 @@ class ModelPatcher: m.comfy_patched_weights = False memory_freed += module_mem offload_buffer = max(offload_buffer, potential_offload) + offload_weight_factor.append(module_mem) + offload_weight_factor.pop(0) logging.debug("freed {}".format(n)) for param in params: From f4bdf5f8302ef10db99644a8672e614ddb29c473 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 5 Dec 2025 03:50:04 +1000 Subject: [PATCH 44/64] sd: revise hy VAE VRAM (#11105) This was recently collapsed down to rolling VAE through temporal. Clamp The time dimension. --- comfy/sd.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index 734bd2845..fe4dd65f8 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -483,8 +483,10 @@ class VAE: self.latent_dim = 3 self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1] self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1]) - self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype) - self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype) + #This is likely to significantly over-estimate with single image or low frame counts as the + #implementation is able to completely skip caching. Rework if used as an image only VAE + self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] elif "decoder.unpatcher3d.wavelets" in sd: self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8) From 9bc893c5bbd2838bdd15ebd40e3a3e548ce3e4f0 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 5 Dec 2025 03:50:36 +1000 Subject: [PATCH 45/64] sd: bump HY1.5 VAE estimate (#11107) Im able to push vram above estimate on partial unload. Bump the estimate. This is experimentally determined with a 720P and 480P datapoint calibrating for 24GB VRAM total. --- comfy/sd.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/sd.py b/comfy/sd.py index fe4dd65f8..03bdb33d5 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -471,7 +471,7 @@ class VAE: decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig}) self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: (2800 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) elif "decoder.conv_in.conv.weight" in sd: ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} ddconfig["conv3d"] = True From 3c8456223c5f6a41af7d99219b391c8c58acb552 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 5 Dec 2025 00:05:28 +0200 Subject: [PATCH 46/64] [API Nodes]: fixes and refactor (#11104) * chore(api-nodes): applied ruff's pyupgrade(python3.10) to api-nodes client's to folder * chore(api-nodes): add validate_video_frame_count function from LTX PR * chore(api-nodes): replace deprecated V1 imports * fix(api-nodes): the types returned by the "poll_op" function are now correct. --- comfy_api_nodes/util/__init__.py | 2 + comfy_api_nodes/util/_helpers.py | 14 +-- comfy_api_nodes/util/client.py | 145 ++++++++++++----------- comfy_api_nodes/util/conversions.py | 21 ++-- comfy_api_nodes/util/download_helpers.py | 20 ++-- comfy_api_nodes/util/request_logger.py | 2 - comfy_api_nodes/util/upload_helpers.py | 16 ++- comfy_api_nodes/util/validation_utils.py | 61 ++++++---- 8 files changed, 146 insertions(+), 135 deletions(-) diff --git a/comfy_api_nodes/util/__init__.py b/comfy_api_nodes/util/__init__.py index 80292fb3c..4cc22abfb 100644 --- a/comfy_api_nodes/util/__init__.py +++ b/comfy_api_nodes/util/__init__.py @@ -47,6 +47,7 @@ from .validation_utils import ( validate_string, validate_video_dimensions, validate_video_duration, + validate_video_frame_count, ) __all__ = [ @@ -94,6 +95,7 @@ __all__ = [ "validate_string", "validate_video_dimensions", "validate_video_duration", + "validate_video_frame_count", # Misc functions "get_fs_object_size", ] diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py index 328fe5227..491e6b6a8 100644 --- a/comfy_api_nodes/util/_helpers.py +++ b/comfy_api_nodes/util/_helpers.py @@ -2,8 +2,8 @@ import asyncio import contextlib import os import time +from collections.abc import Callable from io import BytesIO -from typing import Callable, Optional, Union from comfy.cli_args import args from comfy.model_management import processing_interrupted @@ -35,12 +35,12 @@ def default_base_url() -> str: async def sleep_with_interrupt( seconds: float, - node_cls: Optional[type[IO.ComfyNode]], - label: Optional[str] = None, - start_ts: Optional[float] = None, - estimated_total: Optional[int] = None, + node_cls: type[IO.ComfyNode] | None, + label: str | None = None, + start_ts: float | None = None, + estimated_total: int | None = None, *, - display_callback: Optional[Callable[[type[IO.ComfyNode], str, int, Optional[int]], None]] = None, + display_callback: Callable[[type[IO.ComfyNode], str, int, int | None], None] | None = None, ): """ Sleep in 1s slices while: @@ -65,7 +65,7 @@ def mimetype_to_extension(mime_type: str) -> str: return mime_type.split("/")[-1].lower() -def get_fs_object_size(path_or_object: Union[str, BytesIO]) -> int: +def get_fs_object_size(path_or_object: str | BytesIO) -> int: if isinstance(path_or_object, str): return os.path.getsize(path_or_object) return len(path_or_object.getvalue()) diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index bf01d7d36..bf37cba5f 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -4,10 +4,11 @@ import json import logging import time import uuid +from collections.abc import Callable, Iterable from dataclasses import dataclass from enum import Enum from io import BytesIO -from typing import Any, Callable, Iterable, Literal, Optional, Type, TypeVar, Union +from typing import Any, Literal, TypeVar from urllib.parse import urljoin, urlparse import aiohttp @@ -37,8 +38,8 @@ class ApiEndpoint: path: str, method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = "GET", *, - query_params: Optional[dict[str, Any]] = None, - headers: Optional[dict[str, str]] = None, + query_params: dict[str, Any] | None = None, + headers: dict[str, str] | None = None, ): self.path = path self.method = method @@ -52,18 +53,18 @@ class _RequestConfig: endpoint: ApiEndpoint timeout: float content_type: str - data: Optional[dict[str, Any]] - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] - multipart_parser: Optional[Callable] + data: dict[str, Any] | None + files: dict[str, Any] | list[tuple[str, Any]] | None + multipart_parser: Callable | None max_retries: int retry_delay: float retry_backoff: float wait_label: str = "Waiting" monitor_progress: bool = True - estimated_total: Optional[int] = None - final_label_on_success: Optional[str] = "Completed" - progress_origin_ts: Optional[float] = None - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None + estimated_total: int | None = None + final_label_on_success: str | None = "Completed" + progress_origin_ts: float | None = None + price_extractor: Callable[[dict[str, Any]], float | None] | None = None @dataclass @@ -71,10 +72,10 @@ class _PollUIState: started: float status_label: str = "Queued" is_queued: bool = True - price: Optional[float] = None - estimated_duration: Optional[int] = None + price: float | None = None + estimated_duration: int | None = None base_processing_elapsed: float = 0.0 # sum of completed active intervals - active_since: Optional[float] = None # start time of current active interval (None if queued) + active_since: float | None = None # start time of current active interval (None if queued) _RETRY_STATUS = {408, 429, 500, 502, 503, 504} @@ -87,20 +88,20 @@ async def sync_op( cls: type[IO.ComfyNode], endpoint: ApiEndpoint, *, - response_model: Type[M], - price_extractor: Optional[Callable[[M], Optional[float]]] = None, - data: Optional[BaseModel] = None, - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, + response_model: type[M], + price_extractor: Callable[[M | Any], float | None] | None = None, + data: BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, content_type: str = "application/json", timeout: float = 3600.0, - multipart_parser: Optional[Callable] = None, + multipart_parser: Callable | None = None, max_retries: int = 3, retry_delay: float = 1.0, retry_backoff: float = 2.0, wait_label: str = "Waiting for server", - estimated_duration: Optional[int] = None, - final_label_on_success: Optional[str] = "Completed", - progress_origin_ts: Optional[float] = None, + estimated_duration: int | None = None, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, monitor_progress: bool = True, ) -> M: raw = await sync_op_raw( @@ -131,22 +132,22 @@ async def poll_op( cls: type[IO.ComfyNode], poll_endpoint: ApiEndpoint, *, - response_model: Type[M], - status_extractor: Callable[[M], Optional[Union[str, int]]], - progress_extractor: Optional[Callable[[M], Optional[int]]] = None, - price_extractor: Optional[Callable[[M], Optional[float]]] = None, - completed_statuses: Optional[list[Union[str, int]]] = None, - failed_statuses: Optional[list[Union[str, int]]] = None, - queued_statuses: Optional[list[Union[str, int]]] = None, - data: Optional[BaseModel] = None, + response_model: type[M], + status_extractor: Callable[[M | Any], str | int | None], + progress_extractor: Callable[[M | Any], int | None] | None = None, + price_extractor: Callable[[M | Any], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: BaseModel | None = None, poll_interval: float = 5.0, max_poll_attempts: int = 120, timeout_per_poll: float = 120.0, max_retries_per_poll: int = 3, retry_delay_per_poll: float = 1.0, retry_backoff_per_poll: float = 2.0, - estimated_duration: Optional[int] = None, - cancel_endpoint: Optional[ApiEndpoint] = None, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0, ) -> M: raw = await poll_op_raw( @@ -178,22 +179,22 @@ async def sync_op_raw( cls: type[IO.ComfyNode], endpoint: ApiEndpoint, *, - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None, - data: Optional[Union[dict[str, Any], BaseModel]] = None, - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + data: dict[str, Any] | BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, content_type: str = "application/json", timeout: float = 3600.0, - multipart_parser: Optional[Callable] = None, + multipart_parser: Callable | None = None, max_retries: int = 3, retry_delay: float = 1.0, retry_backoff: float = 2.0, wait_label: str = "Waiting for server", - estimated_duration: Optional[int] = None, + estimated_duration: int | None = None, as_binary: bool = False, - final_label_on_success: Optional[str] = "Completed", - progress_origin_ts: Optional[float] = None, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, monitor_progress: bool = True, -) -> Union[dict[str, Any], bytes]: +) -> dict[str, Any] | bytes: """ Make a single network request. - If as_binary=False (default): returns JSON dict (or {'_raw': ''} if non-JSON). @@ -229,21 +230,21 @@ async def poll_op_raw( cls: type[IO.ComfyNode], poll_endpoint: ApiEndpoint, *, - status_extractor: Callable[[dict[str, Any]], Optional[Union[str, int]]], - progress_extractor: Optional[Callable[[dict[str, Any]], Optional[int]]] = None, - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None, - completed_statuses: Optional[list[Union[str, int]]] = None, - failed_statuses: Optional[list[Union[str, int]]] = None, - queued_statuses: Optional[list[Union[str, int]]] = None, - data: Optional[Union[dict[str, Any], BaseModel]] = None, + status_extractor: Callable[[dict[str, Any]], str | int | None], + progress_extractor: Callable[[dict[str, Any]], int | None] | None = None, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: dict[str, Any] | BaseModel | None = None, poll_interval: float = 5.0, max_poll_attempts: int = 120, timeout_per_poll: float = 120.0, max_retries_per_poll: int = 3, retry_delay_per_poll: float = 1.0, retry_backoff_per_poll: float = 2.0, - estimated_duration: Optional[int] = None, - cancel_endpoint: Optional[ApiEndpoint] = None, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0, ) -> dict[str, Any]: """ @@ -261,7 +262,7 @@ async def poll_op_raw( consumed_attempts = 0 # counts only non-queued polls progress_bar = utils.ProgressBar(100) if progress_extractor else None - last_progress: Optional[int] = None + last_progress: int | None = None state = _PollUIState(started=started, estimated_duration=estimated_duration) stop_ticker = asyncio.Event() @@ -420,10 +421,10 @@ async def poll_op_raw( def _display_text( node_cls: type[IO.ComfyNode], - text: Optional[str], + text: str | None, *, - status: Optional[Union[str, int]] = None, - price: Optional[float] = None, + status: str | int | None = None, + price: float | None = None, ) -> None: display_lines: list[str] = [] if status: @@ -440,13 +441,13 @@ def _display_text( def _display_time_progress( node_cls: type[IO.ComfyNode], - status: Optional[Union[str, int]], + status: str | int | None, elapsed_seconds: int, - estimated_total: Optional[int] = None, + estimated_total: int | None = None, *, - price: Optional[float] = None, - is_queued: Optional[bool] = None, - processing_elapsed_seconds: Optional[int] = None, + price: float | None = None, + is_queued: bool | None = None, + processing_elapsed_seconds: int | None = None, ) -> None: if estimated_total is not None and estimated_total > 0 and is_queued is False: pe = processing_elapsed_seconds if processing_elapsed_seconds is not None else elapsed_seconds @@ -488,7 +489,7 @@ def _unpack_tuple(t: tuple) -> tuple[str, Any, str]: raise ValueError("files tuple must be (filename, file[, content_type])") -def _merge_params(endpoint_params: dict[str, Any], method: str, data: Optional[dict[str, Any]]) -> dict[str, Any]: +def _merge_params(endpoint_params: dict[str, Any], method: str, data: dict[str, Any] | None) -> dict[str, Any]: params = dict(endpoint_params or {}) if method.upper() == "GET" and data: for k, v in data.items(): @@ -534,9 +535,9 @@ def _generate_operation_id(method: str, path: str, attempt: int) -> str: def _snapshot_request_body_for_logging( content_type: str, method: str, - data: Optional[dict[str, Any]], - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]], -) -> Optional[Union[dict[str, Any], str]]: + data: dict[str, Any] | None, + files: dict[str, Any] | list[tuple[str, Any]] | None, +) -> dict[str, Any] | str | None: if method.upper() == "GET": return None if content_type == "multipart/form-data": @@ -586,13 +587,13 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): attempt = 0 delay = cfg.retry_delay operation_succeeded: bool = False - final_elapsed_seconds: Optional[int] = None - extracted_price: Optional[float] = None + final_elapsed_seconds: int | None = None + extracted_price: float | None = None while True: attempt += 1 stop_event = asyncio.Event() - monitor_task: Optional[asyncio.Task] = None - sess: Optional[aiohttp.ClientSession] = None + monitor_task: asyncio.Task | None = None + sess: aiohttp.ClientSession | None = None operation_id = _generate_operation_id(method, cfg.endpoint.path, attempt) logging.debug("[DEBUG] HTTP %s %s (attempt %d)", method, url, attempt) @@ -887,7 +888,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): ) -def _validate_or_raise(response_model: Type[M], payload: Any) -> M: +def _validate_or_raise(response_model: type[M], payload: Any) -> M: try: return response_model.model_validate(payload) except Exception as e: @@ -902,9 +903,9 @@ def _validate_or_raise(response_model: Type[M], payload: Any) -> M: def _wrap_model_extractor( - response_model: Type[M], - extractor: Optional[Callable[[M], Any]], -) -> Optional[Callable[[dict[str, Any]], Any]]: + response_model: type[M], + extractor: Callable[[M], Any] | None, +) -> Callable[[dict[str, Any]], Any] | None: """Wrap a typed extractor so it can be used by the dict-based poller. Validates the dict into `response_model` before invoking `extractor`. Uses a small per-wrapper cache keyed by `id(dict)` to avoid re-validating @@ -929,10 +930,10 @@ def _wrap_model_extractor( return _wrapped -def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Union[str, int]]: +def _normalize_statuses(values: Iterable[str | int] | None) -> set[str | int]: if not values: return set() - out: set[Union[str, int]] = set() + out: set[str | int] = set() for v in values: nv = _normalize_status_value(v) if nv is not None: @@ -940,7 +941,7 @@ def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Unio return out -def _normalize_status_value(val: Union[str, int, None]) -> Union[str, int, None]: +def _normalize_status_value(val: str | int | None) -> str | int | None: if isinstance(val, str): return val.strip().lower() return val diff --git a/comfy_api_nodes/util/conversions.py b/comfy_api_nodes/util/conversions.py index 971dc57de..c57457580 100644 --- a/comfy_api_nodes/util/conversions.py +++ b/comfy_api_nodes/util/conversions.py @@ -4,7 +4,6 @@ import math import mimetypes import uuid from io import BytesIO -from typing import Optional import av import numpy as np @@ -12,8 +11,7 @@ import torch from PIL import Image from comfy.utils import common_upscale -from comfy_api.latest import Input, InputImpl -from comfy_api.util import VideoCodec, VideoContainer +from comfy_api.latest import Input, InputImpl, Types from ._helpers import mimetype_to_extension @@ -57,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to def tensor_to_bytesio( image: torch.Tensor, - name: Optional[str] = None, + name: str | None = None, total_pixels: int = 2048 * 2048, mime_type: str = "image/png", ) -> BytesIO: @@ -177,8 +175,8 @@ def audio_to_base64_string(audio: Input.Audio, container_format: str = "mp4", co def video_to_base64_string( video: Input.Video, - container_format: VideoContainer = None, - codec: VideoCodec = None + container_format: Types.VideoContainer | None = None, + codec: Types.VideoCodec | None = None, ) -> str: """ Converts a video input to a base64 string. @@ -189,12 +187,11 @@ def video_to_base64_string( codec: Optional codec to use (defaults to video.codec if available) """ video_bytes_io = BytesIO() - - # Use provided format/codec if specified, otherwise use video's own if available - format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4) - codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264) - - video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use) + video.save_to( + video_bytes_io, + format=container_format or getattr(video, "container", Types.VideoContainer.MP4), + codec=codec or getattr(video, "codec", Types.VideoCodec.H264), + ) video_bytes_io.seek(0) return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8") diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py index 14207dc68..3e0d0352d 100644 --- a/comfy_api_nodes/util/download_helpers.py +++ b/comfy_api_nodes/util/download_helpers.py @@ -3,15 +3,15 @@ import contextlib import uuid from io import BytesIO from pathlib import Path -from typing import IO, Optional, Union +from typing import IO from urllib.parse import urljoin, urlparse import aiohttp import torch from aiohttp.client_exceptions import ClientError, ContentTypeError -from comfy_api.input_impl import VideoFromFile from comfy_api.latest import IO as COMFY_IO +from comfy_api.latest import InputImpl from . import request_logger from ._helpers import ( @@ -29,9 +29,9 @@ _RETRY_STATUS = {408, 429, 500, 502, 503, 504} async def download_url_to_bytesio( url: str, - dest: Optional[Union[BytesIO, IO[bytes], str, Path]], + dest: BytesIO | IO[bytes] | str | Path | None, *, - timeout: Optional[float] = None, + timeout: float | None = None, max_retries: int = 5, retry_delay: float = 1.0, retry_backoff: float = 2.0, @@ -71,10 +71,10 @@ async def download_url_to_bytesio( is_path_sink = isinstance(dest, (str, Path)) fhandle = None - session: Optional[aiohttp.ClientSession] = None - stop_evt: Optional[asyncio.Event] = None - monitor_task: Optional[asyncio.Task] = None - req_task: Optional[asyncio.Task] = None + session: aiohttp.ClientSession | None = None + stop_evt: asyncio.Event | None = None + monitor_task: asyncio.Task | None = None + req_task: asyncio.Task | None = None try: with contextlib.suppress(Exception): @@ -234,11 +234,11 @@ async def download_url_to_video_output( timeout: float = None, max_retries: int = 5, cls: type[COMFY_IO.ComfyNode] = None, -) -> VideoFromFile: +) -> InputImpl.VideoFromFile: """Downloads a video from a URL and returns a `VIDEO` output.""" result = BytesIO() await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls) - return VideoFromFile(result) + return InputImpl.VideoFromFile(result) async def download_url_as_bytesio( diff --git a/comfy_api_nodes/util/request_logger.py b/comfy_api_nodes/util/request_logger.py index ac52e2eab..e0cb4428d 100644 --- a/comfy_api_nodes/util/request_logger.py +++ b/comfy_api_nodes/util/request_logger.py @@ -1,5 +1,3 @@ -from __future__ import annotations - import datetime import hashlib import json diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index 0532bea9a..b8d33f4d1 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -4,15 +4,13 @@ import logging import time import uuid from io import BytesIO -from typing import Optional from urllib.parse import urlparse import aiohttp import torch from pydantic import BaseModel, Field -from comfy_api.latest import IO, Input -from comfy_api.util import VideoCodec, VideoContainer +from comfy_api.latest import IO, Input, Types from . import request_logger from ._helpers import is_processing_interrupted, sleep_with_interrupt @@ -32,7 +30,7 @@ from .conversions import ( class UploadRequest(BaseModel): file_name: str = Field(..., description="Filename to upload") - content_type: Optional[str] = Field( + content_type: str | None = Field( None, description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.", ) @@ -56,7 +54,7 @@ async def upload_images_to_comfyapi( Uploads images to ComfyUI API and returns download URLs. To upload multiple images, stack them in the batch dimension first. """ - # if batch, try to upload each file if max_images is greater than 0 + # if batched, try to upload each file if max_images is greater than 0 download_urls: list[str] = [] is_batch = len(image.shape) > 3 batch_len = image.shape[0] if is_batch else 1 @@ -100,9 +98,9 @@ async def upload_video_to_comfyapi( cls: type[IO.ComfyNode], video: Input.Video, *, - container: VideoContainer = VideoContainer.MP4, - codec: VideoCodec = VideoCodec.H264, - max_duration: Optional[int] = None, + container: Types.VideoContainer = Types.VideoContainer.MP4, + codec: Types.VideoCodec = Types.VideoCodec.H264, + max_duration: int | None = None, wait_label: str | None = "Uploading", ) -> str: """ @@ -220,7 +218,7 @@ async def upload_file( return monitor_task = asyncio.create_task(_monitor()) - sess: Optional[aiohttp.ClientSession] = None + sess: aiohttp.ClientSession | None = None try: try: request_logger.log_request_response( diff --git a/comfy_api_nodes/util/validation_utils.py b/comfy_api_nodes/util/validation_utils.py index ec7006aed..f01edea96 100644 --- a/comfy_api_nodes/util/validation_utils.py +++ b/comfy_api_nodes/util/validation_utils.py @@ -1,9 +1,7 @@ import logging -from typing import Optional import torch -from comfy_api.input.video_types import VideoInput from comfy_api.latest import Input @@ -18,10 +16,10 @@ def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]: def validate_image_dimensions( image: torch.Tensor, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): height, width = get_image_dimensions(image) @@ -37,8 +35,8 @@ def validate_image_dimensions( def validate_image_aspect_ratio( image: torch.Tensor, - min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4) - max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1) + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) *, strict: bool = True, # True -> (min, max); False -> [min, max] ) -> float: @@ -54,8 +52,8 @@ def validate_image_aspect_ratio( def validate_images_aspect_ratio_closeness( first_image: torch.Tensor, second_image: torch.Tensor, - min_rel: float, # e.g. 0.8 - max_rel: float, # e.g. 1.25 + min_rel: float, # e.g. 0.8 + max_rel: float, # e.g. 1.25 *, strict: bool = False, # True -> (min, max); False -> [min, max] ) -> float: @@ -84,8 +82,8 @@ def validate_images_aspect_ratio_closeness( def validate_aspect_ratio_string( aspect_ratio: str, - min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4) - max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1) + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) *, strict: bool = False, # True -> (min, max); False -> [min, max] ) -> float: @@ -97,10 +95,10 @@ def validate_aspect_ratio_string( def validate_video_dimensions( video: Input.Video, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): try: width, height = video.get_dimensions() @@ -120,8 +118,8 @@ def validate_video_dimensions( def validate_video_duration( video: Input.Video, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ): try: duration = video.get_duration() @@ -136,6 +134,23 @@ def validate_video_duration( raise ValueError(f"Video duration must be at most {max_duration}s, got {duration}s") +def validate_video_frame_count( + video: Input.Video, + min_frame_count: int | None = None, + max_frame_count: int | None = None, +): + try: + frame_count = video.get_frame_count() + except Exception as e: + logging.error("Error getting frame count of video: %s", e) + return + + if min_frame_count is not None and min_frame_count > frame_count: + raise ValueError(f"Video frame count must be at least {min_frame_count}, got {frame_count}") + if max_frame_count is not None and frame_count > max_frame_count: + raise ValueError(f"Video frame count must be at most {max_frame_count}, got {frame_count}") + + def get_number_of_images(images): if isinstance(images, torch.Tensor): return images.shape[0] if images.ndim >= 4 else 1 @@ -144,8 +159,8 @@ def get_number_of_images(images): def validate_audio_duration( audio: Input.Audio, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ) -> None: sr = int(audio["sample_rate"]) dur = int(audio["waveform"].shape[-1]) / sr @@ -177,7 +192,7 @@ def validate_string( ) -def validate_container_format_is_mp4(video: VideoInput) -> None: +def validate_container_format_is_mp4(video: Input.Video) -> None: """Validates video container format is MP4.""" container_format = video.get_container_format() if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]: @@ -194,8 +209,8 @@ def _ratio_from_tuple(r: tuple[float, float]) -> float: def _assert_ratio_bounds( ar: float, *, - min_ratio: Optional[tuple[float, float]] = None, - max_ratio: Optional[tuple[float, float]] = None, + min_ratio: tuple[float, float] | None = None, + max_ratio: tuple[float, float] | None = None, strict: bool = True, ) -> None: """Validate a numeric aspect ratio against optional min/max ratio bounds.""" From 35fa091340c60612dfb71cb6822dc23b99a5dac2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 4 Dec 2025 19:52:09 -0800 Subject: [PATCH 47/64] Forgot to put this in README. (#11112) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 91fb510e1..ed857df9f 100644 --- a/README.md +++ b/README.md @@ -81,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/) - [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/) - [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/) + - [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5) - Audio Models - [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/) - [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/) From 0ec05b1481d12b299bc945dbd407b773cfb66483 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Fri, 5 Dec 2025 11:05:38 -0800 Subject: [PATCH 48/64] Remove line made unnecessary (and wrong) after transformer_options was added to NextDiT's _forward definition (#11118) --- comfy/ldm/lumina/model.py | 1 - 1 file changed, 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index f1c1a0ec3..6c24fed9b 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -586,7 +586,6 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute patches = transformer_options.get("patches", {}) - transformer_options = kwargs.get("transformer_options", {}) x_is_tensor = isinstance(x, torch.Tensor) img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) freqs_cis = freqs_cis.to(img.device) From 43071e3de3780f984a46549e90935a0bf405e9df Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 11:35:42 -0800 Subject: [PATCH 49/64] Make old scaled fp8 format use the new mixed quant ops system. (#11000) --- comfy/model_base.py | 14 +- comfy/model_detection.py | 33 +--- comfy/model_patcher.py | 20 +-- comfy/ops.py | 145 +++++++----------- comfy/quant_ops.py | 30 ++-- comfy/sd.py | 68 ++++++-- comfy/sd1_clip.py | 22 +-- comfy/supported_models_base.py | 3 +- comfy/text_encoders/cosmos.py | 12 +- comfy/text_encoders/flux.py | 12 +- comfy/text_encoders/genmo.py | 6 +- comfy/text_encoders/hidream.py | 10 +- comfy/text_encoders/hunyuan_image.py | 12 +- comfy/text_encoders/hunyuan_video.py | 23 ++- comfy/text_encoders/lumina2.py | 6 +- comfy/text_encoders/omnigen2.py | 6 +- comfy/text_encoders/ovis.py | 5 +- comfy/text_encoders/pixart_t5.py | 6 +- comfy/text_encoders/qwen_image.py | 6 +- comfy/text_encoders/sd3_clip.py | 19 +-- comfy/text_encoders/wan.py | 6 +- comfy/text_encoders/z_image.py | 5 +- comfy/utils.py | 66 ++++++++ .../comfy_quant/test_mixed_precision.py | 18 ++- 24 files changed, 278 insertions(+), 275 deletions(-) diff --git a/comfy/model_base.py b/comfy/model_base.py index 9b76c285e..3cedd4f31 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -134,7 +134,7 @@ class BaseModel(torch.nn.Module): if not unet_config.get("disable_unet_model_creation", False): if model_config.custom_operations is None: fp8 = model_config.optimizations.get("fp8", False) - operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config) + operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config) else: operations = model_config.custom_operations self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) @@ -329,18 +329,6 @@ class BaseModel(torch.nn.Module): extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) unet_state_dict = self.diffusion_model.state_dict() - - if self.model_config.scaled_fp8 is not None: - unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8) - - # Save mixed precision metadata - if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config: - metadata = { - "format_version": "1.0", - "layers": self.model_config.layer_quant_config - } - unet_state_dict["_quantization_metadata"] = metadata - unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) if self.model_type == ModelType.V_PREDICTION: diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 7d0517e61..fd1907627 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -6,20 +6,6 @@ import math import logging import torch - -def detect_layer_quantization(metadata): - quant_key = "_quantization_metadata" - if metadata is not None and quant_key in metadata: - quant_metadata = metadata.pop(quant_key) - quant_metadata = json.loads(quant_metadata) - if isinstance(quant_metadata, dict) and "layers" in quant_metadata: - logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})") - return quant_metadata["layers"] - else: - raise ValueError("Invalid quantization metadata format") - return None - - def count_blocks(state_dict_keys, prefix_string): count = 0 while True: @@ -767,22 +753,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal if model_config is None and use_base_if_no_match: model_config = comfy.supported_models_base.BASE(unet_config) - scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix) - if scaled_fp8_key in state_dict: - scaled_fp8_weight = state_dict.pop(scaled_fp8_key) - model_config.scaled_fp8 = scaled_fp8_weight.dtype - if model_config.scaled_fp8 == torch.float32: - model_config.scaled_fp8 = torch.float8_e4m3fn - if scaled_fp8_weight.nelement() == 2: - model_config.optimizations["fp8"] = False - else: - model_config.optimizations["fp8"] = True - # Detect per-layer quantization (mixed precision) - layer_quant_config = detect_layer_quantization(metadata) - if layer_quant_config: - model_config.layer_quant_config = layer_quant_config - logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized") + quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix) + if quant_config: + model_config.quant_config = quant_config + logging.info("Detected mixed precision quantization") return model_config diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 3dcac3eef..215784874 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -126,27 +126,11 @@ class LowVramPatch: def __init__(self, key, patches, convert_func=None, set_func=None): self.key = key self.patches = patches - self.convert_func = convert_func + self.convert_func = convert_func # TODO: remove self.set_func = set_func def __call__(self, weight): - intermediate_dtype = weight.dtype - if self.convert_func is not None: - weight = self.convert_func(weight, inplace=False) - - if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops - intermediate_dtype = torch.float32 - out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype) - if self.set_func is None: - return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key)) - else: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) - - out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) - if self.set_func is not None: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype) - else: - return out + return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype) #The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3 LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3 diff --git a/comfy/ops.py b/comfy/ops.py index eae434e68..dc06709a1 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -23,6 +23,7 @@ from comfy.cli_args import args, PerformanceFeature import comfy.float import comfy.rmsnorm import contextlib +import json def run_every_op(): if torch.compiler.is_compiling(): @@ -422,22 +423,12 @@ def fp8_linear(self, input): if input.ndim == 3 or input.ndim == 2: w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) + scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - scale_weight = self.scale_weight - scale_input = self.scale_input - if scale_weight is None: - scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - else: - scale_weight = scale_weight.to(input.device) - - if scale_input is None: - scale_input = torch.ones((), device=input.device, dtype=torch.float32) - input = torch.clamp(input, min=-448, max=448, out=input) - layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} - quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) - else: - scale_input = scale_input.to(input.device) - quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype) + scale_input = torch.ones((), device=input.device, dtype=torch.float32) + input = torch.clamp(input, min=-448, max=448, out=input) + layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} + quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) # Wrap weight in QuantizedTensor - this enables unified dispatch # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! @@ -458,7 +449,7 @@ class fp8_ops(manual_cast): return None def forward_comfy_cast_weights(self, input): - if not self.training: + if len(self.weight_function) == 0 and len(self.bias_function) == 0: try: out = fp8_linear(self, input) if out is not None: @@ -471,59 +462,6 @@ class fp8_ops(manual_cast): uncast_bias_weight(self, weight, bias, offload_stream) return x -def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): - logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input)) - class scaled_fp8_op(manual_cast): - class Linear(manual_cast.Linear): - def __init__(self, *args, **kwargs): - if override_dtype is not None: - kwargs['dtype'] = override_dtype - super().__init__(*args, **kwargs) - - def reset_parameters(self): - if not hasattr(self, 'scale_weight'): - self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - - if not scale_input: - self.scale_input = None - - if not hasattr(self, 'scale_input'): - self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - return None - - def forward_comfy_cast_weights(self, input): - if fp8_matrix_mult: - out = fp8_linear(self, input) - if out is not None: - return out - - weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) - - if weight.numel() < input.numel(): #TODO: optimize - x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias) - else: - x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias) - uncast_bias_weight(self, weight, bias, offload_stream) - return x - - def convert_weight(self, weight, inplace=False, **kwargs): - if inplace: - weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype) - return weight - else: - return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32) - - def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): - weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) - if return_weight: - return weight - if inplace_update: - self.weight.data.copy_(weight) - else: - self.weight = torch.nn.Parameter(weight, requires_grad=False) - - return scaled_fp8_op - CUBLAS_IS_AVAILABLE = False try: from cublas_ops import CublasLinear @@ -550,9 +488,9 @@ if CUBLAS_IS_AVAILABLE: from .quant_ops import QuantizedTensor, QUANT_ALGOS -def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): +def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): class MixedPrecisionOps(manual_cast): - _layer_quant_config = layer_quant_config + _quant_config = quant_config _compute_dtype = compute_dtype _full_precision_mm = full_precision_mm @@ -595,27 +533,36 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful manually_loaded_keys = [weight_key] - if layer_name not in MixedPrecisionOps._layer_quant_config: + layer_conf = state_dict.pop(f"{prefix}comfy_quant", None) + if layer_conf is not None: + layer_conf = json.loads(layer_conf.numpy().tobytes()) + + if layer_conf is None: self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: - quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None) - if quant_format is None: + self.quant_format = layer_conf.get("format", None) + if not self._full_precision_mm: + self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False) + + if self.quant_format is None: raise ValueError(f"Unknown quantization format for layer {layer_name}") - qconfig = QUANT_ALGOS[quant_format] + qconfig = QUANT_ALGOS[self.quant_format] self.layout_type = qconfig["comfy_tensor_layout"] weight_scale_key = f"{prefix}weight_scale" + scale = state_dict.pop(weight_scale_key, None) layout_params = { - 'scale': state_dict.pop(weight_scale_key, None), + 'scale': scale, 'orig_dtype': MixedPrecisionOps._compute_dtype, 'block_size': qconfig.get("group_size", None), } - if layout_params['scale'] is not None: + + if scale is not None: manually_loaded_keys.append(weight_scale_key) self.weight = torch.nn.Parameter( - QuantizedTensor(weight.to(device=device), self.layout_type, layout_params), + QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params), requires_grad=False ) @@ -624,7 +571,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful _v = state_dict.pop(param_key, None) if _v is None: continue - setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) + self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) manually_loaded_keys.append(param_key) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) @@ -633,6 +580,16 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful if key in missing_keys: missing_keys.remove(key) + def state_dict(self, *args, destination=None, prefix="", **kwargs): + sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) + if isinstance(self.weight, QuantizedTensor): + sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale'] + quant_conf = {"format": self.quant_format} + if self._full_precision_mm: + quant_conf["full_precision_matrix_mult"] = True + sd["{}comfy_quant".format(prefix)] = torch.frombuffer(json.dumps(quant_conf).encode('utf-8'), dtype=torch.uint8) + return sd + def _forward(self, input, weight, bias): return torch.nn.functional.linear(input, weight, bias) @@ -648,9 +605,8 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(input, *args, **kwargs) if (getattr(self, 'layout_type', None) is not None and - getattr(self, 'input_scale', None) is not None and not isinstance(input, QuantizedTensor)): - input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype) + input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype) return self._forward(input, self.weight, self.bias) def convert_weight(self, weight, inplace=False, **kwargs): @@ -661,7 +617,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): if getattr(self, 'layout_type', None) is not None: - weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) else: weight = weight.to(self.weight.dtype) if return_weight: @@ -670,17 +626,28 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful assert inplace_update is False # TODO: eventually remove the inplace_update stuff self.weight = torch.nn.Parameter(weight, requires_grad=False) + def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working + if recurse: + for module in self.children(): + module._apply(fn) + + for key, param in self._parameters.items(): + if param is None: + continue + self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False)) + for key, buf in self._buffers.items(): + if buf is not None: + self._buffers[key] = fn(buf) + return self + return MixedPrecisionOps -def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None): +def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None): fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular - if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config: - logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers") - return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute) - - if scaled_fp8 is not None: - return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8) + if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config: + logging.info("Using mixed precision operations") + return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute) if ( fp8_compute and diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index bb1fb860c..571d3f760 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -238,6 +238,9 @@ class QuantizedTensor(torch.Tensor): def is_contiguous(self, *arg, **kwargs): return self._qdata.is_contiguous(*arg, **kwargs) + def storage(self): + return self._qdata.storage() + # ============================================================================== # Generic Utilities (Layout-Agnostic Operations) # ============================================================================== @@ -249,12 +252,6 @@ def _create_transformed_qtensor(qt, transform_fn): def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"): - if target_dtype is not None and target_dtype != qt.dtype: - logging.warning( - f"QuantizedTensor: dtype conversion requested to {target_dtype}, " - f"but not supported for quantized tensors. Ignoring dtype." - ) - if target_layout is not None and target_layout != torch.strided: logging.warning( f"QuantizedTensor: layout change requested to {target_layout}, " @@ -274,6 +271,8 @@ def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout= logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}") new_q_data = qt._qdata.to(device=target_device) new_params = _move_layout_params_to_device(qt._layout_params, target_device) + if target_dtype is not None: + new_params["orig_dtype"] = target_dtype new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params) logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}") return new_qt @@ -339,7 +338,9 @@ def generic_copy_(func, args, kwargs): # Copy from another quantized tensor qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking) qt_dest._layout_type = src._layout_type + orig_dtype = qt_dest._layout_params["orig_dtype"] _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking) + qt_dest._layout_params["orig_dtype"] = orig_dtype else: # Copy from regular tensor - just copy raw data qt_dest._qdata.copy_(src) @@ -397,17 +398,20 @@ class TensorCoreFP8Layout(QuantizedLayout): def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): orig_dtype = tensor.dtype - if scale is None: + if isinstance(scale, str) and scale == "recalculate": scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max - if not isinstance(scale, torch.Tensor): - scale = torch.tensor(scale) - scale = scale.to(device=tensor.device, dtype=torch.float32) + if scale is not None: + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale) + scale = scale.to(device=tensor.device, dtype=torch.float32) - if inplace_ops: - tensor *= (1.0 / scale).to(tensor.dtype) + if inplace_ops: + tensor *= (1.0 / scale).to(tensor.dtype) + else: + tensor = tensor * (1.0 / scale).to(tensor.dtype) else: - tensor = tensor * (1.0 / scale).to(tensor.dtype) + scale = torch.ones((), device=tensor.device, dtype=torch.float32) if stochastic_rounding > 0: tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) diff --git a/comfy/sd.py b/comfy/sd.py index 03bdb33d5..092715d79 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -968,10 +968,8 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI clip_data = [] for p in ckpt_paths: sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True) - if metadata is not None: - quant_metadata = metadata.get("_quantization_metadata", None) - if quant_metadata is not None: - sd["_quantization_metadata"] = quant_metadata + if model_options.get("custom_operations", None) is None: + sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata) clip_data.append(sd) return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options) @@ -1088,7 +1086,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sdxl_clip.SDXLRefinerClipModel @@ -1112,7 +1110,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif clip_type == CLIPType.HIDREAM: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), - clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None) + clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: #CLIPType.MOCHI clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) @@ -1141,7 +1139,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif te_model == TEModel.LLAMA3_8: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data), - clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None) + clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer elif te_model == TEModel.QWEN25_3B: clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data)) @@ -1169,7 +1167,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sd1_clip.SD1ClipModel @@ -1224,8 +1222,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters = 0 for c in clip_data: - if "_quantization_metadata" in c: - c.pop("_quantization_metadata") parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) @@ -1295,6 +1291,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) load_device = model_management.get_torch_device() + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata) + model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata) if model_config is None: logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.") @@ -1303,18 +1303,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c return None return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used' - unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None - model_config.custom_operations = model_options.get("custom_operations", None) + if custom_operations is not None: + model_config.custom_operations = custom_operations + unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) if unet_dtype is None: unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + if model_config.quant_config is not None: + manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) + else: + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) if model_config.clip_vision_prefix is not None: @@ -1332,6 +1336,27 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c vae = VAE(sd=vae_sd, metadata=metadata) if output_clip: + if te_model_options.get("custom_operations", None) is None: + scaled_fp8_list = [] + for k in list(sd.keys()): # Convert scaled fp8 to mixed ops + if k.endswith(".scaled_fp8"): + scaled_fp8_list.append(k[:-len("scaled_fp8")]) + + if len(scaled_fp8_list) > 0: + out_sd = {} + for k in sd: + skip = False + for pref in scaled_fp8_list: + skip = skip or k.startswith(pref) + if not skip: + out_sd[k] = sd[k] + + for pref in scaled_fp8_list: + quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={}) + for k in quant_sd: + out_sd[k] = quant_sd[k] + sd = out_sd + clip_target = model_config.clip_target(state_dict=sd) if clip_target is not None: clip_sd = model_config.process_clip_state_dict(sd) @@ -1394,6 +1419,9 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): if len(temp_sd) > 0: sd = temp_sd + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata) parameters = comfy.utils.calculate_parameters(sd) weight_dtype = comfy.utils.weight_dtype(sd) @@ -1424,7 +1452,7 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): offload_device = model_management.unet_offload_device() unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None if dtype is None: @@ -1432,12 +1460,15 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): else: unet_dtype = dtype - if model_config.layer_quant_config is not None: + if model_config.quant_config is not None: manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) else: manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) - model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations) + + if custom_operations is not None: + model_config.custom_operations = custom_operations + if model_options.get("fp8_optimizations", False): model_config.optimizations["fp8"] = True @@ -1476,6 +1507,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m if vae is not None: vae_sd = vae.get_sd() + if metadata is None: + metadata = {} + model_management.load_models_gpu(load_models, force_patch_weights=True) clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 503a51843..962948dae 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -107,29 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): config[k] = v operations = model_options.get("custom_operations", None) - scaled_fp8 = None - quantization_metadata = model_options.get("quantization_metadata", None) + quant_config = model_options.get("quantization_metadata", None) if operations is None: - layer_quant_config = None - if quantization_metadata is not None: - layer_quant_config = json.loads(quantization_metadata).get("layers", None) - - if layer_quant_config is not None: - operations = comfy.ops.mixed_precision_ops(layer_quant_config, dtype, full_precision_mm=True) - logging.info(f"Using MixedPrecisionOps for text encoder: {len(layer_quant_config)} quantized layers") + if quant_config is not None: + operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True) + logging.info("Using MixedPrecisionOps for text encoder") else: - # Fallback to scaled_fp8_ops for backward compatibility - scaled_fp8 = model_options.get("scaled_fp8", None) - if scaled_fp8 is not None: - operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) - else: - operations = comfy.ops.manual_cast + operations = comfy.ops.manual_cast self.operations = operations self.transformer = model_class(config, dtype, device, self.operations) - if scaled_fp8 is not None: - self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8)) self.num_layers = self.transformer.num_layers diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index e4bd74514..9fd84d329 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -49,8 +49,7 @@ class BASE: manual_cast_dtype = None custom_operations = None - scaled_fp8 = None - layer_quant_config = None # Per-layer quantization configuration for mixed precision + quant_config = None # quantization configuration for mixed precision optimizations = {"fp8": False} @classmethod diff --git a/comfy/text_encoders/cosmos.py b/comfy/text_encoders/cosmos.py index a1adb5242..448381fa9 100644 --- a/comfy/text_encoders/cosmos.py +++ b/comfy/text_encoders/cosmos.py @@ -7,10 +7,10 @@ from transformers import T5TokenizerFast class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options) @@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class CosmosTEModel_(CosmosT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 99f4812bb..21d93d757 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -63,12 +63,12 @@ class FluxClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None): +def flux_clip(dtype_t5=None, t5_quantization_metadata=None): class FluxClipModel_(FluxClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_ @@ -159,15 +159,13 @@ class Flux2TEModel(sd1_clip.SD1ClipModel): out = out.reshape(out.shape[0], out.shape[1], -1) return out, pooled, extra -def flux2_te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None, pruned=False): +def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False): class Flux2TEModel_(Flux2TEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: + model_options = model_options.copy() model_options["quantization_metadata"] = llama_quantization_metadata if pruned: model_options = model_options.copy() diff --git a/comfy/text_encoders/genmo.py b/comfy/text_encoders/genmo.py index 9dcf190a2..5daea8135 100644 --- a/comfy/text_encoders/genmo.py +++ b/comfy/text_encoders/genmo.py @@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def mochi_te(dtype_t5=None, t5_quantization_metadata=None): class MochiTEModel_(MochiT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hidream.py b/comfy/text_encoders/hidream.py index dbcf52784..600b34480 100644 --- a/comfy/text_encoders/hidream.py +++ b/comfy/text_encoders/hidream.py @@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module): return self.llama.load_sd(sd) -def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None): +def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None): class HiDreamTEModel_(HiDreamTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HiDreamTEModel_ diff --git a/comfy/text_encoders/hunyuan_image.py b/comfy/text_encoders/hunyuan_image.py index ff04726e1..cd198036c 100644 --- a/comfy/text_encoders/hunyuan_image.py +++ b/comfy/text_encoders/hunyuan_image.py @@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer): class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel): else: return super().load_sd(sd) -def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None): +def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(HunyuanImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index 0110517bb..a9a6c525e 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -6,7 +6,7 @@ from transformers import LlamaTokenizerFast import torch import os import numbers - +import comfy.utils def llama_detect(state_dict, prefix=""): out = {} @@ -14,12 +14,9 @@ def llama_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_llama"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype - - if "_quantization_metadata" in state_dict: - out["llama_quantization_metadata"] = state_dict["_quantization_metadata"] + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["llama_quantization_metadata"] = quant return out @@ -31,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMAModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}): - llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata textmodel_json_config = {} vocab_size = model_options.get("vocab_size", None) @@ -161,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module): return self.llama.load_sd(sd) -def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None): +def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None): class HunyuanVideoClipModel_(HunyuanVideoClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HunyuanVideoClipModel_ diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index fd986e2c1..7a6cfdab2 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -40,7 +40,7 @@ class LuminaModel(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"): +def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"): if model_type == "gemma2_2b": model = Gemma2_2BModel elif model_type == "gemma3_4b": @@ -48,9 +48,9 @@ def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"): class LuminaTEModel_(LuminaModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model) diff --git a/comfy/text_encoders/omnigen2.py b/comfy/text_encoders/omnigen2.py index 1a01b2dd4..50aa4121f 100644 --- a/comfy/text_encoders/omnigen2.py +++ b/comfy/text_encoders/omnigen2.py @@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class Omnigen2TEModel_(Omnigen2Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/ovis.py b/comfy/text_encoders/ovis.py index 81c9bd51c..5754424d2 100644 --- a/comfy/text_encoders/ovis.py +++ b/comfy/text_encoders/ovis.py @@ -55,12 +55,9 @@ class OvisTEModel(sd1_clip.SD1ClipModel): return out, pooled, {} -def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class OvisTEModel_(OvisTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: diff --git a/comfy/text_encoders/pixart_t5.py b/comfy/text_encoders/pixart_t5.py index 5f383de07..e5e5f18be 100644 --- a/comfy/text_encoders/pixart_t5.py +++ b/comfy/text_encoders/pixart_t5.py @@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def pixart_te(dtype_t5=None, t5_quantization_metadata=None): class PixArtTEModel_(PixArtT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/qwen_image.py b/comfy/text_encoders/qwen_image.py index c0d32a6ef..5c14dec23 100644 --- a/comfy/text_encoders/qwen_image.py +++ b/comfy/text_encoders/qwen_image.py @@ -85,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel): return out, pooled, extra -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(QwenImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index ff5d412db..8b153c72b 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -6,14 +6,15 @@ import torch import os import comfy.model_management import logging +import comfy.utils class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata model_options = {**model_options, "model_name": "t5xxl"} super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_t5"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["t5_quantization_metadata"] = quant return out @@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False): +def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False): class SD3ClipModel_(SD3ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options) return SD3ClipModel_ diff --git a/comfy/text_encoders/wan.py b/comfy/text_encoders/wan.py index d50fa4b28..164a57edd 100644 --- a/comfy/text_encoders/wan.py +++ b/comfy/text_encoders/wan.py @@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs): super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class WanTEModel(WanT5Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5_quantization_metadata if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/z_image.py b/comfy/text_encoders/z_image.py index bb9273b20..19adde0b7 100644 --- a/comfy/text_encoders/z_image.py +++ b/comfy/text_encoders/z_image.py @@ -34,12 +34,9 @@ class ZImageTEModel(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class ZImageTEModel_(ZImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: diff --git a/comfy/utils.py b/comfy/utils.py index 37485e497..89846bc95 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -29,6 +29,7 @@ import itertools from torch.nn.functional import interpolate from einops import rearrange from comfy.cli_args import args +import json MMAP_TORCH_FILES = args.mmap_torch_files DISABLE_MMAP = args.disable_mmap @@ -1194,3 +1195,68 @@ def unpack_latents(combined_latent, latent_shapes): else: output_tensors = combined_latent return output_tensors + +def detect_layer_quantization(state_dict, prefix): + for k in state_dict: + if k.startswith(prefix) and k.endswith(".comfy_quant"): + logging.info("Found quantization metadata version 1") + return {"mixed_ops": True} + return None + +def convert_old_quants(state_dict, model_prefix="", metadata={}): + if metadata is None: + metadata = {} + + quant_metadata = None + if "_quantization_metadata" not in metadata: + scaled_fp8_key = "{}scaled_fp8".format(model_prefix) + + if scaled_fp8_key in state_dict: + scaled_fp8_weight = state_dict[scaled_fp8_key] + scaled_fp8_dtype = scaled_fp8_weight.dtype + if scaled_fp8_dtype == torch.float32: + scaled_fp8_dtype = torch.float8_e4m3fn + + if scaled_fp8_weight.nelement() == 2: + full_precision_matrix_mult = True + else: + full_precision_matrix_mult = False + + out_sd = {} + layers = {} + for k in list(state_dict.keys()): + if not k.startswith(model_prefix): + out_sd[k] = state_dict[k] + continue + k_out = k + w = state_dict.pop(k) + layer = None + if k_out.endswith(".scale_weight"): + layer = k_out[:-len(".scale_weight")] + k_out = "{}.weight_scale".format(layer) + + if layer is not None: + layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints + if full_precision_matrix_mult: + layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult + layers[layer] = layer_conf + + if k_out.endswith(".scale_input"): + layer = k_out[:-len(".scale_input")] + k_out = "{}.input_scale".format(layer) + if w.item() == 1.0: + continue + + out_sd[k_out] = w + + state_dict = out_sd + quant_metadata = {"layers": layers} + else: + quant_metadata = json.loads(metadata["_quantization_metadata"]) + + if quant_metadata is not None: + layers = quant_metadata["layers"] + for k, v in layers.items(): + state_dict["{}.comfy_quant".format(k)] = torch.frombuffer(json.dumps(v).encode('utf-8'), dtype=torch.uint8) + + return state_dict, metadata diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 63361309f..3a54941e6 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -2,6 +2,7 @@ import unittest import torch import sys import os +import json # Add comfy to path sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) @@ -15,6 +16,7 @@ if not has_gpu(): from comfy import ops from comfy.quant_ops import QuantizedTensor +import comfy.utils class SimpleModel(torch.nn.Module): @@ -94,8 +96,9 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.weight_scale": torch.tensor(1.5, dtype=torch.float32), } + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) # Create model and load state dict (strict=False because custom loading pops keys) - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict, strict=False) # Verify weights are wrapped in QuantizedTensor @@ -115,7 +118,8 @@ class TestMixedPrecisionOps(unittest.TestCase): # Forward pass input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) - output = model(input_tensor) + with torch.inference_mode(): + output = model(input_tensor) self.assertEqual(output.shape, (5, 40)) @@ -141,7 +145,8 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + state_dict1, _ = comfy.utils.convert_old_quants(state_dict1, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict1, strict=False) # Save state dict @@ -178,7 +183,8 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict, strict=False) # Add a weight function (simulating LoRA) @@ -215,8 +221,10 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + # Load should raise KeyError for unknown format in QUANT_FORMAT_MIXINS - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + model = SimpleModel(operations=ops.mixed_precision_ops({})) with self.assertRaises(KeyError): model.load_state_dict(state_dict, strict=False) From 6fd463aec958f02be79a264eafd6c8fe7e52762a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 12:33:16 -0800 Subject: [PATCH 50/64] Fix regression when text encoder loaded directly on GPU. (#11129) --- comfy/ops.py | 2 ++ comfy/sd.py | 44 ++++++++++++++++++++++++-------------------- 2 files changed, 26 insertions(+), 20 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index dc06709a1..35237c9f7 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -552,6 +552,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec weight_scale_key = f"{prefix}weight_scale" scale = state_dict.pop(weight_scale_key, None) + if scale is not None: + scale = scale.to(device) layout_params = { 'scale': scale, 'orig_dtype': MixedPrecisionOps._compute_dtype, diff --git a/comfy/sd.py b/comfy/sd.py index 092715d79..c350322f8 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -98,7 +98,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip): class CLIP: - def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}): + def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}): if no_init: return params = target.params.copy() @@ -129,6 +129,27 @@ class CLIP: self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram self.patcher.is_clip = True self.apply_hooks_to_conds = None + if len(state_dict) > 0: + if isinstance(state_dict, list): + for c in state_dict: + m, u = self.load_sd(c) + if len(m) > 0: + logging.warning("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected: {}".format(u)) + else: + m, u = self.load_sd(state_dict, full_model=True) + if len(m) > 0: + m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) + if len(m_filter) > 0: + logging.warning("clip missing: {}".format(m)) + else: + logging.debug("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected {}:".format(u)) + if params['device'] == load_device: model_management.load_models_gpu([self.patcher], force_full_load=True) self.layer_idx = None @@ -1225,14 +1246,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) - clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options) - for c in clip_data: - m, u = clip.load_sd(c) - if len(m) > 0: - logging.warning("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected: {}".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options) return clip def load_gligen(ckpt_path): @@ -1362,17 +1376,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c clip_sd = model_config.process_clip_state_dict(sd) if len(clip_sd) > 0: parameters = comfy.utils.calculate_parameters(clip_sd) - clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options) - m, u = clip.load_sd(clip_sd, full_model=True) - if len(m) > 0: - m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) - if len(m_filter) > 0: - logging.warning("clip missing: {}".format(m)) - else: - logging.debug("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected {}:".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options) else: logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") From 79d17ba2339aaf4f3422673b3dad24ba4dbd7552 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 5 Dec 2025 22:42:46 +0200 Subject: [PATCH 51/64] Context windows fixes and features (#10975) * Apply cond slice fix * Add FreeNoise * Update context_windows.py * Add option to retain condition by indexes for each window This allows for example Wan/HunyuanVideo image to video to "work" by using the initial start frame for each window, otherwise windows beyond first will be pure T2V generations. * Update context_windows.py * Allow splitting multiple conds into different windows * Add handling for audio_embed * whitespace * Allow freenoise to work on other dims, handle 4D batch timestep Refactor Freenoise function. And fix batch handling as timesteps seem to be expanded to batch size now. * Disable experimental options for now So that the Freenoise and bugfixes can be merged first --------- Co-authored-by: Jedrzej Kosinski Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 104 ++++++++++++++++++++++---- comfy_extras/nodes_context_windows.py | 22 +++++- 2 files changed, 108 insertions(+), 18 deletions(-) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 041f380f9..5c412d1c2 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -51,26 +51,36 @@ class ContextHandlerABC(ABC): class IndexListContextWindow(ContextWindowABC): - def __init__(self, index_list: list[int], dim: int=0): + def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0): self.index_list = index_list self.context_length = len(index_list) self.dim = dim + self.total_frames = total_frames + self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames) - def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor: + def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor: if dim is None: dim = self.dim if dim == 0 and full.shape[dim] == 1: return full - idx = [slice(None)] * dim + [self.index_list] - return full[idx].to(device) + idx = tuple([slice(None)] * dim + [self.index_list]) + window = full[idx] + if retain_index_list: + idx = tuple([slice(None)] * dim + [retain_index_list]) + window[idx] = full[idx] + return window.to(device) def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor: if dim is None: dim = self.dim - idx = [slice(None)] * dim + [self.index_list] + idx = tuple([slice(None)] * dim + [self.index_list]) full[idx] += to_add return full + def get_region_index(self, num_regions: int) -> int: + region_idx = int(self.center_ratio * num_regions) + return min(max(region_idx, 0), num_regions - 1) + class IndexListCallbacks: EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows" @@ -94,7 +104,8 @@ class ContextFuseMethod: ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window']) class IndexListContextHandler(ContextHandlerABC): - def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0): + def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, + closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False): self.context_schedule = context_schedule self.fuse_method = fuse_method self.context_length = context_length @@ -103,13 +114,18 @@ class IndexListContextHandler(ContextHandlerABC): self.closed_loop = closed_loop self.dim = dim self._step = 0 + self.freenoise = freenoise + self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else [] + self.split_conds_to_windows = split_conds_to_windows self.callbacks = {} def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool: # for now, assume first dim is batch - should have stored on BaseModel in actual implementation if x_in.size(self.dim) > self.context_length: - logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.") + logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.") + if self.cond_retain_index_list: + logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}") return True return False @@ -123,6 +139,11 @@ class IndexListContextHandler(ContextHandlerABC): return None # reuse or resize cond items to match context requirements resized_cond = [] + # if multiple conds, split based on primary region + if self.split_conds_to_windows and len(cond_in) > 1: + region = window.get_region_index(len(cond_in)) + logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}") + cond_in = [cond_in[region]] # cond object is a list containing a dict - outer list is irrelevant, so just loop through it for actual_cond in cond_in: resized_actual_cond = actual_cond.copy() @@ -146,12 +167,19 @@ class IndexListContextHandler(ContextHandlerABC): # when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor) for cond_key, cond_value in new_cond_item.items(): if isinstance(cond_value, torch.Tensor): - if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim): + if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \ + (cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)): new_cond_item[cond_key] = window.get_tensor(cond_value, device) + # Handle audio_embed (temporal dim is 1) + elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + audio_cond = cond_value.cond + if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): - if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim): - new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device)) + if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ + (cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list)) elif cond_key == "num_video_frames": # for SVD new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond) new_cond_item[cond_key].cond = window.context_length @@ -164,7 +192,7 @@ class IndexListContextHandler(ContextHandlerABC): return resized_cond def set_step(self, timestep: torch.Tensor, model_options: dict[str]): - mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001) + mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001) matches = torch.nonzero(mask) if torch.numel(matches) == 0: raise Exception("No sample_sigmas matched current timestep; something went wrong.") @@ -173,7 +201,7 @@ class IndexListContextHandler(ContextHandlerABC): def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]: full_length = x_in.size(self.dim) # TODO: choose dim based on model context_windows = self.context_schedule.func(full_length, self, model_options) - context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows] + context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows] return context_windows def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]): @@ -250,8 +278,8 @@ class IndexListContextHandler(ContextHandlerABC): prev_weight = (bias_total / (bias_total + bias)) new_weight = (bias / (bias_total + bias)) # account for dims of tensors - idx_window = [slice(None)] * self.dim + [idx] - pos_window = [slice(None)] * self.dim + [pos] + idx_window = tuple([slice(None)] * self.dim + [idx]) + pos_window = tuple([slice(None)] * self.dim + [pos]) # apply new values conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight biases_final[i][idx] = bias_total + bias @@ -287,6 +315,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher): ) +def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs): + model_options = extra_args.get("model_options", None) + if model_options is None: + raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.") + handler: IndexListContextHandler = model_options.get("context_handler", None) + if handler is None: + raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.") + if not handler.freenoise: + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"]) + + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + + +def create_sampler_sample_wrapper(model: ModelPatcher): + model.add_wrapper_with_key( + comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE, + "ContextWindows_sampler_sample", + _sampler_sample_wrapper + ) + + def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor: total_dims = len(x_in.shape) weights_tensor = torch.Tensor(weights).to(device=device) @@ -538,3 +588,29 @@ def shift_window_to_end(window: list[int], num_frames: int): for i in range(len(window)): # 2) add end_delta to each val to slide windows to end window[i] = window[i] + end_delta + + +# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465 +def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int): + logging.info("Context windows: Applying FreeNoise") + generator = torch.Generator(device='cpu').manual_seed(seed) + latent_video_length = noise.shape[dim] + delta = context_length - context_overlap + + for start_idx in range(0, latent_video_length - context_length, delta): + place_idx = start_idx + context_length + + actual_delta = min(delta, latent_video_length - place_idx) + if actual_delta <= 0: + break + + list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx + + source_slice = [slice(None)] * noise.ndim + source_slice[dim] = list_idx + target_slice = [slice(None)] * noise.ndim + target_slice[dim] = slice(place_idx, place_idx + actual_delta) + + noise[tuple(target_slice)] = noise[tuple(source_slice)] + + return noise diff --git a/comfy_extras/nodes_context_windows.py b/comfy_extras/nodes_context_windows.py index 1c3d9e697..3799a9004 100644 --- a/comfy_extras/nodes_context_windows.py +++ b/comfy_extras/nodes_context_windows.py @@ -26,6 +26,9 @@ class ContextWindowsManualNode(io.ComfyNode): io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), io.Int.Input("dim", min=0, max=5, default=0, tooltip="The dimension to apply the context windows to."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ], outputs=[ io.Model.Output(tooltip="The model with context windows applied during sampling."), @@ -34,7 +37,8 @@ class ContextWindowsManualNode(io.ComfyNode): ) @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: model = model.clone() model.model_options["context_handler"] = comfy.context_windows.IndexListContextHandler( context_schedule=comfy.context_windows.get_matching_context_schedule(context_schedule), @@ -43,9 +47,15 @@ class ContextWindowsManualNode(io.ComfyNode): context_overlap=context_overlap, context_stride=context_stride, closed_loop=closed_loop, - dim=dim) + dim=dim, + freenoise=freenoise, + cond_retain_index_list=cond_retain_index_list, + split_conds_to_windows=split_conds_to_windows + ) # make memory usage calculation only take into account the context window latents comfy.context_windows.create_prepare_sampling_wrapper(model) + if freenoise: # no other use for this wrapper at this time + comfy.context_windows.create_sampler_sample_wrapper(model) return io.NodeOutput(model) class WanContextWindowsManualNode(ContextWindowsManualNode): @@ -68,14 +78,18 @@ class WanContextWindowsManualNode(ContextWindowsManualNode): io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."), io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ] return schema @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: context_length = max(((context_length - 1) // 4) + 1, 1) # at least length 1 context_overlap = max(((context_overlap - 1) // 4) + 1, 0) # at least overlap 0 - return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2) + return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2, freenoise=freenoise, cond_retain_index_list=cond_retain_index_list, split_conds_to_windows=split_conds_to_windows) class ContextWindowsExtension(ComfyExtension): From 092ee8a5008c8d558b0a72cc7961a31d9cc5400b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 15:25:31 -0800 Subject: [PATCH 52/64] Fix some custom nodes. (#11134) --- comfy/supported_models_base.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index 9fd84d329..0e7a829ba 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -17,6 +17,7 @@ """ import torch +import logging from . import model_base from . import utils from . import latent_formats @@ -117,3 +118,7 @@ class BASE: def set_inference_dtype(self, dtype, manual_cast_dtype): self.unet_config['dtype'] = dtype self.manual_cast_dtype = manual_cast_dtype + + def __getattr__(self, name): + logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name)) + return None From bed12674a1d2c4bfdfbdd098686390f807996c90 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 6 Dec 2025 08:45:38 +0900 Subject: [PATCH 53/64] docs: add ComfyUI-Manager documentation and update to v4.0.3b4 (#11133) - Add manager setup instructions and command line options to README - Document --enable-manager, --enable-manager-legacy-ui, and --disable-manager-ui flags - Bump comfyui_manager version from 4.0.3b3 to 4.0.3b4 --- README.md | 26 ++++++++++++++++++++++++++ manager_requirements.txt | 2 +- 2 files changed, 27 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index ed857df9f..bae955b1b 100644 --- a/README.md +++ b/README.md @@ -320,6 +320,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step 1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536) 2. Launch ComfyUI by running `python main.py` + +## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4) + +**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI. + +### Setup + +1. Install the manager dependencies: + ```bash + pip install -r manager_requirements.txt + ``` + +2. Enable the manager with the `--enable-manager` flag when running ComfyUI: + ```bash + python main.py --enable-manager + ``` + +### Command Line Options + +| Flag | Description | +|------|-------------| +| `--enable-manager` | Enable ComfyUI-Manager | +| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) | +| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) | + + # Running ```python main.py``` diff --git a/manager_requirements.txt b/manager_requirements.txt index 52cc5389c..b95cefb74 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b3 +comfyui_manager==4.0.3b4 From fd109325db7126f92c2dfb7e6b25310eded8c1f8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 6 Dec 2025 05:20:22 +0200 Subject: [PATCH 54/64] Kandinsky5 model support (#10988) * Add Kandinsky5 model support lite and pro T2V tested to work * Update kandinsky5.py * Fix fp8 * Fix fp8_scaled text encoder * Add transformer_options for attention * Code cleanup, optimizations, use fp32 for all layers originally at fp32 * ImageToVideo -node * Fix I2V, add necessary latent post process nodes * Support text to image model * Support block replace patches (SLG mostly) * Support official LoRAs * Don't scale RoPE for lite model as that just doesn't work... * Update supported_models.py * Rever RoPE scaling to simpler one * Fix typo * Handle latent dim difference for image model in the VAE instead * Add node to use different prompts for clip_l and qwen25_7b * Reduce peak VRAM usage a bit * Further reduce peak VRAM consumption by chunking ffn * Update chunking * Update memory_usage_factor * Code cleanup, don't force the fp32 layers as it has minimal effect * Allow for stronger changes with first frames normalization Default values are too weak for any meaningful changes, these should probably be exposed as advanced node options when that's available. * Add image model's own chat template, remove unused image2video template * Remove hard error in ReplaceVideoLatentFrames -node * Update kandinsky5.py * Update supported_models.py * Fix typos in prompt template They were now fixed in the original repository as well * Update ReplaceVideoLatentFrames Add tooltips Make source optional Better handle negative index * Rename NormalizeVideoLatentFrames -node For bit better clarity what it does * Fix NormalizeVideoLatentStart node out on non-op --- comfy/ldm/kandinsky5/model.py | 407 ++++++++++++++++++++++++++++++ comfy/lora.py | 7 + comfy/model_base.py | 47 ++++ comfy/model_detection.py | 18 ++ comfy/sd.py | 11 + comfy/supported_models.py | 56 +++- comfy/text_encoders/kandinsky5.py | 68 +++++ comfy_api/latest/_io.py | 2 + comfy_extras/nodes_kandinsky5.py | 136 ++++++++++ comfy_extras/nodes_latent.py | 39 ++- nodes.py | 3 +- 11 files changed, 791 insertions(+), 3 deletions(-) create mode 100644 comfy/ldm/kandinsky5/model.py create mode 100644 comfy/text_encoders/kandinsky5.py create mode 100644 comfy_extras/nodes_kandinsky5.py diff --git a/comfy/ldm/kandinsky5/model.py b/comfy/ldm/kandinsky5/model.py new file mode 100644 index 000000000..a653e02fc --- /dev/null +++ b/comfy/ldm/kandinsky5/model.py @@ -0,0 +1,407 @@ +import torch +from torch import nn +import math + +import comfy.ldm.common_dit +from comfy.ldm.modules.attention import optimized_attention +from comfy.ldm.flux.math import apply_rope1 +from comfy.ldm.flux.layers import EmbedND + +def attention(q, k, v, heads, transformer_options={}): + return optimized_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + heads=heads, + skip_reshape=True, + transformer_options=transformer_options + ) + +def apply_scale_shift_norm(norm, x, scale, shift): + return torch.addcmul(shift, norm(x), scale + 1.0) + +def apply_gate_sum(x, out, gate): + return torch.addcmul(x, gate, out) + +def get_shift_scale_gate(params): + shift, scale, gate = torch.chunk(params, 3, dim=-1) + return tuple(x.unsqueeze(1) for x in (shift, scale, gate)) + +def get_freqs(dim, max_period=10000.0): + return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim) + + +class TimeEmbeddings(nn.Module): + def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None): + super().__init__() + assert model_dim % 2 == 0 + self.model_dim = model_dim + self.max_period = max_period + self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False) + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.SiLU() + self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, timestep, dtype): + args = torch.outer(timestep, self.freqs.to(device=timestep.device)) + time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype) + time_embed = self.out_layer(self.activation(self.in_layer(time_embed))) + return time_embed + + +class TextEmbeddings(nn.Module): + def __init__(self, text_dim, model_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, text_embed): + text_embed = self.in_layer(text_embed) + return self.norm(text_embed).type_as(text_embed) + + +class VisualEmbeddings(nn.Module): + def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + x = x.movedim(1, -1) # B C T H W -> B T H W C + B, T, H, W, dim = x.shape + pt, ph, pw = self.patch_size + + x = x.view( + B, + T // pt, pt, + H // ph, ph, + W // pw, pw, + dim, + ).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7) + + return self.in_layer(x) + + +class Modulation(nn.Module): + def __init__(self, time_dim, model_dim, num_params, operation_settings=None): + super().__init__() + self.activation = nn.SiLU() + self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + return self.out_layer(self.activation(x)) + + +class SelfAttention(nn.Module): + def __init__(self, num_channels, head_dim, operation_settings=None): + super().__init__() + assert num_channels % head_dim == 0 + self.num_heads = num_channels // head_dim + self.head_dim = head_dim + + operations = operation_settings.get("operations") + self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 2 + + def _compute_qk(self, x, freqs, proj_fn, norm_fn): + result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1) + return apply_rope1(norm_fn(result), freqs) + + def _forward(self, x, freqs, transformer_options={}): + q = self._compute_qk(x, freqs, self.to_query, self.query_norm) + k = self._compute_qk(x, freqs, self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def _forward_chunked(self, x, freqs, transformer_options={}): + def process_chunks(proj_fn, norm_fn): + x_chunks = torch.chunk(x, self.num_chunks, dim=1) + freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1) + chunks = [] + for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks): + chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn)) + return torch.cat(chunks, dim=1) + + q = process_chunks(self.to_query, self.query_norm) + k = process_chunks(self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def forward(self, x, freqs, transformer_options={}): + if x.shape[1] > 8192: + return self._forward_chunked(x, freqs, transformer_options=transformer_options) + else: + return self._forward(x, freqs, transformer_options=transformer_options) + + +class CrossAttention(SelfAttention): + def get_qkv(self, x, context): + q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1) + k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1) + v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1) + return q, k, v + + def forward(self, x, context, transformer_options={}): + q, k, v = self.get_qkv(x, context) + out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + +class FeedForward(nn.Module): + def __init__(self, dim, ff_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.GELU() + self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 4 + + def _forward(self, x): + return self.out_layer(self.activation(self.in_layer(x))) + + def _forward_chunked(self, x): + chunks = torch.chunk(x, self.num_chunks, dim=1) + output_chunks = [] + for chunk in chunks: + output_chunks.append(self._forward(chunk)) + return torch.cat(output_chunks, dim=1) + + def forward(self, x): + if x.shape[1] > 8192: + return self._forward_chunked(x) + else: + return self._forward(x) + + +class OutLayer(nn.Module): + def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings) + operations = operation_settings.get("operations") + self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, visual_embed, time_embed): + B, T, H, W, _ = visual_embed.shape + shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1) + scale = scale[:, None, None, None, :] + shift = shift[:, None, None, None, :] + visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift) + x = self.out_layer(visual_embed) + + out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2]) + x = x.view( + B, T, H, W, + out_dim, + self.patch_size[0], self.patch_size[1], self.patch_size[2] + ) + return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5) + + +class TransformerEncoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings) + operations = operation_settings.get("operations") + + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, x, time_embed, freqs, transformer_options={}): + self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1) + shift, scale, gate = get_shift_scale_gate(self_attn_params) + out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift) + out = self.self_attention(out, freqs, transformer_options=transformer_options) + x = apply_gate_sum(x, out, gate) + + shift, scale, gate = get_shift_scale_gate(ff_params) + out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift) + out = self.feed_forward(out) + x = apply_gate_sum(x, out, gate) + return x + + +class TransformerDecoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings) + + operations = operation_settings.get("operations") + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}): + self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1) + # self attention + shift, scale, gate = get_shift_scale_gate(self_attn_params) + visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift) + visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # cross attention + shift, scale, gate = get_shift_scale_gate(cross_attn_params) + visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift) + visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # feed forward + shift, scale, gate = get_shift_scale_gate(ff_params) + visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift) + visual_out = self.feed_forward(visual_out) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + return visual_embed + + +class Kandinsky5(nn.Module): + def __init__( + self, + in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512, + model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32, + axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0), + dtype=None, device=None, operations=None, **kwargs + ): + super().__init__() + head_dim = sum(axes_dims) + self.rope_scale_factor = rope_scale_factor + self.in_visual_dim = in_visual_dim + self.model_dim = model_dim + self.patch_size = patch_size + self.visual_embed_dim = visual_embed_dim + self.dtype = dtype + self.device = device + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings) + self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings) + self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings) + self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings) + + self.text_transformer_blocks = nn.ModuleList( + [TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)] + ) + + self.visual_transformer_blocks = nn.ModuleList( + [TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)] + ) + + self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings) + + self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims) + self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim]) + + def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}): + steps = seq_len if steps is None else steps + seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype) + seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1) + freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2) + return freqs + + def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}): + + patch_size = self.patch_size + t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) + h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) + w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) + + if steps_t is None: + steps_t = t_len + if steps_h is None: + steps_h = h_len + if steps_w is None: + steps_w = w_len + + h_start = 0 + w_start = 0 + rope_options = transformer_options.get("rope_options", None) + if rope_options is not None: + t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0 + h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0 + w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0 + + t_start += rope_options.get("shift_t", 0.0) + h_start += rope_options.get("shift_y", 0.0) + w_start += rope_options.get("shift_x", 0.0) + else: + rope_scale_factor = self.rope_scale_factor + if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions + if h * w >= 14080: + rope_scale_factor = (1.0, 3.16, 3.16) + + t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0 + h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0 + w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0 + + img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype) + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1) + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) + img_ids = img_ids.reshape(1, -1, img_ids.shape[-1]) + + freqs = self.rope_embedder_3d(img_ids).movedim(1, 2) + return freqs + + def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs): + patches_replace = transformer_options.get("patches_replace", {}) + context = self.text_embeddings(context) + time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y) + + for block in self.text_transformer_blocks: + context = block(context, time_embed, freqs_text, transformer_options=transformer_options) + + visual_embed = self.visual_embeddings(x) + visual_shape = visual_embed.shape[:-1] + visual_embed = visual_embed.flatten(1, -2) + + blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.visual_transformer_blocks) + transformer_options["block_type"] = "double" + for i, block in enumerate(self.visual_transformer_blocks): + transformer_options["block_index"] = i + if ("double_block", i) in blocks_replace: + def block_wrap(args): + return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options")) + visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"] + else: + visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options) + + visual_embed = visual_embed.reshape(*visual_shape, -1) + return self.out_layer(visual_embed, time_embed) + + def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + bs, c, t_len, h, w = x.shape + x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) + + if time_dim_replace is not None: + time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size) + x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace + + freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) + freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options) + + return self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + + def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + return comfy.patcher_extension.WrapperExecutor.new_class_executor( + self._forward, + self, + comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) + ).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs) diff --git a/comfy/lora.py b/comfy/lora.py index 3a9077869..e7202ce97 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -322,6 +322,13 @@ def model_lora_keys_unet(model, key_map={}): key_map["diffusion_model.{}".format(key_lora)] = to key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + if isinstance(model, comfy.model_base.Kandinsky5): + for k in sdk: + if k.startswith("diffusion_model.") and k.endswith(".weight"): + key_lora = k[len("diffusion_model."):-len(".weight")] + key_map["{}".format(key_lora)] = k + key_map["transformer.{}".format(key_lora)] = k + return key_map diff --git a/comfy/model_base.py b/comfy/model_base.py index 3cedd4f31..0be006cc2 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model import comfy.ldm.ace.model import comfy.ldm.omnigen.omnigen2 import comfy.ldm.qwen_image.model +import comfy.ldm.kandinsky5.model import comfy.model_management import comfy.patcher_extension @@ -1630,3 +1631,49 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo15): out = super().extra_conds(**kwargs) out['disable_time_r'] = comfy.conds.CONDConstant(False) return out + +class Kandinsky5(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + device = kwargs["device"] + image = torch.zeros_like(noise) + + mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + if mask is None: + mask = torch.zeros_like(noise)[:, :1] + else: + mask = 1.0 - mask + mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + if mask.shape[-3] < noise.shape[-3]: + mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) + mask = utils.resize_to_batch_size(mask, noise.shape[0]) + + return torch.cat((image, mask), dim=1) + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + time_dim_replace = kwargs.get("time_dim_replace", None) + if time_dim_replace is not None: + out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace)) + + return out + +class Kandinsky5Image(Kandinsky5): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + return None diff --git a/comfy/model_detection.py b/comfy/model_detection.py index fd1907627..30b33a486 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -611,6 +611,24 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') return dit_config + if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5 + dit_config = {} + model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["model_dim"] = model_dim + if model_dim in [4096, 2560]: # pro video and lite image + dit_config["axes_dims"] = (32, 48, 48) + if model_dim == 2560: # lite image + dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0) + elif model_dim == 1792: # lite video + dit_config["axes_dims"] = (16, 24, 24) + dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["image_model"] = "kandinsky5" + dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0] + dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1] + dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.') + dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.') + return dit_config + if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: return None diff --git a/comfy/sd.py b/comfy/sd.py index c350322f8..754b1703d 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -54,6 +54,7 @@ import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image import comfy.text_encoders.ovis +import comfy.text_encoders.kandinsky5 import comfy.model_patcher import comfy.lora @@ -766,6 +767,8 @@ class VAE: self.throw_exception_if_invalid() pixel_samples = None do_tile = False + if self.latent_dim == 2 and samples_in.ndim == 5: + samples_in = samples_in[:, :, 0] try: memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) @@ -983,6 +986,8 @@ class CLIPType(Enum): HUNYUAN_IMAGE = 19 HUNYUAN_VIDEO_15 = 20 OVIS = 21 + KANDINSKY5 = 22 + KANDINSKY5_IMAGE = 23 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1231,6 +1236,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.HUNYUAN_VIDEO_15: clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer + elif clip_type == CLIPType.KANDINSKY5: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer + elif clip_type == CLIPType.KANDINSKY5_IMAGE: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index afd97160b..91cc4ef08 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -21,6 +21,7 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.kandinsky5 import comfy.text_encoders.z_image from . import supported_models_base @@ -1474,7 +1475,60 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2] +class Kandinsky5(supported_models_base.BASE): + unet_config = { + "image_model": "kandinsky5", + } + + sampling_settings = { + "shift": 10.0, + } + + unet_extra_config = {} + latent_format = latent_formats.HunyuanVideo + + memory_usage_factor = 1.1 #TODO + + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +class Kandinsky5Image(Kandinsky5): + unet_config = { + "image_model": "kandinsky5", + "model_dim": 2560, + "visual_embed_dim": 64, + } + + sampling_settings = { + "shift": 3.0, + } + + latent_format = latent_formats.Flux + memory_usage_factor = 1.1 #TODO + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5Image(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] diff --git a/comfy/text_encoders/kandinsky5.py b/comfy/text_encoders/kandinsky5.py new file mode 100644 index 000000000..22f991c36 --- /dev/null +++ b/comfy/text_encoders/kandinsky5.py @@ -0,0 +1,68 @@ +from comfy import sd1_clip +from .qwen_image import QwenImageTokenizer, QwenImageTEModel +from .llama import Qwen25_7BVLI + + +class Kandinsky5Tokenizer(QwenImageTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = super().tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + + return out + + +class Kandinsky5TokenizerImage(Kandinsky5Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + + +class Qwen25_7BVLIModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}): + llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) + if llama_scaled_fp8 is not None: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + +class Kandinsky5TEModel(QwenImageTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options) + self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs): + cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"]) + + return cond, l_pooled, extra + + def set_clip_options(self, options): + super().set_clip_options(options) + self.clip_l.set_clip_options(options) + + def reset_clip_options(self): + super().reset_clip_options() + self.clip_l.reset_clip_options() + + def load_sd(self, sd): + if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return super().load_sd(sd) + +def te(dtype_llama=None, llama_scaled_fp8=None): + class Kandinsky5TEModel_(Kandinsky5TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(device=device, dtype=dtype, model_options=model_options) + return Kandinsky5TEModel_ diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 866c3e0eb..d7cbe68cf 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -568,6 +568,8 @@ class Conditioning(ComfyTypeIO): '''Used by WAN Camera.''' time_dim_concat: NotRequired[torch.Tensor] '''Used by WAN Phantom Subject.''' + time_dim_replace: NotRequired[torch.Tensor] + '''Used by Kandinsky5 I2V.''' CondList = list[tuple[torch.Tensor, PooledDict]] Type = CondList diff --git a/comfy_extras/nodes_kandinsky5.py b/comfy_extras/nodes_kandinsky5.py new file mode 100644 index 000000000..9cb234be1 --- /dev/null +++ b/comfy_extras/nodes_kandinsky5.py @@ -0,0 +1,136 @@ +import nodes +import node_helpers +import torch +import comfy.model_management +import comfy.utils + +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io + + +class Kandinsky5ImageToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Kandinsky5ImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Int.Input("width", default=768, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=512, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent", tooltip="Empty video latent"), + io.Latent.Output(display_name="cond_latent", tooltip="Clean encoded start images, used to replace the noisy start of the model output latents"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + cond_latent_out = {} + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + encoded = vae.encode(start_image[:, :, :, :3]) + cond_latent_out["samples"] = encoded + + mask = torch.ones((1, 1, latent.shape[2], latent.shape[-2], latent.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + positive = node_helpers.conditioning_set_values(positive, {"time_dim_replace": encoded, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"time_dim_replace": encoded, "concat_mask": mask}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent, cond_latent_out) + + +def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump_mean_high=0.35, clump_std_low=0.35, clump_std_high=0.5): + source_mean = source.mean(dim=(1, 3, 4), keepdim=True) # mean over C, H, W + source_std = source.std(dim=(1, 3, 4), keepdim=True) # std over C, H, W + + reference_mean = torch.clamp(reference.mean(), source_mean - clump_mean_low, source_mean + clump_mean_high) + reference_std = torch.clamp(reference.std(), source_std - clump_std_low, source_std + clump_std_high) + + # normalization + normalized = (source - source_mean) / (source_std + 1e-8) + normalized = normalized * reference_std + reference_mean + + return normalized + + +class NormalizeVideoLatentStart(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="NormalizeVideoLatentStart", + category="conditioning/video_models", + description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.", + inputs=[ + io.Latent.Input("latent"), + io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"), + io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"), + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput: + if latent["samples"].shape[2] <= 1: + return io.NodeOutput(latent) + s = latent.copy() + samples = latent["samples"].clone() + + first_frames = samples[:, :, :start_frame_count] + reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)] + normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data) + + samples[:, :, :start_frame_count] = normalized_first_frames + s["samples"] = samples + return io.NodeOutput(s) + + +class CLIPTextEncodeKandinsky5(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeKandinsky5", + category="advanced/conditioning/kandinsky5", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("qwen25_7b", multiline=True, dynamic_prompts=True), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) + + @classmethod + def execute(cls, clip, clip_l, qwen25_7b) -> io.NodeOutput: + tokens = clip.tokenize(clip_l) + tokens["qwen25_7b"] = clip.tokenize(qwen25_7b)["qwen25_7b"] + + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) + + +class Kandinsky5Extension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + Kandinsky5ImageToVideo, + NormalizeVideoLatentStart, + CLIPTextEncodeKandinsky5, + ] + +async def comfy_entrypoint() -> Kandinsky5Extension: + return Kandinsky5Extension() diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index d2df07ff9..e439b18ef 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -4,7 +4,7 @@ import torch import nodes from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import logging def reshape_latent_to(target_shape, latent, repeat_batch=True): if latent.shape[1:] != target_shape[1:]: @@ -388,6 +388,42 @@ class LatentOperationSharpen(io.ComfyNode): return luminance * sharpened return io.NodeOutput(sharpen) +class ReplaceVideoLatentFrames(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ReplaceVideoLatentFrames", + category="latent/batch", + inputs=[ + io.Latent.Input("destination", tooltip="The destination latent where frames will be replaced."), + io.Latent.Input("source", optional=True, tooltip="The source latent providing frames to insert into the destination latent. If not provided, the destination latent is returned unchanged."), + io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1, tooltip="The starting latent frame index in the destination latent where the source latent frames will be placed. Negative values count from the end."), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, destination, index, source=None) -> io.NodeOutput: + if source is None: + return io.NodeOutput(destination) + dest_frames = destination["samples"].shape[2] + source_frames = source["samples"].shape[2] + if index < 0: + index = dest_frames + index + if index > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Index {index} is out of bounds for destination latent frames {dest_frames}.") + return io.NodeOutput(destination) + if index + source_frames > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Source latent frames {source_frames} do not fit within destination latent frames {dest_frames} at the specified index {index}.") + return io.NodeOutput(destination) + s = source.copy() + s_source = source["samples"] + s_destination = destination["samples"].clone() + s_destination[:, :, index:index + s_source.shape[2]] = s_source + s["samples"] = s_destination + return io.NodeOutput(s) class LatentExtension(ComfyExtension): @override @@ -405,6 +441,7 @@ class LatentExtension(ComfyExtension): LatentApplyOperationCFG, LatentOperationTonemapReinhard, LatentOperationSharpen, + ReplaceVideoLatentFrames ] diff --git a/nodes.py b/nodes.py index 356aa63df..8d28a725d 100644 --- a/nodes.py +++ b/nodes.py @@ -970,7 +970,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -2357,6 +2357,7 @@ async def init_builtin_extra_nodes(): "nodes_rope.py", "nodes_logic.py", "nodes_nop.py", + "nodes_kandinsky5.py", ] import_failed = [] From ae676ed105663bb225153c8bca406f00edf738b4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 20:01:19 -0800 Subject: [PATCH 55/64] Fix regression. (#11137) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 91cc4ef08..383c82c3e 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1529,6 +1529,6 @@ class Kandinsky5Image(Kandinsky5): return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Kandinsky5Image, Kandinsky5] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] From 117bf3f2bd9235cb5942a1de10a534c9869c7444 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 06:22:02 +0200 Subject: [PATCH 56/64] convert nodes_freelunch.py to the V3 schema (#10904) --- comfy_extras/nodes_freelunch.py | 89 +++++++++++++++++---------- comfy_extras/nodes_model_downscale.py | 5 -- 2 files changed, 57 insertions(+), 37 deletions(-) diff --git a/comfy_extras/nodes_freelunch.py b/comfy_extras/nodes_freelunch.py index e3ac58447..3429b731e 100644 --- a/comfy_extras/nodes_freelunch.py +++ b/comfy_extras/nodes_freelunch.py @@ -2,6 +2,8 @@ import torch import logging +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO def Fourier_filter(x, threshold, scale): # FFT @@ -22,21 +24,26 @@ def Fourier_filter(x, threshold, scale): return x_filtered.to(x.dtype) -class FreeU: +class FreeU(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -59,23 +66,31 @@ class FreeU: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -class FreeU_V2: + patch = execute # TODO: remove + + +class FreeU_V2(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU_V2", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -105,9 +120,19 @@ class FreeU_V2: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "FreeU": FreeU, - "FreeU_V2": FreeU_V2, -} + patch = execute # TODO: remove + + +class FreelunchExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + FreeU, + FreeU_V2, + ] + + +async def comfy_entrypoint() -> FreelunchExtension: + return FreelunchExtension() diff --git a/comfy_extras/nodes_model_downscale.py b/comfy_extras/nodes_model_downscale.py index f7ca9699d..dec2ae841 100644 --- a/comfy_extras/nodes_model_downscale.py +++ b/comfy_extras/nodes_model_downscale.py @@ -53,11 +53,6 @@ class PatchModelAddDownscale(io.ComfyNode): return io.NodeOutput(m) -NODE_DISPLAY_NAME_MAPPINGS = { - # Sampling - "PatchModelAddDownscale": "", -} - class ModelDownscaleExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: From 913f86b72740f84f759786a698108840a09b6498 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 06:24:10 +0200 Subject: [PATCH 57/64] [V3] convert nodes_mask.py to V3 schema (#10669) * convert nodes_mask.py to V3 schema * set "Preview Mask" as display name for MaskPreview --- comfy_extras/nodes_mask.py | 508 +++++++++++++++++++------------------ 1 file changed, 263 insertions(+), 245 deletions(-) diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py index a5e405008..290e6f55e 100644 --- a/comfy_extras/nodes_mask.py +++ b/comfy_extras/nodes_mask.py @@ -3,11 +3,10 @@ import scipy.ndimage import torch import comfy.utils import node_helpers -import folder_paths -import random +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI import nodes -from nodes import MAX_RESOLUTION def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): source = source.to(destination.device) @@ -46,202 +45,213 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou destination[..., top:bottom, left:right] = source_portion + destination_portion return destination -class LatentCompositeMasked: +class LatentCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("LATENT",), - "source": ("LATENT",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("LATENT",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="LatentCompositeMasked", + category="latent", + inputs=[ + IO.Latent.Input("destination"), + IO.Latent.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: output = destination.copy() destination = destination["samples"].clone() source = source["samples"] output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) - return (output,) + return IO.NodeOutput(output) -class ImageCompositeMasked: + composite = execute # TODO: remove + + +class ImageCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("IMAGE",), - "source": ("IMAGE",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("IMAGE",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="ImageCompositeMasked", + category="image", + inputs=[ + IO.Image.Input("destination"), + IO.Image.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: destination, source = node_helpers.image_alpha_fix(destination, source) destination = destination.clone().movedim(-1, 1) output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) - return (output,) + return IO.NodeOutput(output) -class MaskToImage: + composite = execute # TODO: remove + + +class MaskToImage(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskToImage", + display_name="Convert Mask to Image", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("IMAGE",) - FUNCTION = "mask_to_image" - - def mask_to_image(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return (result,) + return IO.NodeOutput(result) -class ImageToMask: + mask_to_image = execute # TODO: remove + + +class ImageToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "channel": (["red", "green", "blue", "alpha"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageToMask", + display_name="Convert Image to Mask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, channel): + @classmethod + def execute(cls, image, channel) -> IO.NodeOutput: channels = ["red", "green", "blue", "alpha"] mask = image[:, :, :, channels.index(channel)] - return (mask,) + return IO.NodeOutput(mask) -class ImageColorToMask: + image_to_mask = execute # TODO: remove + + +class ImageColorToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageColorToMask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, color): + @classmethod + def execute(cls, image, color) -> IO.NodeOutput: temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] mask = torch.where(temp == color, 1.0, 0).float() - return (mask,) + return IO.NodeOutput(mask) -class SolidMask: + image_to_mask = execute # TODO: remove + + +class SolidMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="SolidMask", + category="mask", + inputs=[ + IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "solid" - - def solid(self, value, width, height): + @classmethod + def execute(cls, value, width, height) -> IO.NodeOutput: out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") - return (out,) + return IO.NodeOutput(out) -class InvertMask: + solid = execute # TODO: remove + + +class InvertMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="InvertMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "invert" - - def invert(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: out = 1.0 - mask - return (out,) + return IO.NodeOutput(out) -class CropMask: + invert = execute # TODO: remove + + +class CropMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="CropMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "crop" - - def crop(self, mask, x, y, width, height): + @classmethod + def execute(cls, mask, x, y, width, height) -> IO.NodeOutput: mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = mask[:, y:y + height, x:x + width] - return (out,) + return IO.NodeOutput(out) -class MaskComposite: + crop = execute # TODO: remove + + +class MaskComposite(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "destination": ("MASK",), - "source": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "operation": (["multiply", "add", "subtract", "and", "or", "xor"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskComposite", + category="mask", + inputs=[ + IO.Mask.Input("destination"), + IO.Mask.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "combine" - - def combine(self, destination, source, x, y, operation): + @classmethod + def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput: output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() source = source.reshape((-1, source.shape[-2], source.shape[-1])) @@ -267,28 +277,29 @@ class MaskComposite: output = torch.clamp(output, 0.0, 1.0) - return (output,) + return IO.NodeOutput(output) -class FeatherMask: + combine = execute # TODO: remove + + +class FeatherMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="FeatherMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "feather" - - def feather(self, mask, left, top, right, bottom): + @classmethod + def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput: output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() left = min(left, output.shape[-1]) @@ -312,26 +323,28 @@ class FeatherMask: feather_rate = (y + 1) / bottom output[:, -y, :] *= feather_rate - return (output,) + return IO.NodeOutput(output) -class GrowMask: + feather = execute # TODO: remove + + +class GrowMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), - "tapered_corners": ("BOOLEAN", {"default": True}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="GrowMask", + display_name="Grow Mask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("tapered_corners", default=True), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "expand_mask" - - def expand_mask(self, mask, expand, tapered_corners): + @classmethod + def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput: c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], @@ -347,69 +360,74 @@ class GrowMask: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) - return (torch.stack(out, dim=0),) + return IO.NodeOutput(torch.stack(out, dim=0)) -class ThresholdMask: + expand_mask = execute # TODO: remove + + +class ThresholdMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - "value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ThresholdMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, mask, value): + @classmethod + def execute(cls, mask, value) -> IO.NodeOutput: mask = (mask > value).float() - return (mask,) + return IO.NodeOutput(mask) + + image_to_mask = execute # TODO: remove + # Mask Preview - original implement from # https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81 # upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes -class MaskPreview(nodes.SaveImage): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) - self.compress_level = 4 +class MaskPreview(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MaskPreview", + display_name="Preview Mask", + category="mask", + description="Saves the input images to your ComfyUI output directory.", + inputs=[ + IO.Mask.Input("mask"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": {"mask": ("MASK",), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - - FUNCTION = "execute" - CATEGORY = "mask" - - def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return self.save_images(preview, filename_prefix, prompt, extra_pnginfo) + def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewMask(mask)) -NODE_CLASS_MAPPINGS = { - "LatentCompositeMasked": LatentCompositeMasked, - "ImageCompositeMasked": ImageCompositeMasked, - "MaskToImage": MaskToImage, - "ImageToMask": ImageToMask, - "ImageColorToMask": ImageColorToMask, - "SolidMask": SolidMask, - "InvertMask": InvertMask, - "CropMask": CropMask, - "MaskComposite": MaskComposite, - "FeatherMask": FeatherMask, - "GrowMask": GrowMask, - "ThresholdMask": ThresholdMask, - "MaskPreview": MaskPreview -} +class MaskExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + LatentCompositeMasked, + ImageCompositeMasked, + MaskToImage, + ImageToMask, + ImageColorToMask, + SolidMask, + InvertMask, + CropMask, + MaskComposite, + FeatherMask, + GrowMask, + ThresholdMask, + MaskPreview, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "ImageToMask": "Convert Image to Mask", - "MaskToImage": "Convert Mask to Image", -} + +async def comfy_entrypoint() -> MaskExtension: + return MaskExtension() From d7a0aef65033bf0fe56e521577a44fac1830b8b3 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 21:15:21 -0800 Subject: [PATCH 58/64] Set OCL_SET_SVM_SIZE on AMD. (#11139) --- cuda_malloc.py | 27 +++++++++++++++++---------- main.py | 3 +++ 2 files changed, 20 insertions(+), 10 deletions(-) diff --git a/cuda_malloc.py b/cuda_malloc.py index 6520d5123..ee2bc4b69 100644 --- a/cuda_malloc.py +++ b/cuda_malloc.py @@ -63,18 +63,22 @@ def cuda_malloc_supported(): return True +version = "" + +try: + torch_spec = importlib.util.find_spec("torch") + for folder in torch_spec.submodule_search_locations: + ver_file = os.path.join(folder, "version.py") + if os.path.isfile(ver_file): + spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + version = module.__version__ +except: + pass + if not args.cuda_malloc: try: - version = "" - torch_spec = importlib.util.find_spec("torch") - for folder in torch_spec.submodule_search_locations: - ver_file = os.path.join(folder, "version.py") - if os.path.isfile(ver_file): - spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) - module = importlib.util.module_from_spec(spec) - spec.loader.exec_module(module) - version = module.__version__ - if int(version[0]) >= 2 and "+cu" in version: # enable by default for torch version 2.0 and up only on cuda torch if PerformanceFeature.AutoTune not in args.fast: # Autotune has issues with cuda malloc args.cuda_malloc = cuda_malloc_supported() @@ -90,3 +94,6 @@ if args.cuda_malloc and not args.disable_cuda_malloc: env_var += ",backend:cudaMallocAsync" os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var + +def get_torch_version_noimport(): + return str(version) diff --git a/main.py b/main.py index 0cd815d9e..0d02a087b 100644 --- a/main.py +++ b/main.py @@ -167,6 +167,9 @@ if __name__ == "__main__": os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" import cuda_malloc + if "rocm" in cuda_malloc.get_torch_version_noimport(): + os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD + if 'torch' in sys.modules: logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.") From 76f18e955dcbc88ed13d6802194fd897927f93e5 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 13:28:08 +0200 Subject: [PATCH 59/64] marked all Pika API nodes a deprecated (#11146) --- comfy_api_nodes/nodes_pika.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/comfy_api_nodes/nodes_pika.py b/comfy_api_nodes/nodes_pika.py index 51148211b..acd88c391 100644 --- a/comfy_api_nodes/nodes_pika.py +++ b/comfy_api_nodes/nodes_pika.py @@ -92,6 +92,7 @@ class PikaImageToVideo(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -152,6 +153,7 @@ class PikaTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -239,6 +241,7 @@ class PikaScenes(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -323,6 +326,7 @@ class PikAdditionsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -399,6 +403,7 @@ class PikaSwapsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -466,6 +471,7 @@ class PikaffectsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -515,6 +521,7 @@ class PikaStartEndFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod From 7ac7d69d948e75c3a230d1262daab84d75aff895 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 6 Dec 2025 20:09:44 +0200 Subject: [PATCH 60/64] Fix EmptyAudio node input types (#11149) --- comfy_extras/nodes_audio.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 812301fb7..c7916443c 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -573,12 +573,14 @@ class EmptyAudio(IO.ComfyNode): step=0.01, tooltip="Duration of the empty audio clip in seconds", ), - IO.Float.Input( + IO.Int.Input( "sample_rate", default=44100, tooltip="Sample rate of the empty audio clip.", + min=1, + max=192000, ), - IO.Float.Input( + IO.Int.Input( "channels", default=2, min=1, From 50ca97e7765d9bbdbeec31a75f1f6c747d76948c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 6 Dec 2025 15:36:20 -0800 Subject: [PATCH 61/64] Speed up lora compute and lower memory usage by doing it in fp16. (#11161) --- comfy/model_management.py | 14 ++++++++++++++ comfy/model_patcher.py | 5 +++-- 2 files changed, 17 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index aeddbaefe..40717b1e4 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1492,6 +1492,20 @@ def extended_fp16_support(): return True +LORA_COMPUTE_DTYPES = {} +def lora_compute_dtype(device): + dtype = LORA_COMPUTE_DTYPES.get(device, None) + if dtype is not None: + return dtype + + if should_use_fp16(device): + dtype = torch.float16 + else: + dtype = torch.float32 + + LORA_COMPUTE_DTYPES[device] = dtype + return dtype + def soft_empty_cache(force=False): global cpu_state if cpu_state == CPUState.MPS: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 215784874..4f076a6aa 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -614,10 +614,11 @@ class ModelPatcher: if key not in self.backup: self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) + temp_dtype = comfy.model_management.lora_compute_dtype(device_to) if device_to is not None: - temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) + temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True) else: - temp_weight = weight.to(torch.float32, copy=True) + temp_weight = weight.to(temp_dtype, copy=True) if convert_func is not None: temp_weight = convert_func(temp_weight, inplace=True) From 4086acf3c2f0ca3a8861b04f6179fa9f908e3e25 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Sun, 7 Dec 2025 09:42:09 +1000 Subject: [PATCH 62/64] Fix on-load VRAM OOM (#11144) slow down the CPU on model load to not run ahead. This fixes a VRAM on flux 2 load. I went to try and debug this with the memory trace pickles, which needs --disable-cuda-malloc which made the bug go away. So I tried this synchronize and it worked. The has some very complex interactions with the cuda malloc async and I dont have solid theory on this one yet. Still debugging but this gets us over the OOM for the moment. --- comfy/model_patcher.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 4f076a6aa..5b1ccb824 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -762,6 +762,8 @@ class ModelPatcher: key = "{}.{}".format(n, param) self.unpin_weight(key) self.patch_weight_to_device(key, device_to=device_to) + if comfy.model_management.is_device_cuda(device_to): + torch.cuda.synchronize() logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) m.comfy_patched_weights = True From 329480da5ab32949a411548f821ea60ab3e90dc7 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 6 Dec 2025 17:50:10 -0800 Subject: [PATCH 63/64] Fix qwen scaled fp8 not working with kandinsky. Make basic t2i wf work. (#11162) --- comfy/ldm/kandinsky5/model.py | 8 +++++++- comfy/text_encoders/kandinsky5.py | 12 ++++++------ 2 files changed, 13 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/kandinsky5/model.py b/comfy/ldm/kandinsky5/model.py index a653e02fc..1509de2f8 100644 --- a/comfy/ldm/kandinsky5/model.py +++ b/comfy/ldm/kandinsky5/model.py @@ -387,6 +387,9 @@ class Kandinsky5(nn.Module): return self.out_layer(visual_embed, time_embed) def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + original_dims = x.ndim + if original_dims == 4: + x = x.unsqueeze(2) bs, c, t_len, h, w = x.shape x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) @@ -397,7 +400,10 @@ class Kandinsky5(nn.Module): freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options) - return self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + if original_dims == 4: + out = out.squeeze(2) + return out def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( diff --git a/comfy/text_encoders/kandinsky5.py b/comfy/text_encoders/kandinsky5.py index 22f991c36..be086458c 100644 --- a/comfy/text_encoders/kandinsky5.py +++ b/comfy/text_encoders/kandinsky5.py @@ -24,10 +24,10 @@ class Kandinsky5TokenizerImage(Kandinsky5Tokenizer): class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -56,12 +56,12 @@ class Kandinsky5TEModel(QwenImageTEModel): else: return super().load_sd(sd) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class Kandinsky5TEModel_(Kandinsky5TEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) From 56fa7dbe380cb5591c5542f8aa51ce2fc26beedf Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 7 Dec 2025 04:44:55 -0800 Subject: [PATCH 64/64] Properly load the newbie diffusion model. (#11172) There is still one of the text encoders missing and I didn't actually test it. --- comfy/ldm/lumina/model.py | 35 +++++++++++++++++++++++++++++++++++ comfy/model_base.py | 4 ++++ comfy/model_detection.py | 3 +++ 3 files changed, 42 insertions(+) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 6c24fed9b..c47df49ca 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -377,6 +377,7 @@ class NextDiT(nn.Module): z_image_modulation=False, time_scale=1.0, pad_tokens_multiple=None, + clip_text_dim=None, image_model=None, device=None, dtype=None, @@ -447,6 +448,31 @@ class NextDiT(nn.Module): ), ) + self.clip_text_pooled_proj = None + + if clip_text_dim is not None: + self.clip_text_dim = clip_text_dim + self.clip_text_pooled_proj = nn.Sequential( + operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), + operation_settings.get("operations").Linear( + clip_text_dim, + clip_text_dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.time_text_embed = nn.Sequential( + nn.SiLU(), + operation_settings.get("operations").Linear( + min(dim, 1024) + clip_text_dim, + min(dim, 1024), + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.layers = nn.ModuleList( [ JointTransformerBlock( @@ -585,6 +611,15 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute + if self.clip_text_pooled_proj is not None: + pooled = kwargs.get("clip_text_pooled", None) + if pooled is not None: + pooled = self.clip_text_pooled_proj(pooled) + else: + pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype) + + adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1)) + patches = transformer_options.get("patches", {}) x_is_tensor = isinstance(x, torch.Tensor) img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) diff --git a/comfy/model_base.py b/comfy/model_base.py index 0be006cc2..6b8a8454d 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1110,6 +1110,10 @@ class Lumina2(BaseModel): if 'num_tokens' not in out: out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) + clip_text_pooled = kwargs["pooled_output"] # Newbie + if clip_text_pooled is not None: + out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) + return out class WAN21(BaseModel): diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 30b33a486..74c547427 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -423,6 +423,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["axes_lens"] = [300, 512, 512] dit_config["rope_theta"] = 10000.0 dit_config["ffn_dim_multiplier"] = 4.0 + ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None) + if ctd_weight is not None: + dit_config["clip_text_dim"] = ctd_weight.shape[0] elif dit_config["dim"] == 3840: # Z image dit_config["n_heads"] = 30 dit_config["n_kv_heads"] = 30