mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 06:40:48 +08:00
Update with our changes
This commit is contained in:
parent
f04b582744
commit
24a9eb2600
@ -1,10 +1,10 @@
|
||||
import itertools
|
||||
from typing import Sequence, Mapping
|
||||
from comfy_execution.graph import DynamicPrompt
|
||||
|
||||
import nodes
|
||||
from .cmd.execution import nodes
|
||||
from .graph import DynamicPrompt
|
||||
from .graph_utils import is_link
|
||||
|
||||
from comfy_execution.graph_utils import is_link
|
||||
|
||||
class CacheKeySet:
|
||||
def __init__(self, dynprompt, node_ids, is_changed_cache):
|
||||
@ -29,10 +29,12 @@ class CacheKeySet:
|
||||
def get_subcache_key(self, node_id):
|
||||
return self.subcache_keys.get(node_id, None)
|
||||
|
||||
|
||||
class Unhashable:
|
||||
def __init__(self):
|
||||
self.value = float("NaN")
|
||||
|
||||
|
||||
def to_hashable(obj):
|
||||
# So that we don't infinitely recurse since frozenset and tuples
|
||||
# are Sequences.
|
||||
@ -46,6 +48,7 @@ def to_hashable(obj):
|
||||
# TODO - Support other objects like tensors?
|
||||
return Unhashable()
|
||||
|
||||
|
||||
class CacheKeySetID(CacheKeySet):
|
||||
def __init__(self, dynprompt, node_ids, is_changed_cache):
|
||||
super().__init__(dynprompt, node_ids, is_changed_cache)
|
||||
@ -60,6 +63,7 @@ class CacheKeySetID(CacheKeySet):
|
||||
self.keys[node_id] = (node_id, node["class_type"])
|
||||
self.subcache_keys[node_id] = (node_id, node["class_type"])
|
||||
|
||||
|
||||
class CacheKeySetInputSignature(CacheKeySet):
|
||||
def __init__(self, dynprompt, node_ids, is_changed_cache):
|
||||
super().__init__(dynprompt, node_ids, is_changed_cache)
|
||||
@ -98,7 +102,7 @@ class CacheKeySetInputSignature(CacheKeySet):
|
||||
if is_link(inputs[key]):
|
||||
(ancestor_id, ancestor_socket) = inputs[key]
|
||||
ancestor_index = ancestor_order_mapping[ancestor_id]
|
||||
signature.append((key,("ANCESTOR", ancestor_index, ancestor_socket)))
|
||||
signature.append((key, ("ANCESTOR", ancestor_index, ancestor_socket)))
|
||||
else:
|
||||
signature.append((key, inputs[key]))
|
||||
return signature
|
||||
@ -122,6 +126,7 @@ class CacheKeySetInputSignature(CacheKeySet):
|
||||
order_mapping[ancestor_id] = len(ancestors) - 1
|
||||
self.get_ordered_ancestry_internal(dynprompt, ancestor_id, ancestors, order_mapping)
|
||||
|
||||
|
||||
class BasicCache:
|
||||
def __init__(self, key_class):
|
||||
self.key_class = key_class
|
||||
@ -207,6 +212,7 @@ class BasicCache:
|
||||
result.append({"subcache_key": key, "subcache": self.subcaches[key].recursive_debug_dump()})
|
||||
return result
|
||||
|
||||
|
||||
class HierarchicalCache(BasicCache):
|
||||
def __init__(self, key_class):
|
||||
super().__init__(key_class)
|
||||
@ -245,6 +251,7 @@ class HierarchicalCache(BasicCache):
|
||||
assert cache is not None
|
||||
return cache._ensure_subcache(node_id, children_ids)
|
||||
|
||||
|
||||
class LRUCache(BasicCache):
|
||||
def __init__(self, key_class, max_size=100):
|
||||
super().__init__(key_class)
|
||||
@ -296,4 +303,3 @@ class LRUCache(BasicCache):
|
||||
self._mark_used(child_id)
|
||||
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
|
||||
return self
|
||||
|
||||
|
||||
@ -1,30 +1,44 @@
|
||||
import sys
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import threading
|
||||
import heapq
|
||||
import inspect
|
||||
import logging
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from enum import Enum
|
||||
import inspect
|
||||
from typing import List, Literal, NamedTuple, Optional
|
||||
import typing
|
||||
from os import PathLike
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import lazy_object_proxy
|
||||
import torch
|
||||
import nodes
|
||||
from opentelemetry.trace import get_current_span, StatusCode, Status
|
||||
|
||||
import comfy.model_management
|
||||
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
|
||||
from comfy_execution.graph_utils import is_link, GraphBuilder
|
||||
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
|
||||
from comfy.cli_args import args
|
||||
from .main_pre import tracer
|
||||
from .. import interruption
|
||||
from .. import model_management
|
||||
from ..component_model.abstract_prompt_queue import AbstractPromptQueue
|
||||
from ..component_model.executor_types import ExecutorToClientProgress, ValidationTuple, ValidateInputsTuple, \
|
||||
ValidationErrorDict, NodeErrorsDictValue, ValidationErrorExtraInfoDict, FormattedValue, RecursiveExecutionTuple, \
|
||||
RecursiveExecutionErrorDetails, RecursiveExecutionErrorDetailsInterrupted, ExecutionResult, DuplicateNodeError, \
|
||||
HistoryResultDict
|
||||
from ..component_model.files import canonicalize_path
|
||||
from ..component_model.queue_types import QueueTuple, HistoryEntry, QueueItem, MAXIMUM_HISTORY_SIZE, ExecutionStatus
|
||||
from ..execution_context import new_execution_context, ExecutionContext
|
||||
from ..nodes.package import import_all_nodes_in_workspace
|
||||
from ..nodes.package_typing import ExportedNodes, InputTypeSpec, FloatSpecOptions, IntSpecOptions
|
||||
|
||||
class ExecutionResult(Enum):
|
||||
SUCCESS = 0
|
||||
FAILURE = 1
|
||||
PENDING = 2
|
||||
# ideally this would be passed in from main, but the way this is authored, we can't easily pass nodes down to the
|
||||
# various functions that are declared here. It should have been a context in the first place.
|
||||
nodes: ExportedNodes = lazy_object_proxy.Proxy(import_all_nodes_in_workspace)
|
||||
|
||||
# order matters
|
||||
from ..graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
|
||||
from ..graph_utils import is_link, GraphBuilder
|
||||
from ..caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
|
||||
|
||||
class DuplicateNodeError(Exception):
|
||||
pass
|
||||
|
||||
class IsChangedCache:
|
||||
def __init__(self, dynprompt, outputs_cache):
|
||||
@ -49,19 +63,19 @@ class IsChangedCache:
|
||||
|
||||
input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, self.outputs_cache)
|
||||
try:
|
||||
is_changed = _map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
||||
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
||||
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
|
||||
except Exception as e:
|
||||
logging.warning("WARNING: {}".format(e))
|
||||
except:
|
||||
node["is_changed"] = float("NaN")
|
||||
finally:
|
||||
self.is_changed[node_id] = node["is_changed"]
|
||||
return self.is_changed[node_id]
|
||||
|
||||
|
||||
class CacheSet:
|
||||
def __init__(self, lru_size=None):
|
||||
if lru_size is None or lru_size == 0:
|
||||
self.init_classic_cache()
|
||||
self.init_classic_cache()
|
||||
else:
|
||||
self.init_lru_cache(lru_size)
|
||||
self.all = [self.outputs, self.ui, self.objects]
|
||||
@ -86,22 +100,29 @@ class CacheSet:
|
||||
}
|
||||
return result
|
||||
|
||||
def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data={}):
|
||||
|
||||
def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data=None):
|
||||
if extra_data is None:
|
||||
extra_data = {}
|
||||
if outputs is None:
|
||||
outputs = {}
|
||||
valid_inputs = class_def.INPUT_TYPES()
|
||||
input_data_all = {}
|
||||
missing_keys = {}
|
||||
for x in inputs:
|
||||
input_data = inputs[x]
|
||||
input_type, input_category, input_info = get_input_info(class_def, x)
|
||||
|
||||
def mark_missing():
|
||||
missing_keys[x] = True
|
||||
input_data_all[x] = (None,)
|
||||
|
||||
if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)):
|
||||
input_unique_id = input_data[0]
|
||||
output_index = input_data[1]
|
||||
if outputs is None:
|
||||
mark_missing()
|
||||
continue # This might be a lazily-evaluated input
|
||||
continue # This might be a lazily-evaluated input
|
||||
cached_output = outputs.get(input_unique_id)
|
||||
if cached_output is None:
|
||||
mark_missing()
|
||||
@ -114,6 +135,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
|
||||
elif input_category is not None:
|
||||
input_data_all[x] = [input_data]
|
||||
|
||||
# todo: this should be retrieved from the execution context
|
||||
if "hidden" in valid_inputs:
|
||||
h = valid_inputs["hidden"]
|
||||
for x in h:
|
||||
@ -127,9 +149,35 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
|
||||
input_data_all[x] = [unique_id]
|
||||
return input_data_all, missing_keys
|
||||
|
||||
map_node_over_list = None #Don't hook this please
|
||||
|
||||
def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None):
|
||||
@tracer.start_as_current_span("Execute Node")
|
||||
def map_node_over_list(obj, input_data_all: typing.Dict[str, typing.Any], func: str, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None):
|
||||
span = get_current_span()
|
||||
class_type = obj.__class__.__name__
|
||||
span.set_attribute("class_type", class_type)
|
||||
if input_data_all is not None:
|
||||
for kwarg_name, kwarg_value in input_data_all.items():
|
||||
if isinstance(kwarg_value, str) or isinstance(kwarg_value, bool) or isinstance(kwarg_value, int) or isinstance(kwarg_value, float):
|
||||
span.set_attribute(f"input_data_all.{kwarg_name}", kwarg_value)
|
||||
else:
|
||||
try:
|
||||
items_to_display = []
|
||||
if hasattr(kwarg_value, "shape"):
|
||||
# if the object has a shape attribute (likely a NumPy array or similar), get up to the first ten elements
|
||||
flat_values = kwarg_value.flatten() if hasattr(kwarg_value, "flatten") else kwarg_value
|
||||
items_to_display = [flat_values[i] for i in range(min(10, flat_values.size))]
|
||||
elif hasattr(kwarg_value, "__getitem__") and hasattr(kwarg_value, "__len__"):
|
||||
# If the object is indexable and has a length, get the first ten items
|
||||
items_to_display = [kwarg_value[i] for i in range(min(10, len(kwarg_value)))]
|
||||
|
||||
filtered_items = [
|
||||
item for item in items_to_display if isinstance(item, (str, bool, int, float))
|
||||
]
|
||||
|
||||
if filtered_items:
|
||||
span.set_attribute(f"input_data_all.{kwarg_name}", filtered_items)
|
||||
except TypeError:
|
||||
pass
|
||||
# check if node wants the lists
|
||||
input_is_list = getattr(obj, "INPUT_IS_LIST", False)
|
||||
|
||||
@ -137,15 +185,16 @@ def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execut
|
||||
max_len_input = 0
|
||||
else:
|
||||
max_len_input = max(len(x) for x in input_data_all.values())
|
||||
|
||||
|
||||
# get a slice of inputs, repeat last input when list isn't long enough
|
||||
def slice_dict(d, i):
|
||||
return {k: v[i if len(v) > i else -1] for k, v in d.items()}
|
||||
|
||||
|
||||
results = []
|
||||
|
||||
def process_inputs(inputs, index=None):
|
||||
if allow_interrupt:
|
||||
nodes.before_node_execution()
|
||||
interruption.throw_exception_if_processing_interrupted()
|
||||
execution_block = None
|
||||
for k, v in inputs.items():
|
||||
if isinstance(v, ExecutionBlocker):
|
||||
@ -162,12 +211,13 @@ def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execut
|
||||
process_inputs(input_data_all, 0)
|
||||
elif max_len_input == 0:
|
||||
process_inputs({})
|
||||
else:
|
||||
else:
|
||||
for i in range(max_len_input):
|
||||
input_dict = slice_dict(input_data_all, i)
|
||||
process_inputs(input_dict, i)
|
||||
return results
|
||||
|
||||
|
||||
def merge_result_data(results, obj):
|
||||
# check which outputs need concatenating
|
||||
output = []
|
||||
@ -183,12 +233,12 @@ def merge_result_data(results, obj):
|
||||
output.append([o[i] for o in results])
|
||||
return output
|
||||
|
||||
|
||||
def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb=None):
|
||||
|
||||
results = []
|
||||
uis = []
|
||||
subgraph_results = []
|
||||
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
|
||||
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
|
||||
has_subgraph = False
|
||||
for i in range(len(return_values)):
|
||||
r = return_values[i]
|
||||
@ -214,19 +264,20 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
|
||||
r = tuple([r] * len(obj.RETURN_TYPES))
|
||||
results.append(r)
|
||||
subgraph_results.append((None, r))
|
||||
|
||||
|
||||
if has_subgraph:
|
||||
output = subgraph_results
|
||||
elif len(results) > 0:
|
||||
output = merge_result_data(results, obj)
|
||||
else:
|
||||
output = []
|
||||
ui = dict()
|
||||
ui = dict()
|
||||
if len(uis) > 0:
|
||||
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
||||
return output, ui, has_subgraph
|
||||
|
||||
def format_value(x):
|
||||
|
||||
def format_value(x) -> FormattedValue:
|
||||
if x is None:
|
||||
return None
|
||||
elif isinstance(x, (int, float, bool, str)):
|
||||
@ -234,6 +285,7 @@ def format_value(x):
|
||||
else:
|
||||
return str(x)
|
||||
|
||||
|
||||
def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results):
|
||||
unique_id = current_item
|
||||
real_node_id = dynprompt.get_real_node_id(unique_id)
|
||||
@ -245,8 +297,8 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
if caches.outputs.get(unique_id) is not None:
|
||||
if server.client_id is not None:
|
||||
cached_output = caches.ui.get(unique_id) or {}
|
||||
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id)
|
||||
return (ExecutionResult.SUCCESS, None, None)
|
||||
server.send_sync("executed", {"node": unique_id, "display_node": display_node_id, "output": cached_output.get("output", None), "prompt_id": prompt_id}, server.client_id)
|
||||
return RecursiveExecutionTuple(ExecutionResult.SUCCESS, None, None)
|
||||
|
||||
input_data_all = None
|
||||
try:
|
||||
@ -275,7 +327,7 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
input_data_all, missing_keys = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt, extra_data)
|
||||
if server.client_id is not None:
|
||||
server.last_node_id = display_node_id
|
||||
server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id)
|
||||
server.send_sync("executing", {"node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id}, server.client_id)
|
||||
|
||||
obj = caches.objects.get(unique_id)
|
||||
if obj is None:
|
||||
@ -283,10 +335,10 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
caches.objects.set(unique_id, obj)
|
||||
|
||||
if hasattr(obj, "check_lazy_status"):
|
||||
required_inputs = _map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
|
||||
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
|
||||
required_inputs = [x for x in required_inputs if isinstance(x,str) and (
|
||||
x not in input_data_all or x in missing_keys
|
||||
required_inputs = map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
|
||||
required_inputs = set(sum([r for r in required_inputs if isinstance(r, list)], []))
|
||||
required_inputs = [x for x in required_inputs if isinstance(x, str) and (
|
||||
x not in input_data_all or x in missing_keys
|
||||
)]
|
||||
if len(required_inputs) > 0:
|
||||
for i in required_inputs:
|
||||
@ -311,8 +363,10 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
return ExecutionBlocker(None)
|
||||
else:
|
||||
return block
|
||||
|
||||
def pre_execute_cb(call_index):
|
||||
GraphBuilder.set_default_prefix(unique_id, call_index, 0)
|
||||
|
||||
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
|
||||
if len(output_ui) > 0:
|
||||
caches.ui.set(unique_id, {
|
||||
@ -325,7 +379,8 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
"output": output_ui
|
||||
})
|
||||
if server.client_id is not None:
|
||||
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
|
||||
server.send_sync("executed", {"node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id},
|
||||
server.client_id)
|
||||
if has_subgraph:
|
||||
cached_outputs = []
|
||||
new_node_ids = []
|
||||
@ -364,15 +419,15 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
pending_subgraph_results[unique_id] = cached_outputs
|
||||
return (ExecutionResult.PENDING, None, None)
|
||||
caches.outputs.set(unique_id, output_data)
|
||||
except comfy.model_management.InterruptProcessingException as iex:
|
||||
except interruption.InterruptProcessingException as iex:
|
||||
logging.info("Processing interrupted")
|
||||
|
||||
# skip formatting inputs/outputs
|
||||
error_details = {
|
||||
error_details: RecursiveExecutionErrorDetailsInterrupted = {
|
||||
"node_id": real_node_id,
|
||||
}
|
||||
|
||||
return (ExecutionResult.FAILURE, error_details, iex)
|
||||
return RecursiveExecutionTuple(ExecutionResult.FAILURE, error_details, iex)
|
||||
except Exception as ex:
|
||||
typ, _, tb = sys.exc_info()
|
||||
exception_type = full_type_name(typ)
|
||||
@ -382,40 +437,46 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
for name, inputs in input_data_all.items():
|
||||
input_data_formatted[name] = [format_value(x) for x in inputs]
|
||||
|
||||
logging.error(f"!!! Exception during processing !!! {ex}")
|
||||
logging.error("An error occurred while executing a workflow", exc_info=ex)
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
error_details = {
|
||||
error_details: RecursiveExecutionErrorDetails = {
|
||||
"node_id": real_node_id,
|
||||
"exception_message": str(ex),
|
||||
"exception_type": exception_type,
|
||||
"traceback": traceback.format_tb(tb),
|
||||
"current_inputs": input_data_formatted
|
||||
}
|
||||
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
||||
logging.error("Got an OOM, unloading all loaded models.")
|
||||
comfy.model_management.unload_all_models()
|
||||
|
||||
return (ExecutionResult.FAILURE, error_details, ex)
|
||||
if isinstance(ex, model_management.OOM_EXCEPTION):
|
||||
logging.error("Got an OOM, unloading all loaded models.")
|
||||
model_management.unload_all_models()
|
||||
|
||||
return RecursiveExecutionTuple(ExecutionResult.FAILURE, error_details, ex)
|
||||
|
||||
executed.add(unique_id)
|
||||
|
||||
return (ExecutionResult.SUCCESS, None, None)
|
||||
return ExecutionResult.SUCCESS, None, None
|
||||
|
||||
|
||||
class PromptExecutor:
|
||||
def __init__(self, server, lru_size=None):
|
||||
def __init__(self, server: ExecutorToClientProgress, lru_size=None):
|
||||
self.success = None
|
||||
self.lru_size = lru_size
|
||||
self.server = server
|
||||
self.raise_exceptions = False
|
||||
self.reset()
|
||||
self.history_result: HistoryResultDict | None = None
|
||||
|
||||
def reset(self):
|
||||
self.success = True
|
||||
self.caches = CacheSet(self.lru_size)
|
||||
self.status_messages = []
|
||||
self.success = True
|
||||
|
||||
def add_message(self, event, data: dict, broadcast: bool):
|
||||
data = {
|
||||
**data,
|
||||
# todo: use a real time library
|
||||
"timestamp": int(time.time() * 1000),
|
||||
}
|
||||
self.status_messages.append((event, data))
|
||||
@ -423,12 +484,16 @@ class PromptExecutor:
|
||||
self.server.send_sync(event, data, self.server.client_id)
|
||||
|
||||
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
|
||||
current_span = get_current_span()
|
||||
current_span.set_status(Status(StatusCode.ERROR))
|
||||
current_span.record_exception(ex)
|
||||
|
||||
node_id = error["node_id"]
|
||||
class_type = prompt[node_id]["class_type"]
|
||||
|
||||
# First, send back the status to the frontend depending
|
||||
# on the exception type
|
||||
if isinstance(ex, comfy.model_management.InterruptProcessingException):
|
||||
if isinstance(ex, interruption.InterruptProcessingException):
|
||||
mes = {
|
||||
"prompt_id": prompt_id,
|
||||
"node_id": node_id,
|
||||
@ -449,9 +514,20 @@ class PromptExecutor:
|
||||
"current_outputs": list(current_outputs),
|
||||
}
|
||||
self.add_message("execution_error", mes, broadcast=False)
|
||||
|
||||
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
||||
nodes.interrupt_processing(False)
|
||||
|
||||
if ex is not None and self.raise_exceptions:
|
||||
raise ex
|
||||
|
||||
def execute(self, prompt, prompt_id, extra_data=None, execute_outputs: List[str] = None):
|
||||
with new_execution_context(ExecutionContext(self.server)):
|
||||
self._execute_inner(prompt, prompt_id, extra_data, execute_outputs)
|
||||
|
||||
def _execute_inner(self, prompt, prompt_id, extra_data=None, execute_outputs: List[str] = None):
|
||||
if execute_outputs is None:
|
||||
execute_outputs = []
|
||||
if extra_data is None:
|
||||
extra_data = {}
|
||||
interruption.interrupt_current_processing(False)
|
||||
|
||||
if "client_id" in extra_data:
|
||||
self.server.client_id = extra_data["client_id"]
|
||||
@ -459,7 +535,7 @@ class PromptExecutor:
|
||||
self.server.client_id = None
|
||||
|
||||
self.status_messages = []
|
||||
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False)
|
||||
self.add_message("execution_start", {"prompt_id": prompt_id}, broadcast=False)
|
||||
|
||||
with torch.inference_mode():
|
||||
dynamic_prompt = DynamicPrompt(prompt)
|
||||
@ -473,10 +549,10 @@ class PromptExecutor:
|
||||
if self.caches.outputs.get(node_id) is not None:
|
||||
cached_nodes.append(node_id)
|
||||
|
||||
comfy.model_management.cleanup_models(keep_clone_weights_loaded=True)
|
||||
model_management.cleanup_models(keep_clone_weights_loaded=True)
|
||||
self.add_message("execution_cached",
|
||||
{ "nodes": cached_nodes, "prompt_id": prompt_id},
|
||||
broadcast=False)
|
||||
{ "nodes": cached_nodes, "prompt_id": prompt_id},
|
||||
broadcast=False)
|
||||
pending_subgraph_results = {}
|
||||
executed = set()
|
||||
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
|
||||
@ -496,7 +572,7 @@ class PromptExecutor:
|
||||
break
|
||||
elif result == ExecutionResult.PENDING:
|
||||
execution_list.unstage_node_execution()
|
||||
else: # result == ExecutionResult.SUCCESS:
|
||||
else: # result == ExecutionResult.SUCCESS:
|
||||
execution_list.complete_node_execution()
|
||||
else:
|
||||
# Only execute when the while-loop ends without break
|
||||
@ -515,12 +591,17 @@ class PromptExecutor:
|
||||
"meta": meta_outputs,
|
||||
}
|
||||
self.server.last_node_id = None
|
||||
if comfy.model_management.DISABLE_SMART_MEMORY:
|
||||
comfy.model_management.unload_all_models()
|
||||
if model_management.DISABLE_SMART_MEMORY:
|
||||
model_management.unload_all_models()
|
||||
|
||||
@property
|
||||
def outputs_ui(self) -> dict | None:
|
||||
return self.history_result["outputs"] if self.history_result is not None else None
|
||||
|
||||
|
||||
|
||||
def validate_inputs(prompt, item, validated):
|
||||
def validate_inputs(prompt, item, validated: typing.Dict[str, ValidateInputsTuple]) -> ValidateInputsTuple:
|
||||
# todo: this should check if LoadImage / LoadImageMask paths exist
|
||||
# todo: or, nodes should provide a way to validate their values
|
||||
unique_id = item
|
||||
if unique_id in validated:
|
||||
return validated[unique_id]
|
||||
@ -530,11 +611,16 @@ def validate_inputs(prompt, item, validated):
|
||||
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
||||
|
||||
class_inputs = obj_class.INPUT_TYPES()
|
||||
valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{})))
|
||||
valid_inputs = set(class_inputs.get('required', {})).union(set(class_inputs.get('optional', {})))
|
||||
|
||||
error: ValidationErrorDict
|
||||
errors = []
|
||||
valid = True
|
||||
|
||||
# todo: investigate if these are at the right indent level
|
||||
info: Optional[InputTypeSpec] = None
|
||||
val = None
|
||||
|
||||
validate_function_inputs = []
|
||||
validate_has_kwargs = False
|
||||
if hasattr(obj_class, "VALIDATE_INPUTS"):
|
||||
@ -560,7 +646,7 @@ def validate_inputs(prompt, item, validated):
|
||||
continue
|
||||
|
||||
val = inputs[x]
|
||||
info = (type_input, extra_info)
|
||||
info: InputTypeSpec = (type_input, extra_info)
|
||||
if isinstance(val, list):
|
||||
if len(val) != 2:
|
||||
error = {
|
||||
@ -581,7 +667,8 @@ def validate_inputs(prompt, item, validated):
|
||||
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
||||
received_type = r[val[1]]
|
||||
received_types[x] = received_type
|
||||
if 'input_types' not in validate_function_inputs and received_type != type_input:
|
||||
any_enum = received_type == [] and (isinstance(type_input, list) or isinstance(type_input, tuple))
|
||||
if 'input_types' not in validate_function_inputs and received_type != type_input and not any_enum:
|
||||
details = f"{x}, {received_type} != {type_input}"
|
||||
error = {
|
||||
"type": "return_type_mismatch",
|
||||
@ -597,8 +684,8 @@ def validate_inputs(prompt, item, validated):
|
||||
errors.append(error)
|
||||
continue
|
||||
try:
|
||||
r = validate_inputs(prompt, o_id, validated)
|
||||
if r[0] is False:
|
||||
r2 = validate_inputs(prompt, o_id, validated)
|
||||
if r2[0] is False:
|
||||
# `r` will be set in `validated[o_id]` already
|
||||
valid = False
|
||||
continue
|
||||
@ -619,7 +706,7 @@ def validate_inputs(prompt, item, validated):
|
||||
"linked_node": val
|
||||
}
|
||||
}]
|
||||
validated[o_id] = (False, reasons, o_id)
|
||||
validated[o_id] = ValidateInputsTuple(False, reasons, o_id)
|
||||
continue
|
||||
else:
|
||||
try:
|
||||
@ -650,11 +737,12 @@ def validate_inputs(prompt, item, validated):
|
||||
errors.append(error)
|
||||
continue
|
||||
|
||||
if x not in validate_function_inputs and not validate_has_kwargs:
|
||||
if "min" in extra_info and val < extra_info["min"]:
|
||||
if x not in validate_function_inputs:
|
||||
has_min_max: IntSpecOptions | FloatSpecOptions = info[1]
|
||||
if "min" in has_min_max and val < has_min_max["min"]:
|
||||
error = {
|
||||
"type": "value_smaller_than_min",
|
||||
"message": "Value {} smaller than min of {}".format(val, extra_info["min"]),
|
||||
"message": "Value {} smaller than min of {}".format(val, has_min_max["min"]),
|
||||
"details": f"{x}",
|
||||
"extra_info": {
|
||||
"input_name": x,
|
||||
@ -664,10 +752,10 @@ def validate_inputs(prompt, item, validated):
|
||||
}
|
||||
errors.append(error)
|
||||
continue
|
||||
if "max" in extra_info and val > extra_info["max"]:
|
||||
if "max" in has_min_max and val > has_min_max["max"]:
|
||||
error = {
|
||||
"type": "value_bigger_than_max",
|
||||
"message": "Value {} bigger than max of {}".format(val, extra_info["max"]),
|
||||
"message": "Value {} bigger than max of {}".format(val, has_min_max["max"]),
|
||||
"details": f"{x}",
|
||||
"extra_info": {
|
||||
"input_name": x,
|
||||
@ -679,6 +767,11 @@ def validate_inputs(prompt, item, validated):
|
||||
continue
|
||||
|
||||
if isinstance(type_input, list):
|
||||
if "\\" in val:
|
||||
# try to normalize paths for comparison purposes
|
||||
val = canonicalize_path(val)
|
||||
if all(isinstance(item, (str, PathLike)) for item in type_input):
|
||||
type_input = [canonicalize_path(item) for item in type_input]
|
||||
if val not in type_input:
|
||||
input_config = info
|
||||
list_info = ""
|
||||
@ -713,8 +806,8 @@ def validate_inputs(prompt, item, validated):
|
||||
if 'input_types' in validate_function_inputs:
|
||||
input_filtered['input_types'] = [received_types]
|
||||
|
||||
#ret = obj_class.VALIDATE_INPUTS(**input_filtered)
|
||||
ret = _map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS")
|
||||
# ret = obj_class.VALIDATE_INPUTS(**input_filtered)
|
||||
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS")
|
||||
for x in input_filtered:
|
||||
for i, r in enumerate(ret):
|
||||
if r is not True and not isinstance(r, ExecutionBlocker):
|
||||
@ -734,20 +827,45 @@ def validate_inputs(prompt, item, validated):
|
||||
continue
|
||||
|
||||
if len(errors) > 0 or valid is not True:
|
||||
ret = (False, errors, unique_id)
|
||||
ret = ValidateInputsTuple(False, errors, unique_id)
|
||||
else:
|
||||
ret = (True, [], unique_id)
|
||||
ret = ValidateInputsTuple(True, [], unique_id)
|
||||
|
||||
validated[unique_id] = ret
|
||||
return ret
|
||||
|
||||
|
||||
def full_type_name(klass):
|
||||
module = klass.__module__
|
||||
if module == 'builtins':
|
||||
return klass.__qualname__
|
||||
return module + '.' + klass.__qualname__
|
||||
|
||||
def validate_prompt(prompt):
|
||||
|
||||
@tracer.start_as_current_span("Validate Prompt")
|
||||
def validate_prompt(prompt: typing.Mapping[str, typing.Any]) -> ValidationTuple:
|
||||
res = _validate_prompt(prompt)
|
||||
if not res.valid:
|
||||
span = get_current_span()
|
||||
span.set_status(Status(StatusCode.ERROR))
|
||||
if res.error is not None and len(res.error) > 0:
|
||||
span.set_attributes({
|
||||
f"error.{k}": v for k, v in res.error.items() if isinstance(v, (bool, str, bytes, int, float, list))
|
||||
})
|
||||
if "extra_info" in res.error and isinstance(res.error["extra_info"], dict):
|
||||
extra_info: ValidationErrorExtraInfoDict = res.error["extra_info"]
|
||||
span.set_attributes({
|
||||
f"error.extra_info.{k}": v for k, v in extra_info.items() if isinstance(v, (str, list))
|
||||
})
|
||||
if len(res.node_errors) > 0:
|
||||
for node_id, node_error in res.node_errors.items():
|
||||
for node_error_field, node_error_value in node_error.items():
|
||||
if isinstance(node_error_value, (str, bool, int, float)):
|
||||
span.set_attribute(f"node_errors.{node_id}.{node_error_field}", node_error_value)
|
||||
return res
|
||||
|
||||
|
||||
def _validate_prompt(prompt: typing.Mapping[str, typing.Any]) -> ValidationTuple:
|
||||
outputs = set()
|
||||
for x in prompt:
|
||||
if 'class_type' not in prompt[x]:
|
||||
@ -757,7 +875,7 @@ def validate_prompt(prompt):
|
||||
"details": f"Node ID '#{x}'",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return ValidationTuple(False, error, [], [])
|
||||
|
||||
class_type = prompt[x]['class_type']
|
||||
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
|
||||
@ -768,7 +886,7 @@ def validate_prompt(prompt):
|
||||
"details": f"Node ID '#{x}'",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return ValidationTuple(False, error, [], [])
|
||||
|
||||
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
|
||||
outputs.add(x)
|
||||
@ -780,15 +898,15 @@ def validate_prompt(prompt):
|
||||
"details": "",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return ValidationTuple(False, error, [], [])
|
||||
|
||||
good_outputs = set()
|
||||
errors = []
|
||||
node_errors = {}
|
||||
validated = {}
|
||||
node_errors: typing.Dict[str, NodeErrorsDictValue] = {}
|
||||
validated: typing.Dict[str, ValidateInputsTuple] = {}
|
||||
for o in outputs:
|
||||
valid = False
|
||||
reasons = []
|
||||
reasons: List[ValidationErrorDict] = []
|
||||
try:
|
||||
m = validate_inputs(prompt, o, validated)
|
||||
valid = m[0]
|
||||
@ -806,7 +924,7 @@ def validate_prompt(prompt):
|
||||
"traceback": traceback.format_tb(tb)
|
||||
}
|
||||
}]
|
||||
validated[o] = (False, reasons, o)
|
||||
validated[o] = ValidateInputsTuple(False, reasons, o)
|
||||
|
||||
if valid is True:
|
||||
good_outputs.add(o)
|
||||
@ -839,8 +957,8 @@ def validate_prompt(prompt):
|
||||
|
||||
if len(good_outputs) == 0:
|
||||
errors_list = []
|
||||
for o, errors in errors:
|
||||
for error in errors:
|
||||
for o, _errors in errors:
|
||||
for error in _errors:
|
||||
errors_list.append(f"{error['message']}: {error['details']}")
|
||||
errors_list = "\n".join(errors_list)
|
||||
|
||||
@ -851,73 +969,78 @@ def validate_prompt(prompt):
|
||||
"extra_info": {}
|
||||
}
|
||||
|
||||
return (False, error, list(good_outputs), node_errors)
|
||||
return ValidationTuple(False, error, list(good_outputs), node_errors)
|
||||
|
||||
return (True, None, list(good_outputs), node_errors)
|
||||
return ValidationTuple(True, None, list(good_outputs), node_errors)
|
||||
|
||||
MAXIMUM_HISTORY_SIZE = 10000
|
||||
|
||||
class PromptQueue:
|
||||
def __init__(self, server):
|
||||
class PromptQueue(AbstractPromptQueue):
|
||||
def __init__(self, server: ExecutorToClientProgress):
|
||||
self.server = server
|
||||
self.mutex = threading.RLock()
|
||||
self.not_empty = threading.Condition(self.mutex)
|
||||
self.task_counter = 0
|
||||
self.queue = []
|
||||
self.currently_running = {}
|
||||
self.history = {}
|
||||
self.queue: typing.List[QueueItem] = []
|
||||
self.currently_running: typing.Dict[str, QueueItem] = {}
|
||||
# history maps the second integer prompt id in the queue tuple to a dictionary with keys "prompt" and "outputs
|
||||
# todo: use the new History class for the sake of simplicity
|
||||
self.history: typing.Dict[str, HistoryEntry] = {}
|
||||
self.flags = {}
|
||||
server.prompt_queue = self
|
||||
|
||||
def put(self, item):
|
||||
def size(self) -> int:
|
||||
return len(self.queue)
|
||||
|
||||
def put(self, item: QueueItem):
|
||||
with self.mutex:
|
||||
heapq.heappush(self.queue, item)
|
||||
self.server.queue_updated()
|
||||
self.not_empty.notify()
|
||||
|
||||
def get(self, timeout=None):
|
||||
def get(self, timeout=None) -> typing.Optional[typing.Tuple[QueueTuple, str]]:
|
||||
with self.not_empty:
|
||||
while len(self.queue) == 0:
|
||||
self.not_empty.wait(timeout=timeout)
|
||||
if timeout is not None and len(self.queue) == 0:
|
||||
return None
|
||||
item = heapq.heappop(self.queue)
|
||||
i = self.task_counter
|
||||
self.currently_running[i] = copy.deepcopy(item)
|
||||
self.task_counter += 1
|
||||
item_with_future: QueueItem = heapq.heappop(self.queue)
|
||||
assert item_with_future.prompt_id is not None
|
||||
assert item_with_future.prompt_id != ""
|
||||
assert item_with_future.prompt_id not in self.currently_running
|
||||
assert isinstance(item_with_future.prompt_id, str)
|
||||
task_id = item_with_future.prompt_id
|
||||
self.currently_running[task_id] = item_with_future
|
||||
self.server.queue_updated()
|
||||
return (item, i)
|
||||
return copy.deepcopy(item_with_future.queue_tuple), task_id
|
||||
|
||||
class ExecutionStatus(NamedTuple):
|
||||
status_str: Literal['success', 'error']
|
||||
completed: bool
|
||||
messages: List[str]
|
||||
|
||||
def task_done(self, item_id, history_result,
|
||||
status: Optional['PromptQueue.ExecutionStatus']):
|
||||
def task_done(self, item_id: str, outputs: dict,
|
||||
status: Optional[ExecutionStatus]):
|
||||
history_result = outputs
|
||||
with self.mutex:
|
||||
prompt = self.currently_running.pop(item_id)
|
||||
queue_item = self.currently_running.pop(item_id)
|
||||
prompt = queue_item.queue_tuple
|
||||
if len(self.history) > MAXIMUM_HISTORY_SIZE:
|
||||
self.history.pop(next(iter(self.history)))
|
||||
|
||||
status_dict: Optional[dict] = None
|
||||
if status is not None:
|
||||
status_dict = copy.deepcopy(status._asdict())
|
||||
status_dict = copy.deepcopy(ExecutionStatus(*status)._asdict())
|
||||
|
||||
outputs_ = history_result["outputs"]
|
||||
self.history[prompt[1]] = {
|
||||
"prompt": prompt,
|
||||
"outputs": {},
|
||||
"outputs": copy.deepcopy(outputs_),
|
||||
'status': status_dict,
|
||||
}
|
||||
self.history[prompt[1]].update(history_result)
|
||||
self.server.queue_updated()
|
||||
if queue_item.completed:
|
||||
queue_item.completed.set_result(outputs_)
|
||||
|
||||
def get_current_queue(self):
|
||||
def get_current_queue(self) -> Tuple[typing.List[QueueTuple], typing.List[QueueTuple]]:
|
||||
with self.mutex:
|
||||
out = []
|
||||
out: typing.List[QueueTuple] = []
|
||||
for x in self.currently_running.values():
|
||||
out += [x]
|
||||
return (out, copy.deepcopy(self.queue))
|
||||
out += [x.queue_tuple]
|
||||
return out, copy.deepcopy([item.queue_tuple for item in self.queue])
|
||||
|
||||
def get_tasks_remaining(self):
|
||||
with self.mutex:
|
||||
@ -925,17 +1048,22 @@ class PromptQueue:
|
||||
|
||||
def wipe_queue(self):
|
||||
with self.mutex:
|
||||
for item in self.queue:
|
||||
if item.completed:
|
||||
item.completed.set_exception(Exception("queue cancelled"))
|
||||
self.queue = []
|
||||
self.server.queue_updated()
|
||||
|
||||
def delete_queue_item(self, function):
|
||||
with self.mutex:
|
||||
for x in range(len(self.queue)):
|
||||
if function(self.queue[x]):
|
||||
if function(self.queue[x].queue_tuple):
|
||||
if len(self.queue) == 1:
|
||||
self.wipe_queue()
|
||||
else:
|
||||
self.queue.pop(x)
|
||||
item = self.queue.pop(x)
|
||||
if item.completed:
|
||||
item.completed.set_exception(Exception("queue item deleted"))
|
||||
heapq.heapify(self.queue)
|
||||
self.server.queue_updated()
|
||||
return True
|
||||
@ -962,9 +1090,9 @@ class PromptQueue:
|
||||
|
||||
def wipe_history(self):
|
||||
with self.mutex:
|
||||
self.history = {}
|
||||
self.history.clear()
|
||||
|
||||
def delete_history_item(self, id_to_delete):
|
||||
def delete_history_item(self, id_to_delete: str):
|
||||
with self.mutex:
|
||||
self.history.pop(id_to_delete, None)
|
||||
|
||||
|
||||
@ -1,15 +1,7 @@
|
||||
import nodes
|
||||
from .cmd.execution import nodes
|
||||
from .component_model.executor_types import DependencyCycleError, NodeInputError, NodeNotFoundError
|
||||
from .graph_utils import is_link
|
||||
|
||||
from comfy_execution.graph_utils import is_link
|
||||
|
||||
class DependencyCycleError(Exception):
|
||||
pass
|
||||
|
||||
class NodeInputError(Exception):
|
||||
pass
|
||||
|
||||
class NodeNotFoundError(Exception):
|
||||
pass
|
||||
|
||||
class DynamicPrompt:
|
||||
def __init__(self, original_prompt):
|
||||
@ -54,6 +46,7 @@ class DynamicPrompt:
|
||||
def get_original_prompt(self):
|
||||
return self.original_prompt
|
||||
|
||||
|
||||
def get_input_info(class_def, input_name):
|
||||
valid_inputs = class_def.INPUT_TYPES()
|
||||
input_info = None
|
||||
@ -76,12 +69,13 @@ def get_input_info(class_def, input_name):
|
||||
extra_info = {}
|
||||
return input_type, input_category, extra_info
|
||||
|
||||
|
||||
class TopologicalSort:
|
||||
def __init__(self, dynprompt):
|
||||
self.dynprompt = dynprompt
|
||||
self.pendingNodes = {}
|
||||
self.blockCount = {} # Number of nodes this node is directly blocked by
|
||||
self.blocking = {} # Which nodes are blocked by this node
|
||||
self.blockCount = {} # Number of nodes this node is directly blocked by
|
||||
self.blocking = {} # Which nodes are blocked by this node
|
||||
|
||||
def get_input_info(self, unique_id, input_name):
|
||||
class_type = self.dynprompt.get_node(unique_id)["class_type"]
|
||||
@ -136,11 +130,13 @@ class TopologicalSort:
|
||||
def is_empty(self):
|
||||
return len(self.pendingNodes) == 0
|
||||
|
||||
|
||||
class ExecutionList(TopologicalSort):
|
||||
"""
|
||||
ExecutionList implements a topological dissolve of the graph. After a node is staged for execution,
|
||||
it can still be returned to the graph after having further dependencies added.
|
||||
"""
|
||||
|
||||
def __init__(self, dynprompt, output_cache):
|
||||
super().__init__(dynprompt)
|
||||
self.output_cache = output_cache
|
||||
@ -203,7 +199,7 @@ class ExecutionList(TopologicalSort):
|
||||
# We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle.
|
||||
# We're skipping some of the performance optimizations from the original TopologicalSort to keep
|
||||
# the code simple (and because having a cycle in the first place is a catastrophic error)
|
||||
blocked_by = { node_id: {} for node_id in self.pendingNodes }
|
||||
blocked_by = {node_id: {} for node_id in self.pendingNodes}
|
||||
for from_node_id in self.blocking:
|
||||
for to_node_id in self.blocking[from_node_id]:
|
||||
if True in self.blocking[from_node_id][to_node_id].values():
|
||||
@ -218,6 +214,7 @@ class ExecutionList(TopologicalSort):
|
||||
to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0]
|
||||
return list(blocked_by.keys())
|
||||
|
||||
|
||||
class ExecutionBlocker:
|
||||
"""
|
||||
Return this from a node and any users will be blocked with the given error message.
|
||||
@ -232,6 +229,6 @@ class ExecutionBlocker:
|
||||
(I would recommend not making nodes like this in the future -- instead, make multiple nodes with
|
||||
different outputs. Unfortunately, there are several popular existing nodes using this pattern.)
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
|
||||
@ -9,13 +9,16 @@ def is_link(obj):
|
||||
return False
|
||||
return True
|
||||
|
||||
# The GraphBuilder is just a utility class that outputs graphs in the form expected by the ComfyUI back-end
|
||||
|
||||
class GraphBuilder:
|
||||
"""
|
||||
The GraphBuilder is just a utility class that outputs graphs in the form expected by the ComfyUI back-end
|
||||
"""
|
||||
_default_prefix_root = ""
|
||||
_default_prefix_call_index = 0
|
||||
_default_prefix_graph_index = 0
|
||||
|
||||
def __init__(self, prefix = None):
|
||||
def __init__(self, prefix=None):
|
||||
if prefix is None:
|
||||
self.prefix = GraphBuilder.alloc_prefix()
|
||||
else:
|
||||
@ -24,7 +27,7 @@ class GraphBuilder:
|
||||
self.id_gen = 1
|
||||
|
||||
@classmethod
|
||||
def set_default_prefix(cls, prefix_root, call_index, graph_index = 0):
|
||||
def set_default_prefix(cls, prefix_root, call_index, graph_index=0):
|
||||
cls._default_prefix_root = prefix_root
|
||||
cls._default_prefix_call_index = call_index
|
||||
cls._default_prefix_graph_index = graph_index
|
||||
@ -80,6 +83,7 @@ class GraphBuilder:
|
||||
id = self.prefix + id
|
||||
del self.nodes[id]
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, id, class_type, inputs):
|
||||
self.id = id
|
||||
@ -112,13 +116,14 @@ class Node:
|
||||
serialized["override_display_id"] = self.override_display_id
|
||||
return serialized
|
||||
|
||||
|
||||
def add_graph_prefix(graph, outputs, prefix):
|
||||
# Change the node IDs and any internal links
|
||||
new_graph = {}
|
||||
for node_id, node_info in graph.items():
|
||||
# Make sure the added nodes have unique IDs
|
||||
new_node_id = prefix + node_id
|
||||
new_node = { "class_type": node_info["class_type"], "inputs": {} }
|
||||
new_node = {"class_type": node_info["class_type"], "inputs": {}}
|
||||
for input_name, input_value in node_info.get("inputs", {}).items():
|
||||
if is_link(input_value):
|
||||
new_node["inputs"][input_name] = [prefix + input_value[0], input_value[1]]
|
||||
@ -136,4 +141,3 @@ def add_graph_prefix(graph, outputs, prefix):
|
||||
new_outputs.append(output)
|
||||
|
||||
return new_graph, tuple(new_outputs)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user