wip inpainting utils

This commit is contained in:
Benjamin Berman 2025-06-06 16:07:33 -07:00
parent d94b0cce93
commit 285b9485f4
4 changed files with 409 additions and 3 deletions

View File

@ -89,3 +89,5 @@ WAN_VIDEO_14B_EXTENDED_RESOLUTIONS = [
(704, 544),
(544, 704)
]
RESOLUTION_NAMES = ["SDXL/SD3/Flux", "SD1.5", "LTXV", "Ideogram", "Cosmos", "HunyuanVideo", "WAN 14b", "WAN 1.3b", "WAN 14b with extras"]

View File

@ -16,7 +16,7 @@ from comfy.nodes.common import MAX_RESOLUTION
from comfy.nodes.package_typing import CustomNode
from comfy_extras.constants.resolutions import SDXL_SD3_FLUX_RESOLUTIONS, LTVX_RESOLUTIONS, SD_RESOLUTIONS, \
IDEOGRAM_RESOLUTIONS, COSMOS_RESOLUTIONS, HUNYUAN_VIDEO_RESOLUTIONS, WAN_VIDEO_14B_RESOLUTIONS, \
WAN_VIDEO_1_3B_RESOLUTIONS, WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
WAN_VIDEO_1_3B_RESOLUTIONS, WAN_VIDEO_14B_EXTENDED_RESOLUTIONS, RESOLUTION_NAMES
def levels_adjustment(image: ImageBatch, black_level: float = 0.0, mid_level: float = 0.5, white_level: float = 1.0, clip: bool = True) -> ImageBatch:
@ -274,7 +274,7 @@ class ImageResize:
"required": {
"image": ("IMAGE",),
"resize_mode": (["cover", "contain", "auto"], {"default": "cover"}),
"resolutions": (["SDXL/SD3/Flux", "SD1.5", "LTXV", "Ideogram", "Cosmos", "HunyuanVideo", "WAN 14b", "WAN 1.3b", "WAN 14b with extras"], {"default": "SDXL/SD3/Flux"}),
"resolutions": (RESOLUTION_NAMES, {"default": RESOLUTION_NAMES[0]}),
"interpolation": (ImageScale.upscale_methods, {"default": "lanczos"}),
},
"optional": {
@ -313,7 +313,6 @@ class ImageResize:
h, w = img.shape[:2]
current_aspect_ratio = w / h
aspect_ratio_diffs = [(abs(res[0] / res[1] - current_aspect_ratio), res) for res in supported_resolutions]
min_diff = min(aspect_ratio_diffs, key=lambda x: x[0])[0]
close_enough_resolutions = [res for diff, res in aspect_ratio_diffs if diff <= min_diff + aspect_ratio_tolerance]

View File

@ -0,0 +1,244 @@
import torch
import torch
import torch.nn.functional as F
from comfy.component_model.tensor_types import MaskBatch
from comfy_extras.constants.resolutions import RESOLUTION_NAMES
from comfy_extras.nodes.nodes_images import ImageResize
# Helper function from the context to composite images
def composite(destination, source, x, y, mask=None, multiplier=1, resize_source=False):
# This function is adapted from the provided context code
source = source.to(destination.device)
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
# Ensure source has the same batch size as destination
if source.shape[0] != destination.shape[0]:
source = source.repeat(destination.shape[0] // source.shape[0], 1, 1, 1)
x = int(x)
y = int(y)
left, top = (x, y)
right, bottom = (left + source.shape[3], top + source.shape[2])
if mask is None:
# If no mask is provided, create a full-coverage mask
mask = torch.ones_like(source)
else:
# Ensure mask is on the correct device and is the correct size
mask = mask.to(destination.device, copy=True)
# Check if the mask is 2D (H, W) or 3D (B, H, W) and unsqueeze if necessary
if mask.dim() == 2:
mask = mask.unsqueeze(0)
if mask.dim() == 3:
mask = mask.unsqueeze(1) # Add channel dimension
mask = torch.nn.functional.interpolate(mask, size=(source.shape[2], source.shape[3]), mode="bilinear")
if mask.shape[0] != source.shape[0]:
mask = mask.repeat(source.shape[0] // mask.shape[0], 1, 1, 1)
# Define the bounds of the overlapping area
dest_left = max(0, left)
dest_top = max(0, top)
dest_right = min(destination.shape[3], right)
dest_bottom = min(destination.shape[2], bottom)
# If there is no overlap, return the original destination
if dest_right <= dest_left or dest_bottom <= dest_top:
return destination
# Calculate the source coordinates corresponding to the overlap
src_left = dest_left - left
src_top = dest_top - top
src_right = dest_right - left
src_bottom = dest_bottom - top
# Crop the relevant portions of the destination, source, and mask
destination_portion = destination[:, :, dest_top:dest_bottom, dest_left:dest_right]
source_portion = source[:, :, src_top:src_bottom, src_left:src_right]
mask_portion = mask[:, :, src_top:src_bottom, src_left:src_right]
inverse_mask_portion = 1.0 - mask_portion
# Perform the composition
blended_portion = (source_portion * mask_portion) + (destination_portion * inverse_mask_portion)
# Place the blended portion back into the destination
destination[:, :, dest_top:dest_bottom, dest_left:dest_right] = blended_portion
return destination
def parse_margin(margin_str: str) -> tuple[int, int, int, int]:
"""Parses a CSS-style margin string."""
parts = [int(p) for p in margin_str.strip().split()]
if len(parts) == 1:
return parts[0], parts[0], parts[0], parts[0]
if len(parts) == 2:
return parts[0], parts[1], parts[0], parts[1]
if len(parts) == 3:
return parts[0], parts[1], parts[2], parts[1]
if len(parts) == 4:
return parts[0], parts[1], parts[2], parts[3]
raise ValueError("Invalid margin format. Use 1 to 4 integer values.")
class CropAndFitInpaintToDiffusionSize:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"resolutions": (RESOLUTION_NAMES, {"default": RESOLUTION_NAMES[0]}),
"margin": ("STRING", {"default": "64"}),
"overflow": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "COMBO[INT]")
RETURN_NAMES = ("image", "mask", "composite_context")
FUNCTION = "crop_and_fit"
CATEGORY = "inpaint"
def crop_and_fit(self, image: torch.Tensor, mask: MaskBatch, resolutions: str, margin: str, overflow: bool):
# 1. Find bounding box of the mask
if mask.max() <= 0:
raise ValueError("Mask is empty, cannot determine bounding box.")
# Find the coordinates of non-zero mask pixels
mask_coords = torch.nonzero(mask[0]) # Assuming single batch for mask
if mask_coords.numel() == 0:
raise ValueError("Mask is empty, cannot determine bounding box.")
y_min, x_min = mask_coords.min(dim=0).values
y_max, x_max = mask_coords.max(dim=0).values
# 2. Parse and apply margin
top_margin, right_margin, bottom_margin, left_margin = parse_margin(margin)
x_start = x_min.item() - left_margin
y_start = y_min.item() - top_margin
x_end = x_max.item() + 1 + right_margin
y_end = y_max.item() + 1 + bottom_margin
img_height, img_width = image.shape[1:3]
# Store pre-crop context for the compositor node
context = {
"x": x_start,
"y": y_start,
"width": x_end - x_start,
"height": y_end - y_start
}
# 3. Handle overflow
padded_image = image
padded_mask = mask
pad_left = -min(0, x_start)
pad_top = -min(0, y_start)
pad_right = max(0, x_end - img_width)
pad_bottom = max(0, y_end - img_height)
if any([pad_left, pad_top, pad_right, pad_bottom]):
if not overflow:
# Crop margin to fit within the image
x_start = max(0, x_start)
y_start = max(0, y_start)
x_end = min(img_width, x_end)
y_end = min(img_height, y_end)
else:
# Extend image and mask
padding = (pad_left, pad_right, pad_top, pad_bottom)
# Pad image with gray
padded_image = F.pad(image.permute(0, 3, 1, 2), padding, "constant", 0.5).permute(0, 2, 3, 1)
# Pad mask with zeros
padded_mask = F.pad(mask.unsqueeze(1), padding, "constant", 0).squeeze(1)
# Adjust coordinates for the new padded space
x_start += pad_left
y_start += pad_top
x_end += pad_left
y_end += pad_top
# 4. Crop image and mask
cropped_image = padded_image[:, y_start:y_end, x_start:x_end, :]
cropped_mask = padded_mask[:, y_start:y_end, x_start:x_end]
# 5. Resize to a supported resolution
resizer = ImageResize()
resized_image, = resizer.resize_image(cropped_image, "cover", resolutions, "lanczos")
# Resize mask similarly. Convert to image-like tensor for resizing.
cropped_mask_as_image = cropped_mask.unsqueeze(-1).repeat(1, 1, 1, 3)
resized_mask_as_image, = resizer.resize_image(cropped_mask_as_image, "cover", resolutions, "lanczos")
# Convert back to a mask (using the red channel)
resized_mask = resized_mask_as_image[:, :, :, 0]
# Pack context into a list of ints for output
# Format: [x, y, width, height]
composite_context = (context["x"], context["y"], context["width"], context["height"])
return (resized_image, resized_mask, composite_context)
class CompositeCroppedAndFittedInpaintResult:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"source_image": ("IMAGE",),
"inpainted_image": ("IMAGE",),
"inpainted_mask": ("MASK",),
"composite_context": ("COMBO[INT]",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "composite_result"
CATEGORY = "inpaint"
def composite_result(self, source_image: torch.Tensor, inpainted_image: torch.Tensor, inpainted_mask: MaskBatch, composite_context: tuple[int, ...]):
# Unpack context
x, y, width, height = composite_context
# The inpainted image and mask are at a diffusion resolution. Resize them back to the original crop size.
target_size = (height, width)
# Resize inpainted image
inpainted_image_permuted = inpainted_image.movedim(-1, 1)
resized_inpainted_image = F.interpolate(inpainted_image_permuted, size=target_size, mode="bilinear", align_corners=False)
# Resize inpainted mask
# Add channel dim: (B, H, W) -> (B, 1, H, W)
inpainted_mask_unsqueezed = inpainted_mask.unsqueeze(1)
resized_inpainted_mask = F.interpolate(inpainted_mask_unsqueezed, size=target_size, mode="bilinear", align_corners=False)
# Prepare for compositing
destination_image = source_image.clone().movedim(-1, 1)
# Composite the resized inpainted image back onto the source image
final_image_permuted = composite(
destination=destination_image,
source=resized_inpainted_image,
x=x,
y=y,
mask=resized_inpainted_mask
)
final_image = final_image_permuted.movedim(1, -1)
return (final_image,)
NODE_CLASS_MAPPINGS = {
"CropAndFitInpaintToDiffusionSize": CropAndFitInpaintToDiffusionSize,
"CompositeCroppedAndFittedInpaintResult": CompositeCroppedAndFittedInpaintResult,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CropAndFitInpaintToDiffusionSize": "Crop & Fit Inpaint Region",
"CompositeCroppedAndFittedInpaintResult": "Composite Inpaint Result",
}

View File

@ -0,0 +1,161 @@
import pytest
import torch
import numpy as np
# Assuming the node definitions are in a file named 'inpaint_nodes.py'
from comfy_extras.nodes.nodes_inpainting import CropAndFitInpaintToDiffusionSize, CompositeCroppedAndFittedInpaintResult, parse_margin
# Helper to create a circular mask
def create_circle_mask(height, width, center_y, center_x, radius):
"""Creates a boolean mask with a filled circle."""
Y, X = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij")
distance = torch.sqrt((Y - center_y) ** 2 + (X - center_x) ** 2)
mask = (distance <= radius).float()
return mask.unsqueeze(0) # Add batch dimension
@pytest.fixture
def sample_image() -> torch.Tensor:
"""A 256x256 image with a vertical gradient."""
gradient = torch.linspace(0, 1, 256).view(1, -1, 1, 1)
image = gradient.expand(1, 256, 256, 3) # (B, H, W, C)
return image
@pytest.fixture
def rect_mask() -> torch.Tensor:
"""A rectangular mask in the center of a 256x256 image."""
mask = torch.zeros(1, 256, 256)
mask[:, 100:150, 80:180] = 1.0
return mask
@pytest.fixture
def circle_mask() -> torch.Tensor:
"""A circular mask in a 256x256 image."""
return create_circle_mask(256, 256, center_y=128, center_x=128, radius=50)
def test_parse_margin():
"""Tests the margin parsing utility function."""
assert parse_margin("10") == (10, 10, 10, 10)
assert parse_margin(" 10 20 ") == (10, 20, 10, 20)
assert parse_margin("10 20 30") == (10, 20, 30, 20)
assert parse_margin("10 20 30 40") == (10, 20, 30, 40)
with pytest.raises(ValueError):
parse_margin("10 20 30 40 50")
with pytest.raises(ValueError):
parse_margin("not a number")
def test_crop_and_fit_basic(sample_image, rect_mask):
"""Tests the basic functionality of the cropping and fitting node."""
node = CropAndFitInpaintToDiffusionSize()
# Using SD1.5 resolutions for predictability in tests
img, msk, ctx = node.crop_and_fit(sample_image, rect_mask, resolutions="SD1.5", margin="20", overflow=False)
# Check output shapes
assert img.shape[0] == 1 and img.shape[3] == 3
assert msk.shape[0] == 1
# Check if resized to a valid SD1.5 resolution
assert (img.shape[2], img.shape[1]) in [(512, 512), (768, 512), (512, 768)]
assert img.shape[1:3] == msk.shape[1:3]
# Check context
# Original mask bounds: y(100, 149), x(80, 179)
# With margin 20: y(80, 169), x(60, 199)
# context is (x, y, width, height)
expected_x = 80 - 20
expected_y = 100 - 20
expected_width = (180 - 80) + 2 * 20
expected_height = (150 - 100) + 2 * 20
assert ctx == (expected_x, expected_y, expected_width, expected_height)
def test_crop_and_fit_overflow(sample_image, rect_mask):
"""Tests the overflow logic by placing the mask at an edge."""
node = CropAndFitInpaintToDiffusionSize()
edge_mask = torch.zeros_like(rect_mask)
edge_mask[:, :20, :50] = 1.0 # Mask at the top-left corner
# Test with overflow disabled (should clamp)
_, _, ctx_no_overflow = node.crop_and_fit(sample_image, edge_mask, "SD1.5", "30", overflow=False)
assert ctx_no_overflow == (0, 0, 50 + 30, 20 + 30)
# Test with overflow enabled
img, msk, ctx_overflow = node.crop_and_fit(sample_image, edge_mask, "SD1.5", "30", overflow=True)
# Context should have negative coordinates
# Original bounds: y(0, 19), x(0, 49)
# Margin 30: y(-30, 49), x(-30, 79)
assert ctx_overflow == (-30, -30, (50 - 0) + 60, (20 - 0) + 60)
# Check that padded area is gray
# The original image was placed inside a larger gray canvas.
# We check a pixel that should be in the padded gray area of the *cropped* image.
# The crop starts at y=-30, x=-30 relative to original image.
# So, pixel (5,5) in the cropped image corresponds to (-25, -25) which is padding.
assert torch.allclose(img[0, 5, 5, :], torch.tensor([0.5, 0.5, 0.5]))
# Check that original image content is still there
# Pixel (40, 40) in cropped image corresponds to (10, 10) in original image
assert torch.allclose(img[0, 40, 40, :], sample_image[0, 10, 10, :])
def test_empty_mask_raises_error(sample_image):
"""Tests that an empty mask correctly raises a ValueError."""
node = CropAndFitInpaintToDiffusionSize()
empty_mask = torch.zeros(1, 256, 256)
with pytest.raises(ValueError, match="Mask is empty"):
node.crop_and_fit(sample_image, empty_mask, "SD1.5", "10", False)
@pytest.mark.parametrize("mask_fixture, margin, overflow", [
("rect_mask", "16", False),
("circle_mask", "32", False),
("rect_mask", "64", True), # margin forces overflow
("circle_mask", "0", False),
])
def test_end_to_end_composition(request, sample_image, mask_fixture, margin, overflow):
"""Performs a full round-trip test of both nodes."""
mask = request.getfixturevalue(mask_fixture)
# --- 1. Crop and Fit ---
crop_node = CropAndFitInpaintToDiffusionSize()
cropped_img, cropped_mask, context = crop_node.crop_and_fit(
sample_image, mask, "SD1.5", margin, overflow
)
# --- 2. Simulate Inpainting ---
# Create a solid blue image as the "inpainted" result
h, w = cropped_img.shape[1:3]
blue_color = torch.tensor([0.1, 0.2, 0.9]).view(1, 1, 1, 3)
inpainted_sim = blue_color.expand(1, h, w, 3)
# The inpainted_mask is the mask output from the first node
inpainted_mask = cropped_mask
# --- 3. Composite Result ---
composite_node = CompositeCroppedAndFittedInpaintResult()
final_image, = composite_node.composite_result(
source_image=sample_image,
inpainted_image=inpainted_sim,
inpainted_mask=inpainted_mask,
composite_context=context
)
# --- 4. Verify Result ---
assert final_image.shape == sample_image.shape
# Create a boolean version of the original mask for easy indexing
bool_mask = mask.squeeze(0).bool() # H, W
# Area *inside* the mask should be blue
masked_area_in_final = final_image[0][bool_mask]
assert torch.allclose(masked_area_in_final, blue_color.squeeze(), atol=1e-2)
# Area *outside* the mask should be unchanged from the original
unmasked_area_in_final = final_image[0][~bool_mask]
unmasked_area_in_original = sample_image[0][~bool_mask]
assert torch.allclose(unmasked_area_in_final, unmasked_area_in_original, atol=1e-2)