Merge remote-tracking branch 'upstream/master'

# Conflicts:
#	comfy/samplers.py
This commit is contained in:
InconsolableCellist 2023-04-30 17:39:51 -06:00
commit 29bc094880
15 changed files with 260 additions and 135 deletions

View File

@ -1,65 +0,0 @@
import pygit2
from datetime import datetime
import sys
def pull(repo, remote_name='origin', branch='master'):
for remote in repo.remotes:
if remote.name == remote_name:
remote.fetch()
remote_master_id = repo.lookup_reference('refs/remotes/origin/%s' % (branch)).target
merge_result, _ = repo.merge_analysis(remote_master_id)
# Up to date, do nothing
if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
return
# We can just fastforward
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
repo.checkout_tree(repo.get(remote_master_id))
try:
master_ref = repo.lookup_reference('refs/heads/%s' % (branch))
master_ref.set_target(remote_master_id)
except KeyError:
repo.create_branch(branch, repo.get(remote_master_id))
repo.head.set_target(remote_master_id)
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
repo.merge(remote_master_id)
if repo.index.conflicts is not None:
for conflict in repo.index.conflicts:
print('Conflicts found in:', conflict[0].path)
raise AssertionError('Conflicts, ahhhhh!!')
user = repo.default_signature
tree = repo.index.write_tree()
commit = repo.create_commit('HEAD',
user,
user,
'Merge!',
tree,
[repo.head.target, remote_master_id])
# We need to do this or git CLI will think we are still merging.
repo.state_cleanup()
else:
raise AssertionError('Unknown merge analysis result')
repo = pygit2.Repository(str(sys.argv[1]))
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:
print("stashing current changes")
repo.stash(ident)
except KeyError:
print("nothing to stash")
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name))
repo.branches.local.create(backup_branch_name, repo.head.peel())
print("checking out master branch")
branch = repo.lookup_branch('master')
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
print("pulling latest changes")
pull(repo)
print("Done!")

View File

@ -1,2 +0,0 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
pause

View File

@ -1,3 +1,3 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r ../ComfyUI/requirements.txt pygit2
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2
pause

View File

@ -1,27 +0,0 @@
HOW TO RUN:
if you have a NVIDIA gpu:
run_nvidia_gpu.bat
To run it in slow CPU mode:
run_cpu.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
RECOMMENDED WAY TO UPDATE:
To update the ComfyUI code: update\update_comfyui.bat
To update ComfyUI with the python dependencies:
update\update_comfyui_and_python_dependencies.bat

View File

@ -1,2 +0,0 @@
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
pause

View File

@ -17,7 +17,7 @@ jobs:
- shell: bash
run: |
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers==0.0.19.dev516 --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir

View File

@ -46,6 +46,8 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/nightly/update_windows/* ./update/
cp -r ComfyUI/.ci/nightly/windows_base_files/* ./
cd ..

View File

@ -7,6 +7,8 @@ A powerful and modular stable diffusion GUI and backend.
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
### [Installing ComfyUI](#installing)
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x and SD2.x

View File

@ -10,6 +10,7 @@ parser.add_argument("--output-directory", type=str, default=None, help="Set the
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")

View File

@ -20,15 +20,30 @@ total_vram_available_mb = -1
accelerate_enabled = False
xpu_available = False
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
try:
import torch
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
if directml_enabled:
total_vram = 4097 #TODO
else:
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
if not args.normalvram and not args.cpu:
if total_vram <= 4096:
@ -217,6 +232,10 @@ def unload_if_low_vram(model):
def get_torch_device():
global xpu_available
global directml_enabled
if directml_enabled:
global directml_device
return directml_device
if vram_state == VRAMState.MPS:
return torch.device("mps")
if vram_state == VRAMState.CPU:
@ -234,8 +253,14 @@ def get_autocast_device(dev):
def xformers_enabled():
global xpu_available
global directml_enabled
if vram_state == VRAMState.CPU:
return False
if xpu_available:
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
@ -251,6 +276,7 @@ def pytorch_attention_enabled():
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
@ -258,7 +284,10 @@ def get_free_memory(dev=None, torch_free_too=False):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if xpu_available:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
else:
@ -293,9 +322,14 @@ def mps_mode():
def should_use_fp16():
global xpu_available
global directml_enabled
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
return False #TODO ?

View File

@ -10,7 +10,6 @@ from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
#The main sampling function shared by all the samplers
#Returns predicted noise
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
@ -24,8 +23,38 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
adm_cond = cond[1]['adm_encoded']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
mult = torch.ones_like(input_x) * strength
if 'mask' in cond[1]:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
assert(mask.shape[1] == x_in.shape[2])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditioning = {}
conditioning['c_crossattn'] = cond[0]
rr = 8
if area[2] != 0:
for t in range(rr):
@ -198,12 +227,6 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
if control is not None:
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
# if attention is not None:
# generated_attention = c['c_crossattn'][0]
# mixed_attention = attention_weight * torch.cat(attention) + (1 - attention_weight) * generated_attention
# c['c_crossattn'] = [mixed_attention]
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
@ -215,7 +238,6 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
else:
transformer_options["patches"] = patches
# transformer_options['return_attention'] = True
c['transformer_options'] = transformer_options
if transformer_options.get("return_attention", False):
@ -325,6 +347,71 @@ def blank_inpaint_image_like(latent_image):
blank_image[:,3] *= 0.1380
return blank_image
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
b = masks.shape[0]
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
for i in range(b):
mask = masks[i]
if mask.numel() == 0:
continue
if torch.max(mask != 0) == False:
is_empty[i] = True
continue
y, x = torch.where(mask)
bounding_boxes[i, 0] = torch.min(x)
bounding_boxes[i, 1] = torch.min(y)
bounding_boxes[i, 2] = torch.max(x)
bounding_boxes[i, 3] = torch.max(y)
return bounding_boxes, is_empty
def resolve_cond_masks(conditions, h, w, device):
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)):
c = conditions[i]
if 'mask' in c[1]:
mask = c[1]['mask']
mask = mask.to(device=device)
modified = c[1].copy()
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if mask.shape[2] != h or mask.shape[3] != w:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
if modified.get("set_area_to_bounds", False):
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
boxes, is_empty = get_mask_aabb(bounds)
if is_empty[0]:
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
modified['area'] = (8, 8, 0, 0)
else:
box = boxes[0]
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
# Make sure the height and width are divisible by 8
if X % 8 != 0:
newx = X // 8 * 8
W = W + (X - newx)
X = newx
if Y % 8 != 0:
newy = Y // 8 * 8
H = H + (Y - newy)
Y = newy
if H % 8 != 0:
H = H + (8 - (H % 8))
if W % 8 != 0:
W = W + (8 - (W % 8))
area = (int(H), int(W), int(Y), int(X))
modified['area'] = area
modified['mask'] = mask
conditions[i] = [c[0], modified]
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
@ -509,6 +596,10 @@ class KSampler:
positive = positive[:]
negative = negative[:]
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)

View File

@ -65,6 +65,36 @@ class ConditioningCombine:
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
def __init__(self, event_dispatcher):
self.event_dispatcher = event_dispatcher
@ -88,11 +118,41 @@ class ConditioningSetArea:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
n[1]['min_sigma'] = min_sigma
n[1]['max_sigma'] = max_sigma
c.append(n)
return (c, )
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
c = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
for t in conditioning:
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
return (c, )
class VAEDecode:
def __init__(self, device="cpu", event_dispatcher=None):
self.device = device
@ -1217,8 +1277,10 @@ NODE_CLASS_MAPPINGS = {
"ImageScale": ImageScale,
"ImageInvert": ImageInvert,
"ImagePadForOutpaint": ImagePadForOutpaint,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
@ -1267,7 +1329,9 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetMask": "Conditioning (Set Mask)",
"ControlNetApply": "Apply ControlNet",
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",

View File

@ -6,6 +6,7 @@ app.registerExtension({
name: "Comfy.SlotDefaults",
suggestionsNumber: null,
init() {
LiteGraph.search_filter_enabled = true;
LiteGraph.middle_click_slot_add_default_node = true;
this.suggestionsNumber = app.ui.settings.addSetting({
id: "Comfy.NodeSuggestions.number",
@ -43,6 +44,14 @@ app.registerExtension({
}
if (this.slot_types_default_out[type].includes(nodeId)) continue;
this.slot_types_default_out[type].push(nodeId);
// Input types have to be stored as lower case
// Store each node that can handle this input type
const lowerType = type.toLocaleLowerCase();
if (!(lowerType in LiteGraph.registered_slot_in_types)) {
LiteGraph.registered_slot_in_types[lowerType] = { nodes: [] };
}
LiteGraph.registered_slot_in_types[lowerType].nodes.push(nodeType.comfyClass);
}
var outputs = nodeData["output"];
@ -53,6 +62,16 @@ app.registerExtension({
}
this.slot_types_default_in[type].push(nodeId);
// Store each node that can handle this output type
if (!(type in LiteGraph.registered_slot_out_types)) {
LiteGraph.registered_slot_out_types[type] = { nodes: [] };
}
LiteGraph.registered_slot_out_types[type].nodes.push(nodeType.comfyClass);
if(!LiteGraph.slot_types_out.includes(type)) {
LiteGraph.slot_types_out.push(type);
}
}
var maxNum = this.suggestionsNumber.value;
this.setDefaults(maxNum);

View File

@ -3628,6 +3628,18 @@
return size;
};
LGraphNode.prototype.inResizeCorner = function(canvasX, canvasY) {
var rows = this.outputs ? this.outputs.length : 1;
var outputs_offset = (this.constructor.slot_start_y || 0) + rows * LiteGraph.NODE_SLOT_HEIGHT;
return isInsideRectangle(canvasX,
canvasY,
this.pos[0] + this.size[0] - 15,
this.pos[1] + Math.max(this.size[1] - 15, outputs_offset),
20,
20
);
}
/**
* returns all the info available about a property of this node.
*
@ -5877,14 +5889,7 @@ LGraphNode.prototype.executeAction = function(action)
if ( !this.connecting_node && !node.flags.collapsed && !this.live_mode ) {
//Search for corner for resize
if ( !skip_action &&
node.resizable !== false &&
isInsideRectangle( e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
10,
10
)
node.resizable !== false && node.inResizeCorner(e.canvasX, e.canvasY)
) {
this.graph.beforeChange();
this.resizing_node = node;
@ -6424,16 +6429,7 @@ LGraphNode.prototype.executeAction = function(action)
//Search for corner
if (this.canvas) {
if (
isInsideRectangle(
e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
5,
5
)
) {
if (node.inResizeCorner(e.canvasX, e.canvasY)) {
this.canvas.style.cursor = "se-resize";
} else {
this.canvas.style.cursor = "crosshair";

View File

@ -120,7 +120,7 @@ body {
.comfy-menu > button,
.comfy-menu-btns button,
.comfy-menu .comfy-list button,
.comfy-modal button{
.comfy-modal button {
color: var(--input-text);
background-color: var(--comfy-input-bg);
border-radius: 8px;
@ -129,6 +129,15 @@ body {
margin-top: 2px;
}
.comfy-menu > button:hover,
.comfy-menu-btns button:hover,
.comfy-menu .comfy-list button:hover,
.comfy-modal button:hover,
.comfy-settings-btn:hover {
filter: brightness(1.2);
cursor: pointer;
}
.comfy-menu span.drag-handle {
width: 10px;
height: 20px;
@ -284,4 +293,7 @@ button.comfy-queue-btn {
top: 0;
right: 2px;
}
.litecontextmenu {
z-index: 9999 !important;
}