Merge branch 'comfyanonymous:master' into refactor/onprompt

This commit is contained in:
Dr.Lt.Data 2023-08-18 20:59:00 +09:00 committed by GitHub
commit 2b5641852f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 399 additions and 207 deletions

View File

@ -31,7 +31,7 @@ jobs:
echo 'import site' >> ./python311._pth echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py ./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir python -m pip wheel torch torchvision torchaudio aiohttp==3.8.5 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/* ./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python311._pth sed -i '1i../ComfyUI' ./python311._pth

View File

@ -47,6 +47,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Ctrl + O | Load workflow | | Ctrl + O | Load workflow |
| Ctrl + A | Select all nodes | | Ctrl + A | Select all nodes |
| Ctrl + M | Mute/unmute selected nodes | | Ctrl + M | Mute/unmute selected nodes |
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| Delete/Backspace | Delete selected nodes | | Delete/Backspace | Delete selected nodes |
| Ctrl + Delete/Backspace | Delete the current graph | | Ctrl + Delete/Backspace | Delete the current graph |
| Space | Move the canvas around when held and moving the cursor | | Space | Move the canvas around when held and moving the cursor |

View File

@ -82,6 +82,9 @@ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn'
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).") vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.") parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.") parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).") parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")

View File

@ -25,6 +25,7 @@ class ClipVisionModel():
def encode_image(self, image): def encode_image(self, image):
img = torch.clip((255. * image), 0, 255).round().int() img = torch.clip((255. * image), 0, 255).round().int()
img = list(map(lambda a: a, img))
inputs = self.processor(images=img, return_tensors="pt") inputs = self.processor(images=img, return_tensors="pt")
outputs = self.model(**inputs) outputs = self.model(**inputs)
return outputs return outputs

View File

@ -244,30 +244,15 @@ class Gligen(nn.Module):
self.position_net = position_net self.position_net = position_net
self.key_dim = key_dim self.key_dim = key_dim
self.max_objs = 30 self.max_objs = 30
self.lowvram = False self.current_device = torch.device("cpu")
def _set_position(self, boxes, masks, positive_embeddings): def _set_position(self, boxes, masks, positive_embeddings):
if self.lowvram == True:
self.position_net.to(boxes.device)
objs = self.position_net(boxes, masks, positive_embeddings) objs = self.position_net(boxes, masks, positive_embeddings)
def func(x, extra_options):
if self.lowvram == True: key = extra_options["transformer_index"]
self.position_net.cpu() module = self.module_list[key]
def func_lowvram(x, extra_options): return module(x, objs)
key = extra_options["transformer_index"] return func
module = self.module_list[key]
module.to(x.device)
r = module(x, objs)
module.cpu()
return r
return func_lowvram
else:
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs)
return func
def set_position(self, latent_image_shape, position_params, device): def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape batch, c, h, w = latent_image_shape
@ -312,14 +297,6 @@ class Gligen(nn.Module):
masks.to(device), masks.to(device),
conds.to(device)) conds.to(device))
def set_lowvram(self, value=True):
self.lowvram = value
def cleanup(self):
self.lowvram = False
def get_models(self):
return [self]
def load_gligen(sd): def load_gligen(sd):
sd_k = sd.keys() sd_k = sd.keys()

View File

@ -649,7 +649,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None denoised_1, denoised_2 = None, None
h_1, h_2 = None, None h, h_1, h_2 = None, None, None
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)

View File

@ -121,9 +121,20 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
return model_config_from_unet_config(unet_config) return model_config_from_unet_config(unet_config)
def model_config_from_diffusers_unet(state_dict, use_fp16): def unet_config_from_diffusers_unet(state_dict, use_fp16):
match = {} match = {}
match["context_dim"] = state_dict["down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1] attention_resolutions = []
attn_res = 1
for i in range(5):
k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
if k in state_dict:
match["context_dim"] = state_dict[k].shape[1]
attention_resolutions.append(attn_res)
attn_res *= 2
match["attention_resolutions"] = attention_resolutions
match["model_channels"] = state_dict["conv_in.weight"].shape[0] match["model_channels"] = state_dict["conv_in.weight"].shape[0]
match["in_channels"] = state_dict["conv_in.weight"].shape[1] match["in_channels"] = state_dict["conv_in.weight"].shape[1]
match["adm_in_channels"] = None match["adm_in_channels"] = None
@ -135,22 +146,22 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4], 'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048} 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384, 'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280} 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2, 'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024} 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024} 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
@ -160,9 +171,20 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2, 'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768} 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl] SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet]
for unet_config in supported_models: for unet_config in supported_models:
matches = True matches = True
@ -171,5 +193,11 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
matches = False matches = False
break break
if matches: if matches:
return model_config_from_unet_config(unet_config) return unet_config
return None
def model_config_from_diffusers_unet(state_dict, use_fp16):
unet_config = unet_config_from_diffusers_unet(state_dict, use_fp16)
if unet_config is not None:
return model_config_from_unet_config(unet_config)
return None return None

View File

@ -2,6 +2,7 @@ import psutil
from enum import Enum from enum import Enum
from comfy.cli_args import args from comfy.cli_args import args
import torch import torch
import sys
class VRAMState(Enum): class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram DISABLED = 0 #No vram present: no need to move models to vram
@ -201,6 +202,10 @@ if cpu_state == CPUState.MPS:
print(f"Set vram state to: {vram_state.name}") print(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
print("Disabling smart memory management")
def get_torch_device_name(device): def get_torch_device_name(device):
if hasattr(device, 'type'): if hasattr(device, 'type'):
@ -221,132 +226,164 @@ except:
print("Could not pick default device.") print("Could not pick default device.")
current_loaded_model = None current_loaded_models = []
current_gpu_controlnets = []
model_accelerated = False class LoadedModel:
def __init__(self, model):
self.model = model
self.model_accelerated = False
self.device = model.load_device
def model_memory(self):
return self.model.model_size()
def unload_model(): def model_memory_required(self, device):
global current_loaded_model if device == self.model.current_device:
global model_accelerated return 0
global current_gpu_controlnets else:
global vram_state return self.model_memory()
if current_loaded_model is not None: def model_load(self, lowvram_model_memory=0):
if model_accelerated: patch_model_to = None
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model) if lowvram_model_memory == 0:
model_accelerated = False patch_model_to = self.device
current_loaded_model.unpatch_model() self.model.model_patches_to(self.device)
current_loaded_model.model.to(current_loaded_model.offload_device) self.model.model_patches_to(self.model.model_dtype())
current_loaded_model.model_patches_to(current_loaded_model.offload_device)
current_loaded_model = None
if vram_state != VRAMState.HIGH_VRAM:
soft_empty_cache()
if vram_state != VRAMState.HIGH_VRAM: try:
if len(current_gpu_controlnets) > 0: self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
for n in current_gpu_controlnets: except Exception as e:
n.cpu() self.model.unpatch_model(self.model.offload_device)
current_gpu_controlnets = [] self.model_unload()
raise e
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
self.model_accelerated = True
return self.real_model
def model_unload(self):
if self.model_accelerated:
accelerate.hooks.remove_hook_from_submodules(self.real_model)
self.model_accelerated = False
self.model.unpatch_model(self.model.offload_device)
self.model.model_patches_to(self.model.offload_device)
def __eq__(self, other):
return self.model is other.model
def minimum_inference_memory(): def minimum_inference_memory():
return (768 * 1024 * 1024) return (1024 * 1024 * 1024)
def unload_model_clones(model):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
print("unload clone", i)
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
for i in range(len(current_loaded_models) -1, -1, -1):
if DISABLE_SMART_MEMORY:
current_free_mem = 0
else:
current_free_mem = get_free_memory(device)
if current_free_mem > memory_required:
break
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
current_loaded_models.pop(i).model_unload()
unloaded_model = True
if unloaded_model:
soft_empty_cache()
def load_models_gpu(models, memory_required=0):
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
if loaded_model in current_loaded_models:
index = current_loaded_models.index(loaded_model)
current_loaded_models.insert(0, current_loaded_models.pop(index))
models_already_loaded.append(loaded_model)
else:
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
print("loading new")
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model)
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 256 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model): def load_model_gpu(model):
global current_loaded_model return load_models_gpu([model])
global vram_state
global model_accelerated
if model is current_loaded_model: def cleanup_models():
return to_delete = []
unload_model() for i in range(len(current_loaded_models)):
print(sys.getrefcount(current_loaded_models[i].model))
if sys.getrefcount(current_loaded_models[i].model) <= 2:
to_delete = [i] + to_delete
torch_dev = model.load_device for i in to_delete:
model.model_patches_to(torch_dev) x = current_loaded_models.pop(i)
model.model_patches_to(model.model_dtype()) x.model_unload()
current_loaded_model = model del x
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
real_model = model.model
patch_model_to = None
if vram_set_state == VRAMState.DISABLED:
pass
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
model_accelerated = False
patch_model_to = torch_dev
try:
real_model = model.patch_model(device_to=patch_model_to)
except Exception as e:
model.unpatch_model()
unload_model()
raise e
if patch_model_to is not None:
real_model.to(torch_dev)
if vram_set_state == VRAMState.NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
elif vram_set_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
return current_loaded_model
def load_controlnet_gpu(control_models):
global current_gpu_controlnets
global vram_state
if vram_state == VRAMState.DISABLED:
return
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
for m in control_models:
if hasattr(m, 'set_lowvram'):
m.set_lowvram(True)
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
return
models = []
for m in control_models:
models += m.get_models()
for m in current_gpu_controlnets:
if m not in models:
m.cpu()
device = get_torch_device()
current_gpu_controlnets = []
for m in models:
current_gpu_controlnets.append(m.to(device))
def load_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
return model.to(get_torch_device())
return model
def unload_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
return model.cpu()
return model
def unet_offload_device(): def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM: if vram_state == VRAMState.HIGH_VRAM:
@ -354,6 +391,25 @@ def unet_offload_device():
else: else:
return torch.device("cpu") return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
model_size = dtype_size * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def text_encoder_offload_device(): def text_encoder_offload_device():
if args.gpu_only: if args.gpu_only:
return get_torch_device() return get_torch_device()
@ -456,6 +512,13 @@ def get_free_memory(dev=None, torch_free_too=False):
else: else:
return mem_free_total return mem_free_total
def batch_area_memory(area):
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: these formulas are copied from maximum_batch_area below
return (area / 20) * (1024 * 1024)
else:
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
def maximum_batch_area(): def maximum_batch_area():
global vram_state global vram_state
if vram_state == VRAMState.NO_VRAM: if vram_state == VRAMState.NO_VRAM:

View File

@ -51,19 +51,24 @@ def get_models_from_cond(cond, model_type):
models += [c[1][model_type]] models += [c[1][model_type]]
return models return models
def load_additional_models(positive, negative, dtype): def get_additional_models(positive, negative):
"""loads additional models in positive and negative conditioning""" """loads additional models in positive and negative conditioning"""
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control") control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
control_models = []
for m in control_nets:
control_models += m.get_models()
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1].to(dtype) for x in gligen] gligen = [x[1] for x in gligen]
models = control_nets + gligen models = control_models + gligen
comfy.model_management.load_controlnet_gpu(models)
return models return models
def cleanup_additional_models(models): def cleanup_additional_models(models):
"""cleanup additional models that were loaded""" """cleanup additional models that were loaded"""
for m in models: for m in models:
m.cleanup() if hasattr(m, 'cleanup'):
m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
device = comfy.model_management.get_torch_device() device = comfy.model_management.get_torch_device()
@ -72,7 +77,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
noise_mask = prepare_mask(noise_mask, noise.shape, device) noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None real_model = None
comfy.model_management.load_model_gpu(model) models = get_additional_models(positive, negative)
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
real_model = model.model real_model = model.model
noise = noise.to(device) noise = noise.to(device)
@ -81,7 +87,6 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
positive_copy = broadcast_cond(positive, noise.shape[0], device) positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device) negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative, model.model_dtype())
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)

View File

@ -88,9 +88,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
gligen_type = gligen[0] gligen_type = gligen[0]
gligen_model = gligen[1] gligen_model = gligen[1]
if gligen_type == "position": if gligen_type == "position":
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device) gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
else: else:
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device) gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch] patches['middle_patch'] = [gligen_patch]

View File

@ -244,7 +244,7 @@ def set_attr(obj, attr, value):
del prev del prev
class ModelPatcher: class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0): def __init__(self, model, load_device, offload_device, size=0, current_device=None):
self.size = size self.size = size
self.model = model self.model = model
self.patches = {} self.patches = {}
@ -253,6 +253,10 @@ class ModelPatcher:
self.model_size() self.model_size()
self.load_device = load_device self.load_device = load_device
self.offload_device = offload_device self.offload_device = offload_device
if current_device is None:
self.current_device = self.offload_device
else:
self.current_device = current_device
def model_size(self): def model_size(self):
if self.size > 0: if self.size > 0:
@ -267,7 +271,7 @@ class ModelPatcher:
return size return size
def clone(self): def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size) n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
n.patches = {} n.patches = {}
for k in self.patches: for k in self.patches:
n.patches[k] = self.patches[k][:] n.patches[k] = self.patches[k][:]
@ -276,6 +280,11 @@ class ModelPatcher:
n.model_keys = self.model_keys n.model_keys = self.model_keys
return n return n
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def set_model_sampler_cfg_function(self, sampler_cfg_function): def set_model_sampler_cfg_function(self, sampler_cfg_function):
if len(inspect.signature(sampler_cfg_function).parameters) == 3: if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
@ -390,6 +399,11 @@ class ModelPatcher:
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
set_attr(self.model, key, out_weight) set_attr(self.model, key, out_weight)
del temp_weight del temp_weight
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model return self.model
def calculate_weight(self, patches, weight, key): def calculate_weight(self, patches, weight, key):
@ -482,7 +496,7 @@ class ModelPatcher:
return weight return weight
def unpatch_model(self): def unpatch_model(self, device_to=None):
keys = list(self.backup.keys()) keys = list(self.backup.keys())
for k in keys: for k in keys:
@ -490,6 +504,11 @@ class ModelPatcher:
self.backup = {} self.backup = {}
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
def load_lora_for_models(model, clip, lora, strength_model, strength_clip): def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
key_map = model_lora_keys_unet(model.model) key_map = model_lora_keys_unet(model.model)
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map) key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
@ -555,7 +574,7 @@ class CLIP:
else: else:
self.cond_stage_model.reset_clip_layer() self.cond_stage_model.reset_clip_layer()
model_management.load_model_gpu(self.patcher) self.load_model()
cond, pooled = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
if return_pooled: if return_pooled:
return cond, pooled return cond, pooled
@ -571,11 +590,9 @@ class CLIP:
def get_sd(self): def get_sd(self):
return self.cond_stage_model.state_dict() return self.cond_stage_model.state_dict()
def patch_model(self): def load_model(self):
self.patcher.patch_model() model_management.load_model_gpu(self.patcher)
return self.patcher
def unpatch_model(self):
self.patcher.unpatch_model()
def get_key_patches(self): def get_key_patches(self):
return self.patcher.get_key_patches() return self.patcher.get_key_patches()
@ -630,11 +647,12 @@ class VAE:
return samples return samples
def decode(self, samples_in): def decode(self, samples_in):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
try: try:
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.4
model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64)) batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number) batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu") pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
@ -650,19 +668,19 @@ class VAE:
return pixel_samples return pixel_samples
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
output = self.decode_tiled_(samples, tile_x, tile_y, overlap) output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
self.first_stage_model = self.first_stage_model.to(self.offload_device) self.first_stage_model = self.first_stage_model.to(self.offload_device)
return output.movedim(1,-1) return output.movedim(1,-1)
def encode(self, pixel_samples): def encode(self, pixel_samples):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1) pixel_samples = pixel_samples.movedim(-1,1)
try: try:
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.4 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change. batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number) batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu") samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
for x in range(0, pixel_samples.shape[0], batch_number): for x in range(0, pixel_samples.shape[0], batch_number):
@ -677,7 +695,6 @@ class VAE:
return samples return samples
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1) pixel_samples = pixel_samples.movedim(-1,1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
@ -757,6 +774,7 @@ class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None): def __init__(self, control_model, global_average_pooling=False, device=None):
super().__init__(device) super().__init__(device)
self.control_model = control_model self.control_model = control_model
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
self.global_average_pooling = global_average_pooling self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond, batched_number): def get_control(self, x_noisy, t, cond, batched_number):
@ -786,11 +804,9 @@ class ControlNet(ControlBase):
precision_scope = contextlib.nullcontext precision_scope = contextlib.nullcontext
with precision_scope(model_management.get_autocast_device(self.device)): with precision_scope(model_management.get_autocast_device(self.device)):
self.control_model = model_management.load_if_low_vram(self.control_model)
context = torch.cat(cond['c_crossattn'], 1) context = torch.cat(cond['c_crossattn'], 1)
y = cond.get('c_adm', None) y = cond.get('c_adm', None)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y) control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
self.control_model = model_management.unload_if_low_vram(self.control_model)
out = {'middle':[], 'output': []} out = {'middle':[], 'output': []}
autocast_enabled = torch.is_autocast_enabled() autocast_enabled = torch.is_autocast_enabled()
@ -825,7 +841,7 @@ class ControlNet(ControlBase):
def get_models(self): def get_models(self):
out = super().get_models() out = super().get_models()
out.append(self.control_model) out.append(self.control_model_wrapped)
return out return out
@ -835,7 +851,7 @@ def load_controlnet(ckpt_path, model=None):
controlnet_config = None controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
use_fp16 = model_management.should_use_fp16() use_fp16 = model_management.should_use_fp16()
controlnet_config = model_detection.model_config_from_diffusers_unet(controlnet_data, use_fp16).unet_config controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
diffusers_keys = utils.unet_to_diffusers(controlnet_config) diffusers_keys = utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
@ -874,6 +890,9 @@ def load_controlnet(ckpt_path, model=None):
if k in controlnet_data: if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
controlnet_data = new_sd controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight' pth_key = 'control_model.zero_convs.0.0.weight'
@ -901,8 +920,8 @@ def load_controlnet(ckpt_path, model=None):
if pth: if pth:
if 'difference' in controlnet_data: if 'difference' in controlnet_data:
if model is not None: if model is not None:
m = model.patch_model() model_management.load_models_gpu([model])
model_sd = m.state_dict() model_sd = model.model_state_dict()
for x in controlnet_data: for x in controlnet_data:
c_m = "control_model." c_m = "control_model."
if x.startswith(c_m): if x.startswith(c_m):
@ -910,7 +929,6 @@ def load_controlnet(ckpt_path, model=None):
if sd_key in model_sd: if sd_key in model_sd:
cd = controlnet_data[x] cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
model.unpatch_model()
else: else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
@ -1001,7 +1019,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c) self.copy_to(c)
return c return c
def load_t2i_adapter(t2i_data): def load_t2i_adapter(t2i_data):
keys = t2i_data.keys() keys = t2i_data.keys()
if 'adapter' in keys: if 'adapter' in keys:
@ -1087,7 +1104,7 @@ def load_gligen(ckpt_path):
model = gligen.load_gligen(data) model = gligen.load_gligen(data)
if model_management.should_use_fp16(): if model_management.should_use_fp16():
model = model.half() model = model.half()
return model return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
#TODO: this function is a mess and should be removed eventually #TODO: this function is a mess and should be removed eventually
@ -1199,8 +1216,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clipvision: if output_clipvision:
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
dtype = torch.float32
if fp16:
dtype = torch.float16
inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
offload_device = model_management.unet_offload_device() offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, "model.diffusion_model.", device=offload_device) model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.") model.load_model_weights(sd, "model.diffusion_model.")
if output_vae: if output_vae:
@ -1221,7 +1243,12 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if len(left_over) > 0: if len(left_over) > 0:
print("left over keys:", left_over) print("left over keys:", left_over)
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision) model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return (model_patcher, clip, vae, clipvision)
def load_unet(unet_path): #load unet in diffusers format def load_unet(unet_path): #load unet in diffusers format
@ -1249,14 +1276,6 @@ def load_unet(unet_path): #load unet in diffusers format
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device) return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
def save_checkpoint(output_path, model, clip, vae, metadata=None): def save_checkpoint(output_path, model, clip, vae, metadata=None):
try: model_management.load_models_gpu([model, clip.load_model()])
model.patch_model() sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
clip.patch_model() utils.save_torch_file(sd, output_path, metadata=metadata)
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
utils.save_torch_file(sd, output_path, metadata=metadata)
model.unpatch_model()
clip.unpatch_model()
except Exception as e:
model.unpatch_model()
clip.unpatch_model()
raise e

View File

@ -1,15 +1,19 @@
import numpy as np
from scipy.ndimage import grey_dilation
import torch import torch
from nodes import MAX_RESOLUTION from nodes import MAX_RESOLUTION
def composite(destination, source, x, y, mask = None, multiplier = 8): def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier)) x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier)) y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
left, top = (x // multiplier, y // multiplier) left, top = (x // multiplier, y // multiplier)
right, bottom = (left + source.shape[3], top + source.shape[2],) right, bottom = (left + source.shape[3], top + source.shape[2],)
if mask is None: if mask is None:
mask = torch.ones_like(source) mask = torch.ones_like(source)
else: else:
@ -40,6 +44,7 @@ class LatentCompositeMasked:
"source": ("LATENT",), "source": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"resize_source": ("BOOLEAN", {"default": False}),
}, },
"optional": { "optional": {
"mask": ("MASK",), "mask": ("MASK",),
@ -50,11 +55,11 @@ class LatentCompositeMasked:
CATEGORY = "latent" CATEGORY = "latent"
def composite(self, destination, source, x, y, mask = None): def composite(self, destination, source, x, y, resize_source, mask = None):
output = destination.copy() output = destination.copy()
destination = destination["samples"].clone() destination = destination["samples"].clone()
source = source["samples"] source = source["samples"]
output["samples"] = composite(destination, source, x, y, mask, 8) output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
return (output,) return (output,)
class ImageCompositeMasked: class ImageCompositeMasked:
@ -66,6 +71,7 @@ class ImageCompositeMasked:
"source": ("IMAGE",), "source": ("IMAGE",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"resize_source": ("BOOLEAN", {"default": False}),
}, },
"optional": { "optional": {
"mask": ("MASK",), "mask": ("MASK",),
@ -76,9 +82,9 @@ class ImageCompositeMasked:
CATEGORY = "image" CATEGORY = "image"
def composite(self, destination, source, x, y, mask = None): def composite(self, destination, source, x, y, resize_source, mask = None):
destination = destination.clone().movedim(-1, 1) destination = destination.clone().movedim(-1, 1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1).movedim(1, -1) output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return (output,) return (output,)
class MaskToImage: class MaskToImage:
@ -272,6 +278,35 @@ class FeatherMask:
output[-y, :] *= feather_rate output[-y, :] *= feather_rate
return (output,) return (output,)
class GrowMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
},
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "expand_mask"
def expand_mask(self, mask, expand, tapered_corners):
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
output = mask.numpy().copy()
while expand > 0:
output = grey_dilation(output, footprint=kernel)
expand -= 1
output = torch.from_numpy(output)
return (output,)
@ -285,6 +320,7 @@ NODE_CLASS_MAPPINGS = {
"CropMask": CropMask, "CropMask": CropMask,
"MaskComposite": MaskComposite, "MaskComposite": MaskComposite,
"FeatherMask": FeatherMask, "FeatherMask": FeatherMask,
"GrowMask": GrowMask,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {

View File

@ -2,6 +2,7 @@ import numpy as np
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from PIL import Image from PIL import Image
import math
import comfy.utils import comfy.utils
@ -209,9 +210,36 @@ class Sharpen:
return (result,) return (result,)
class ImageScaleToTotalPixels:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, megapixels):
samples = image.movedim(-1,1)
total = int(megapixels * 1024 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1,-1)
return (s,)
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend, "ImageBlend": Blend,
"ImageBlur": Blur, "ImageBlur": Blur,
"ImageQuantize": Quantize, "ImageQuantize": Quantize,
"ImageSharpen": Sharpen, "ImageSharpen": Sharpen,
"ImageScaleToTotalPixels": ImageScaleToTotalPixels,
} }

View File

@ -354,6 +354,7 @@ class PromptExecutor:
d = self.outputs_ui.pop(x) d = self.outputs_ui.pop(x)
del d del d
comfy.model_management.cleanup_models()
if self.server.client_id is not None: if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id) self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set() executed = set()

View File

@ -1465,6 +1465,28 @@ class ImageBatch:
s = torch.cat((image1, image2), dim=0) s = torch.cat((image1, image2), dim=0)
return (s,) return (s,)
class EmptyImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate"
CATEGORY = "image"
def generate(self, width, height, batch_size=1, color=0):
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
return (torch.cat((r, g, b), dim=-1), )
class ImagePadForOutpaint: class ImagePadForOutpaint:
@classmethod @classmethod
@ -1551,6 +1573,7 @@ NODE_CLASS_MAPPINGS = {
"ImageInvert": ImageInvert, "ImageInvert": ImageInvert,
"ImageBatch": ImageBatch, "ImageBatch": ImageBatch,
"ImagePadForOutpaint": ImagePadForOutpaint, "ImagePadForOutpaint": ImagePadForOutpaint,
"EmptyImage": EmptyImage,
"ConditioningAverage ": ConditioningAverage , "ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine, "ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat, "ConditioningConcat": ConditioningConcat,

View File

@ -6,6 +6,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="./lib/litegraph.css" /> <link rel="stylesheet" type="text/css" href="./lib/litegraph.css" />
<link rel="stylesheet" type="text/css" href="./style.css" /> <link rel="stylesheet" type="text/css" href="./style.css" />
<link rel="stylesheet" type="text/css" href="./user.css" />
<script type="text/javascript" src="./lib/litegraph.core.js"></script> <script type="text/javascript" src="./lib/litegraph.core.js"></script>
<script type="text/javascript" src="./lib/litegraph.extensions.js" defer></script> <script type="text/javascript" src="./lib/litegraph.extensions.js" defer></script>
<script type="module"> <script type="module">

View File

@ -284,6 +284,11 @@ export class ComfyApp {
} }
} }
options.push({
content: "Bypass",
callback: (obj) => { if (this.mode === 4) this.mode = 0; else this.mode = 4; this.graph.change(); }
});
// prevent conflict of clipspace content // prevent conflict of clipspace content
if(!ComfyApp.clipspace_return_node) { if(!ComfyApp.clipspace_return_node) {
options.push({ options.push({

1
web/user.css Normal file
View File

@ -0,0 +1 @@
/* Put custom styles here */