This commit is contained in:
BigStationW 2025-12-05 01:24:06 -05:00 committed by GitHub
commit 2c7ba5c2a8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -98,9 +98,12 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}, clip_type_enum=None): # MODIFIED: Added clip_type_enum
if no_init:
return
self.clip_type_enum = clip_type_enum
params = target.params.copy()
clip = target.clip
tokenizer = target.tokenizer
@ -145,6 +148,7 @@ class CLIP:
n.tokenizer_options = self.tokenizer_options.copy()
n.use_clip_schedule = self.use_clip_schedule
n.apply_hooks_to_conds = self.apply_hooks_to_conds
n.clip_type_enum = self.clip_type_enum
return n
def get_ram_usage(self):
@ -176,12 +180,13 @@ class CLIP:
all_cond_pooled: list[tuple[torch.Tensor, dict[str]]] = []
all_hooks = self.patcher.forced_hooks
if all_hooks is None or not self.use_clip_schedule:
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
return_pooled = "unprojected" if unprojected else True
pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
cond = pooled_dict.pop("cond")
# add/update any keys with the provided add_dict
pooled_dict.update(add_dict)
# add hooks stored on clip
all_cond_pooled.append([cond, pooled_dict])
else:
scheduled_keyframes = all_hooks.get_hooks_for_clip_schedule()
@ -216,8 +221,17 @@ class CLIP:
# perform encoding as normal
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
pooled_dict = {"pooled_output": pooled}
# add clip_start_percent and clip_end_percent in pooled
if len(o) > 2 and isinstance(o[2], dict):
pooled_dict.update(o[2])
if hasattr(self, 'clip_type_enum') and self.clip_type_enum == CLIPType.CHROMA:
if 'attention_mask' in pooled_dict:
logging.debug(f"CLIP type {self.clip_type_enum.name} (scheduled path): Removing 'attention_mask' from conditioning output.")
pooled_dict.pop('attention_mask', None)
pooled_dict["clip_start_percent"] = t_range[0]
pooled_dict["clip_end_percent"] = t_range[1]
# add/update any keys with the provided add_dict
@ -246,10 +260,15 @@ class CLIP:
cond, pooled = o[:2]
if return_dict:
out = {"cond": cond, "pooled_output": pooled}
if len(o) > 2:
if len(o) > 2 and isinstance(o[2], dict):
for k in o[2]:
out[k] = o[2][k]
self.add_hooks_to_dict(out)
if hasattr(self, 'clip_type_enum') and self.clip_type_enum == CLIPType.CHROMA:
if 'attention_mask' in out:
logging.debug(f"CLIP type {self.clip_type_enum.name} (non-scheduled path): Removing 'attention_mask' from conditioning output.")
out.pop('attention_mask', None)
return out
if return_pooled:
@ -280,6 +299,7 @@ class CLIP:
def get_key_patches(self):
return self.patcher.get_key_patches()
class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None):
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
@ -1072,8 +1092,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
else:
if "text_projection" in clip_data[i]:
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
# Ensure "text_projection" exists and is a tensor before trying to transpose
if "text_projection" in clip_data[i] and isinstance(clip_data[i]["text_projection"], torch.Tensor):
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1)
tokenizer_data = {}
clip_target = EmptyClass()
@ -1103,7 +1124,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
@ -1114,7 +1135,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
else: #CLIPType.MOCHI or CLIPType.CHROMA
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
elif te_model == TEModel.T5_XXL_OLD:
@ -1164,14 +1185,14 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
elif len(clip_data) == 2:
@ -1189,7 +1210,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
hidream_dualclip_classes = []
for hidream_te in clip_data:
te_model = detect_te_model(hidream_te)
@ -1199,8 +1219,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
t5 = TEModel.T5_XXL in hidream_dualclip_classes
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
# Initialize t5xxl_detect and llama_detect kwargs if needed
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
llama_kwargs = llama_detect(clip_data) if llama else {}
@ -1229,7 +1249,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options, clip_type_enum=clip_type)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0: