mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
2d1676c717
24
CODEOWNERS
24
CODEOWNERS
@ -1,2 +1,22 @@
|
||||
* @comfyanonymous
|
||||
* @doctorpangloss
|
||||
# Admins
|
||||
* @doctorpangloss
|
||||
|
||||
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
|
||||
# Frontend assets
|
||||
/web/ @huchenlei @webfiltered @pythongosssss
|
||||
|
||||
# Extra nodes
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink
|
||||
|
||||
64
README.md
64
README.md
@ -236,6 +236,12 @@ export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
||||
comfyui
|
||||
```
|
||||
|
||||
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
|
||||
|
||||
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
|
||||
|
||||
You can also try setting this env variable `PYTORCH_TUNABLEOP_ENABLED=1` which might speed things up at the cost of a very slow initial run.
|
||||
|
||||
### Model Downloading
|
||||
|
||||
ComfyUI LTS supports downloading models on demand. Its list of known models includes the most notable and common Stable Diffusion architecture checkpoints, slider LoRAs, all the notable ControlNets for SD1.5 and SDXL, and a small selection of LLM models. Additionally, all other supported LTS nodes will download models using the same mechanisms. This means that you will save storage space and time: you won't have to ever figure out the "right name" for a model, where to download it from, or where to put it ever again.
|
||||
@ -715,37 +721,37 @@ The default installation includes a fast latent preview method that's low-resolu
|
||||
|
||||
| Keybind | Explanation |
|
||||
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|
||||
| Ctrl + Enter | Queue up current graph for generation |
|
||||
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
|
||||
| Ctrl + Alt + Enter | Cancel current generation |
|
||||
| Ctrl + Z/Ctrl + Y | Undo/Redo |
|
||||
| Ctrl + S | Save workflow |
|
||||
| Ctrl + O | Load workflow |
|
||||
| Ctrl + A | Select all nodes |
|
||||
| Alt + C | Collapse/uncollapse selected nodes |
|
||||
| Ctrl + M | Mute/unmute selected nodes |
|
||||
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| Delete/Backspace | Delete selected nodes |
|
||||
| Ctrl + Backspace | Delete the current graph |
|
||||
| Space | Move the canvas around when held and moving the cursor |
|
||||
| Ctrl/Shift + Click | Add clicked node to selection |
|
||||
| Ctrl + C/Ctrl + V | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
|
||||
| Ctrl + C/Ctrl + Shift + V | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
|
||||
| Shift + Drag | Move multiple selected nodes at the same time |
|
||||
| Ctrl + D | Load default graph |
|
||||
| Alt + `+` | Canvas Zoom in |
|
||||
| Alt + `-` | Canvas Zoom out |
|
||||
| Ctrl + Shift + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| P | Pin/Unpin selected nodes |
|
||||
| Ctrl + G | Group selected nodes |
|
||||
| Q | Toggle visibility of the queue |
|
||||
| H | Toggle visibility of history |
|
||||
| R | Refresh graph |
|
||||
| `Ctrl` + `Enter` | Queue up current graph for generation |
|
||||
| `Ctrl` + `Shift` + `Enter` | Queue up current graph as first for generation |
|
||||
| `Ctrl` + `Alt` + `Enter` | Cancel current generation |
|
||||
| `Ctrl` + `Z`/`Ctrl` + `Y` | Undo/Redo |
|
||||
| `Ctrl` + `S` | Save workflow |
|
||||
| `Ctrl` + `O` | Load workflow |
|
||||
| `Ctrl` + `A` | Select all nodes |
|
||||
| `Alt `+ `C` | Collapse/uncollapse selected nodes |
|
||||
| `Ctrl` + `M` | Mute/unmute selected nodes |
|
||||
| `Ctrl` + `B` | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| `Delete`/`Backspace` | Delete selected nodes |
|
||||
| `Ctrl` + `Backspace` | Delete the current graph |
|
||||
| `Space` | Move the canvas around when held and moving the cursor |
|
||||
| `Ctrl`/`Shift` + `Click` | Add clicked node to selection |
|
||||
| `Ctrl` + `C`/`Ctrl` + `V` | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
|
||||
| `Ctrl` + `C`/`Ctrl` + `Shift` + `V` | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
|
||||
| `Shift` + `Drag` | Move multiple selected nodes at the same time |
|
||||
| `Ctrl` + `D` | Load default graph |
|
||||
| `Alt` + `+` | Canvas Zoom in |
|
||||
| `Alt` + `-` | Canvas Zoom out |
|
||||
| `Ctrl` + `Shift` + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| `P` | Pin/Unpin selected nodes |
|
||||
| `Ctrl` + `G` | Group selected nodes |
|
||||
| `Q` | Toggle visibility of the queue |
|
||||
| `H` | Toggle visibility of history |
|
||||
| `R` | Refresh graph |
|
||||
| Double-Click LMB | Open node quick search palette |
|
||||
| Shift + Drag | Move multiple wires at once |
|
||||
| Ctrl + Alt + LMB | Disconnect all wires from clicked slot |
|
||||
| `Shift` + Drag | Move multiple wires at once |
|
||||
| `Ctrl` + `Alt` + LMB | Disconnect all wires from clicked slot |
|
||||
|
||||
Ctrl can also be replaced with Cmd instead for macOS users
|
||||
`Ctrl` can also be replaced with `Cmd` instead for macOS users
|
||||
|
||||
# Configuration
|
||||
|
||||
|
||||
@ -14,7 +14,6 @@ class InternalRoutes:
|
||||
The top level web router for internal routes: /internal/*
|
||||
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
|
||||
Check README.md for more information.
|
||||
|
||||
'''
|
||||
|
||||
def __init__(self, prompt_server):
|
||||
|
||||
@ -39,7 +39,7 @@ class UserManager():
|
||||
|
||||
self.settings = AppSettings(self)
|
||||
if not os.path.exists(user_directory):
|
||||
os.mkdir(user_directory)
|
||||
os.makedirs(user_directory, exist_ok=True)
|
||||
if not args.multi_user:
|
||||
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
||||
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
||||
|
||||
@ -2,11 +2,9 @@
|
||||
#and modified
|
||||
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
from ..ldm.modules.diffusionmodules.util import (
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
|
||||
120
comfy/cldm/dit_embedder.py
Normal file
120
comfy/cldm/dit_embedder.py
Normal file
@ -0,0 +1,120 @@
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
||||
|
||||
|
||||
class ControlNetEmbedder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int,
|
||||
patch_size: int,
|
||||
in_chans: int,
|
||||
attention_head_dim: int,
|
||||
num_attention_heads: int,
|
||||
adm_in_channels: int,
|
||||
num_layers: int,
|
||||
main_model_double: int,
|
||||
double_y_emb: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
pos_embed_max_size: Optional[int] = None,
|
||||
operations = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.main_model_double = main_model_double
|
||||
self.dtype = dtype
|
||||
self.hidden_size = num_attention_heads * attention_head_dim
|
||||
self.patch_size = patch_size
|
||||
self.x_embedder = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=self.hidden_size,
|
||||
strict_img_size=pos_embed_max_size is None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.double_y_emb = double_y_emb
|
||||
if self.double_y_emb:
|
||||
self.orig_y_embedder = VectorEmbedder(
|
||||
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
self.y_embedder = VectorEmbedder(
|
||||
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.y_embedder = VectorEmbedder(
|
||||
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
DismantledBlock(
|
||||
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
)
|
||||
|
||||
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
||||
# TODO double check this logic when 8b
|
||||
self.use_y_embedder = True
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(len(self.transformer_blocks)):
|
||||
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
self.controlnet_blocks.append(controlnet_block)
|
||||
|
||||
self.pos_embed_input = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=self.hidden_size,
|
||||
strict_img_size=False,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
hint = None,
|
||||
) -> Tuple[Tensor, List[Tensor]]:
|
||||
x_shape = list(x.shape)
|
||||
x = self.x_embedder(x)
|
||||
if not self.double_y_emb:
|
||||
h = (x_shape[-2] + 1) // self.patch_size
|
||||
w = (x_shape[-1] + 1) // self.patch_size
|
||||
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
||||
c = self.t_embedder(timesteps, dtype=x.dtype)
|
||||
if y is not None and self.y_embedder is not None:
|
||||
if self.double_y_emb:
|
||||
y = self.orig_y_embedder(y)
|
||||
y = self.y_embedder(y)
|
||||
c = c + y
|
||||
|
||||
x = x + self.pos_embed_input(hint)
|
||||
|
||||
block_out = ()
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
||||
for i in range(len(self.transformer_blocks)):
|
||||
out = self.transformer_blocks[i](x, c)
|
||||
if not self.double_y_emb:
|
||||
x = out
|
||||
block_out += (self.controlnet_blocks[i](out),) * repeat
|
||||
|
||||
return {"output": block_out}
|
||||
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from typing import Dict, Optional, List
|
||||
from typing import Optional, List
|
||||
|
||||
import torch
|
||||
from einops import einops
|
||||
from torch import Tensor
|
||||
|
||||
@ -12,15 +12,16 @@ def default(x, y):
|
||||
return x
|
||||
return y
|
||||
|
||||
|
||||
class ControlNet(MMDiT):
|
||||
def __init__(
|
||||
self,
|
||||
num_blocks = None,
|
||||
control_latent_channels = None,
|
||||
dtype = None,
|
||||
device = None,
|
||||
operations = None,
|
||||
**kwargs,
|
||||
self,
|
||||
num_blocks=None,
|
||||
control_latent_channels=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
||||
# controlnet_blocks
|
||||
@ -44,15 +45,15 @@ class ControlNet(MMDiT):
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
hint = None,
|
||||
) -> Dict[str, List[Tensor]]:
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
hint=None,
|
||||
) -> dict[str, List[Tensor]]:
|
||||
|
||||
#weird sd3 controlnet specific stuff
|
||||
# weird sd3 controlnet specific stuff
|
||||
y = torch.zeros_like(y)
|
||||
|
||||
if self.context_processor is not None:
|
||||
|
||||
@ -58,9 +58,11 @@ def _create_parser() -> EnhancedConfigArgParser:
|
||||
fp_group.add_argument("--force-bf16", action="store_true", help="Force bf16.")
|
||||
|
||||
fpunet_group = parser.add_mutually_exclusive_group()
|
||||
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
||||
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
||||
fpunet_group.add_argument("--bf16-unet", action="store_true",
|
||||
help="Run the UNET in bf16. This should only be used for testing stuff.")
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
||||
help="Run the diffusion model in bf16.")
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
||||
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
||||
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
||||
|
||||
|
||||
@ -60,8 +60,10 @@ class Configuration(dict):
|
||||
force_bf16 (bool): Force using BF16 precision.
|
||||
bf16_unet (bool): Use BF16 precision for UNet.
|
||||
fp16_unet (bool): Use FP16 precision for UNet.
|
||||
fp8_e4m3fn_unet (bool): Use FP8 precision (e4m3fn variant) for UNet.
|
||||
fp8_e5m2_unet (bool): Use FP8 precision (e5m2 variant) for UNet.
|
||||
fp32_unet (bool): Run the diffusion model in fp32.
|
||||
fp64_unet (bool): Run the diffusion model in fp64.
|
||||
fp8_e4m3fn_unet (bool): Store unet weights in fp8_e4m3fn
|
||||
fp8_e5m2_unet (bool): Store unet weights in fp8_e5m2.
|
||||
fp16_vae (bool): Run the VAE in FP16 precision.
|
||||
fp32_vae (bool): Run the VAE in FP32 precision.
|
||||
bf16_vae (bool): Run the VAE in BF16 precision.
|
||||
@ -145,6 +147,8 @@ class Configuration(dict):
|
||||
self.force_bf16: bool = False
|
||||
self.bf16_unet: bool = False
|
||||
self.fp16_unet: bool = False
|
||||
self.fp32_unet: bool = False
|
||||
self.fp64_unet: bool = False
|
||||
self.fp8_e4m3fn_unet: bool = False
|
||||
self.fp8_e5m2_unet: bool = False
|
||||
self.fp16_vae: bool = False
|
||||
|
||||
@ -20,13 +20,18 @@ class Output:
|
||||
setattr(self, key, item)
|
||||
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]):
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
||||
if crop:
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
||||
else:
|
||||
scale_size = (size, size)
|
||||
|
||||
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size) // 2
|
||||
w = (image.shape[3] - size) // 2
|
||||
image = image[:, :, h:h + size, w:w + size]
|
||||
@ -64,9 +69,9 @@ class ClipVisionModel():
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def encode_image(self, image):
|
||||
def encode_image(self, image, crop=True):
|
||||
load_models_gpu([self.patcher])
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std).float()
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
|
||||
outputs = Output()
|
||||
|
||||
@ -39,6 +39,7 @@ nodes: ExportedNodes = lazy_object_proxy.Proxy(import_all_nodes_in_workspace)
|
||||
from ..graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
|
||||
from ..graph_utils import is_link, GraphBuilder
|
||||
from ..caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
|
||||
from ..validation import validate_node_input
|
||||
|
||||
|
||||
class IsChangedCache:
|
||||
@ -699,7 +700,8 @@ def validate_inputs(prompt, item, validated: typing.Dict[str, ValidateInputsTupl
|
||||
received_type = r[val[1]]
|
||||
received_types[x] = received_type
|
||||
any_enum = received_type == [] and (isinstance(type_input, list) or isinstance(type_input, tuple))
|
||||
if 'input_types' not in validate_function_inputs and received_type != type_input and not any_enum:
|
||||
|
||||
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, type_input) and not any_enum:
|
||||
details = f"{x}, {received_type} != {type_input}"
|
||||
error = {
|
||||
"type": "return_type_mismatch",
|
||||
|
||||
@ -21,8 +21,8 @@ MAX_PREVIEW_RESOLUTION = args.preview_size
|
||||
|
||||
def preview_to_image(latent_image) -> Image:
|
||||
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
.mul(0xFF) # to 0..255
|
||||
).to(device="cpu", dtype=torch.uint8, non_blocking=model_management.device_supports_non_blocking(latent_image.device))
|
||||
.mul(0xFF) # to 0..255
|
||||
).to(device="cpu", dtype=torch.uint8, non_blocking=model_management.device_supports_non_blocking(latent_image.device))
|
||||
|
||||
return Image.fromarray(latents_ubyte.numpy())
|
||||
|
||||
@ -78,7 +78,7 @@ def get_previewer(device, latent_format):
|
||||
if latent_format.taesd_decoder_name is not None:
|
||||
taesd_decoder_path = next(
|
||||
(fn for fn in folder_paths.get_filename_list("vae_approx")
|
||||
if fn.startswith(latent_format.taesd_decoder_name)),
|
||||
if fn.startswith(latent_format.taesd_decoder_name)),
|
||||
""
|
||||
)
|
||||
taesd_decoder_path = get_or_download("vae_approx", taesd_decoder_path, KNOWN_APPROX_VAES)
|
||||
@ -98,6 +98,7 @@ def get_previewer(device, latent_format):
|
||||
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias)
|
||||
return previewer
|
||||
|
||||
|
||||
def prepare_callback(model, steps, x0_output_dict=None):
|
||||
preview_format = "JPEG"
|
||||
if preview_format not in ["JPEG", "PNG"]:
|
||||
@ -115,5 +116,5 @@ def prepare_callback(model, steps, x0_output_dict=None):
|
||||
if previewer:
|
||||
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
||||
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
||||
return callback
|
||||
|
||||
return callback
|
||||
|
||||
@ -13,19 +13,17 @@ import sys
|
||||
import traceback
|
||||
import urllib
|
||||
import uuid
|
||||
from asyncio import Future, AbstractEventLoop, Task
|
||||
from asyncio import AbstractEventLoop, Task
|
||||
from enum import Enum
|
||||
from io import BytesIO
|
||||
from posixpath import join as urljoin
|
||||
from typing import List, Optional
|
||||
from urllib.parse import quote, urlencode
|
||||
from urllib.parse import quote
|
||||
|
||||
import aiofiles
|
||||
import aiohttp
|
||||
from PIL import Image
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
from aiohttp import web
|
||||
from can_ada import URL, parse as urlparse # pylint: disable=no-name-in-module
|
||||
from typing_extensions import NamedTuple
|
||||
|
||||
from .latent_preview_image_encoding import encode_preview_image
|
||||
@ -37,17 +35,13 @@ from ..api_server.routes.internal.internal_routes import InternalRoutes
|
||||
from ..app.frontend_management import FrontendManager
|
||||
from ..app.user_manager import UserManager
|
||||
from ..cli_args import args
|
||||
from ..client.client_types import FileOutput
|
||||
from ..cmd import execution
|
||||
from ..cmd import folder_paths
|
||||
from ..component_model.abstract_prompt_queue import AbstractPromptQueue, AsyncAbstractPromptQueue
|
||||
from ..component_model.executor_types import ExecutorToClientProgress, StatusMessage, QueueInfo, ExecInfo
|
||||
from ..component_model.file_output_path import file_output_path
|
||||
from ..component_model.queue_types import QueueItem, HistoryEntry, BinaryEventTypes, TaskInvocation, ExecutionError, \
|
||||
ExecutionStatus
|
||||
from ..digest import digest
|
||||
from ..component_model.queue_types import QueueItem, BinaryEventTypes
|
||||
from ..images import open_image
|
||||
from ..model_filemanager import download_model, DownloadModelStatus
|
||||
from ..model_management import get_torch_device, get_torch_device_name, get_total_memory, get_free_memory, torch_version
|
||||
from ..nodes.package_typing import ExportedNodes
|
||||
|
||||
@ -264,11 +258,11 @@ class PromptServer(ExecutorToClientProgress):
|
||||
@routes.get("/extensions")
|
||||
async def get_extensions(request):
|
||||
files = glob.glob(os.path.join(glob.escape(self.web_root), 'extensions/**/*.js'), recursive=True)
|
||||
extensions = list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files))
|
||||
extensions = list(map(lambda f: "/" + os.path.relpath(str(f), self.web_root).replace("\\", "/"), files))
|
||||
|
||||
for name, dir in self.nodes.EXTENSION_WEB_DIRS.items():
|
||||
files = glob.glob(os.path.join(glob.escape(dir), '**/*.js'), recursive=True)
|
||||
extensions.extend(list(map(lambda f: "/extensions/" + quote(name) + "/" + os.path.relpath(f, dir).replace("\\", "/"), files)))
|
||||
extensions.extend(list(map(lambda f: "/extensions/" + quote(name) + "/" + os.path.relpath(str(f), dir).replace("\\", "/"), files)))
|
||||
|
||||
return web.json_response(extensions)
|
||||
|
||||
@ -688,248 +682,6 @@ class PromptServer(ExecutorToClientProgress):
|
||||
|
||||
return web.Response(status=200)
|
||||
|
||||
# Internal route. Should not be depended upon and is subject to change at any time.
|
||||
# TODO(robinhuang): Move to internal route table class once we refactor PromptServer to pass around Websocket.
|
||||
# NOTE: This was an experiment and WILL BE REMOVED
|
||||
@routes.post("/internal/models/download")
|
||||
async def download_handler(request):
|
||||
async def report_progress(filename: str, status: DownloadModelStatus):
|
||||
payload = status.to_dict()
|
||||
payload['download_path'] = filename
|
||||
await self.send_json("download_progress", payload)
|
||||
|
||||
data = await request.json()
|
||||
url = data.get('url')
|
||||
model_directory = data.get('model_directory')
|
||||
folder_path = data.get('folder_path')
|
||||
model_filename = data.get('model_filename')
|
||||
progress_interval = data.get('progress_interval', 1.0) # In seconds, how often to report download progress.
|
||||
|
||||
if not url or not model_directory or not model_filename or not folder_path:
|
||||
return web.json_response({"status": "error", "message": "Missing URL or folder path or filename"}, status=400)
|
||||
|
||||
session = self.client_session
|
||||
if session is None:
|
||||
logger.error("Client session is not initialized")
|
||||
return web.Response(status=500)
|
||||
|
||||
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, folder_path, report_progress, progress_interval))
|
||||
await task
|
||||
|
||||
return web.json_response(task.result().to_dict())
|
||||
|
||||
@routes.get("/api/v1/prompts/{prompt_id}")
|
||||
async def get_api_v1_prompts_prompt_id(request: web.Request) -> web.Response | web.FileResponse:
|
||||
prompt_id: str = request.match_info.get("prompt_id", "")
|
||||
if prompt_id == "":
|
||||
return web.json_response(status=404)
|
||||
|
||||
history_items = self.prompt_queue.get_history(prompt_id)
|
||||
if len(history_items) == 0 or prompt_id not in history_items:
|
||||
# todo: this should really be moved to a stateful queue abstraction
|
||||
if prompt_id in self.background_tasks:
|
||||
return web.json_response(status=204)
|
||||
else:
|
||||
# todo: this should check a stateful queue abstraction
|
||||
return web.json_response(status=404)
|
||||
elif prompt_id in history_items:
|
||||
history_entry = history_items[prompt_id]
|
||||
return web.json_response(history_entry["outputs"])
|
||||
else:
|
||||
return web.json_response(status=500)
|
||||
|
||||
@routes.post("/api/v1/prompts")
|
||||
async def post_api_prompt(request: web.Request) -> web.Response | web.FileResponse:
|
||||
accept = request.headers.get("accept", "application/json")
|
||||
if accept == '*/*':
|
||||
accept = "application/json"
|
||||
content_type = request.headers.get("content-type", "application/json")
|
||||
preferences = request.headers.get("prefer", "") + request.query.get("prefer", "") + " " + content_type
|
||||
if "+" in content_type:
|
||||
content_type = content_type.split("+")[0]
|
||||
|
||||
wait = not "respond-async" in preferences
|
||||
|
||||
if accept not in ("application/json", "image/png"):
|
||||
return web.json_response(status=400, reason=f"invalid accept content type, expected application/json or image/png, got {accept}")
|
||||
|
||||
# check if the queue is too long
|
||||
queue_size = self.prompt_queue.size()
|
||||
queue_too_busy_size = PromptServer.get_too_busy_queue_size()
|
||||
if queue_size > queue_too_busy_size:
|
||||
return web.json_response(status=429,
|
||||
reason=f"the queue has {queue_size} elements and {queue_too_busy_size} is the limit for this worker")
|
||||
# read the request
|
||||
prompt_dict: dict = {}
|
||||
if content_type == 'application/json':
|
||||
prompt_dict = await request.json()
|
||||
elif content_type == 'multipart/form-data':
|
||||
try:
|
||||
reader = await request.multipart()
|
||||
async for part in reader:
|
||||
if part is None:
|
||||
break
|
||||
if part.headers[aiohttp.hdrs.CONTENT_TYPE] == 'application/json':
|
||||
prompt_dict = await part.json()
|
||||
if 'prompt' in prompt_dict:
|
||||
prompt_dict = prompt_dict['prompt']
|
||||
elif part.filename:
|
||||
file_data = await part.read(decode=True)
|
||||
# overwrite existing files
|
||||
upload_dir = PromptServer.get_upload_dir()
|
||||
async with aiofiles.open(os.path.join(upload_dir, part.filename), mode='wb') as file:
|
||||
await file.write(file_data)
|
||||
except IOError as ioError:
|
||||
return web.Response(status=507, reason=str(ioError))
|
||||
except MemoryError as memoryError:
|
||||
return web.Response(status=507, reason=str(memoryError))
|
||||
except Exception as ex:
|
||||
return web.Response(status=400, reason=str(ex))
|
||||
|
||||
if len(prompt_dict) == 0:
|
||||
return web.Response(status=400, reason="no prompt was specified")
|
||||
|
||||
content_digest = digest(prompt_dict)
|
||||
|
||||
valid = execution.validate_prompt(prompt_dict)
|
||||
if not valid[0]:
|
||||
return web.Response(status=400, content_type="application/json", body=json.dumps(valid[1]))
|
||||
|
||||
# convert a valid prompt to the queue tuple this expects
|
||||
number = self.number
|
||||
self.number += 1
|
||||
|
||||
result: TaskInvocation
|
||||
completed: Future[TaskInvocation | dict] = self.loop.create_future()
|
||||
# todo: actually implement idempotency keys
|
||||
# we would need some kind of more durable, distributed task queue
|
||||
task_id = str(uuid.uuid4())
|
||||
item = QueueItem(queue_tuple=(number, task_id, prompt_dict, {}, valid[2]), completed=completed)
|
||||
|
||||
try:
|
||||
if hasattr(self.prompt_queue, "put_async") or isinstance(self.prompt_queue, AsyncAbstractPromptQueue):
|
||||
# this enables span propagation seamlessly
|
||||
fut = self.prompt_queue.put_async(item)
|
||||
if wait:
|
||||
result = await fut
|
||||
if result is None:
|
||||
return web.Response(body="the queue is shutting down", status=503)
|
||||
else:
|
||||
return await self._schedule_background_task_with_web_response(fut, task_id)
|
||||
else:
|
||||
self.prompt_queue.put(item)
|
||||
if wait:
|
||||
await completed
|
||||
else:
|
||||
return await self._schedule_background_task_with_web_response(completed, task_id)
|
||||
task_invocation_or_dict: TaskInvocation | dict = completed.result()
|
||||
if isinstance(task_invocation_or_dict, dict):
|
||||
result = TaskInvocation(item_id=item.prompt_id, outputs=task_invocation_or_dict, status=ExecutionStatus("success", True, []))
|
||||
else:
|
||||
result = task_invocation_or_dict
|
||||
except ExecutionError as exec_exc:
|
||||
result = exec_exc.as_task_invocation()
|
||||
except Exception as ex:
|
||||
return web.Response(body=str(ex), status=500)
|
||||
|
||||
if result.status is not None and result.status.status_str == "error":
|
||||
return web.Response(body=json.dumps(result.status._asdict()), status=500, content_type="application/json")
|
||||
# find images and read them
|
||||
output_images: List[FileOutput] = []
|
||||
for node_id, node in result.outputs.items():
|
||||
images: List[FileOutput] = []
|
||||
if 'images' in node:
|
||||
images = node['images']
|
||||
# todo: does this ever occur?
|
||||
elif (isinstance(node, dict)
|
||||
and 'ui' in node and isinstance(node['ui'], dict)
|
||||
and 'images' in node['ui']):
|
||||
images = node['ui']['images']
|
||||
for image_tuple in images:
|
||||
output_images.append(image_tuple)
|
||||
|
||||
if len(output_images) > 0:
|
||||
main_image = output_images[0]
|
||||
filename = main_image["filename"]
|
||||
digest_headers_ = {
|
||||
"Digest": f"SHA-256={content_digest}",
|
||||
}
|
||||
urls_ = []
|
||||
if len(output_images) == 1:
|
||||
digest_headers_.update({
|
||||
"Content-Disposition": f"filename=\"{filename}\""
|
||||
})
|
||||
|
||||
for image_indv_ in output_images:
|
||||
local_address = f"http://{self.address}:{self.port}"
|
||||
external_address = self.external_address
|
||||
|
||||
for base in (local_address, external_address):
|
||||
try:
|
||||
url: URL = urlparse(urljoin(base, "view"))
|
||||
except ValueError:
|
||||
continue
|
||||
url_search_dict: FileOutput = dict(image_indv_)
|
||||
del url_search_dict["abs_path"]
|
||||
if "name" in url_search_dict:
|
||||
del url_search_dict["name"]
|
||||
if url_search_dict["subfolder"] == "":
|
||||
del url_search_dict["subfolder"]
|
||||
url.search = f"?{urlencode(url_search_dict)}"
|
||||
urls_.append(str(url))
|
||||
|
||||
if accept == "application/json":
|
||||
return web.Response(status=200,
|
||||
content_type="application/json",
|
||||
headers=digest_headers_,
|
||||
body=json.dumps({
|
||||
'urls': urls_,
|
||||
'outputs': result.outputs
|
||||
}))
|
||||
elif accept == "image/png" or accept == "image/jpeg":
|
||||
return web.FileResponse(main_image["abs_path"],
|
||||
headers=digest_headers_)
|
||||
else:
|
||||
return web.Response(status=500,
|
||||
reason="unreachable")
|
||||
else:
|
||||
return web.Response(status=204)
|
||||
|
||||
@routes.get("/api/v1/prompts")
|
||||
async def get_api_prompt(_: web.Request) -> web.Response:
|
||||
history = self.prompt_queue.get_history()
|
||||
history_items = list(history.values())
|
||||
if len(history_items) == 0:
|
||||
return web.Response(status=404)
|
||||
|
||||
last_history_item: HistoryEntry = history_items[-1]
|
||||
prompt = last_history_item['prompt'][2]
|
||||
return web.json_response(prompt, status=200)
|
||||
|
||||
async def _schedule_background_task_with_web_response(self, fut, task_id):
|
||||
task = asyncio.create_task(fut, name=task_id)
|
||||
self.background_tasks[task_id] = task
|
||||
task.add_done_callback(lambda _: self.background_tasks.pop(task_id))
|
||||
# todo: type this from the OpenAPI spec
|
||||
return web.json_response({
|
||||
"prompt_id": task_id
|
||||
}, status=202, headers={
|
||||
"Location": f"api/v1/prompts/{task_id}",
|
||||
"Retry-After": "60"
|
||||
})
|
||||
|
||||
@property
|
||||
def external_address(self):
|
||||
return self._external_address if self._external_address is not None else f"http://{'localhost' if self.address == '0.0.0.0' else self.address}:{self.port}"
|
||||
|
||||
@external_address.setter
|
||||
def external_address(self, value):
|
||||
self._external_address = value
|
||||
|
||||
@property
|
||||
def receive_all_progress_notifications(self) -> bool:
|
||||
return True
|
||||
|
||||
async def setup(self):
|
||||
timeout = aiohttp.ClientTimeout(total=None) # no timeout
|
||||
self.client_session = aiohttp.ClientSession(timeout=timeout)
|
||||
|
||||
43
comfy/comfy_types/README.md
Normal file
43
comfy/comfy_types/README.md
Normal file
@ -0,0 +1,43 @@
|
||||
# Comfy Typing
|
||||
## Type hinting for ComfyUI Node development
|
||||
|
||||
This module provides type hinting and concrete convenience types for node developers.
|
||||
If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
|
||||
|
||||
```python
|
||||
from comfy_types import IO, ComfyNodeABC, CheckLazyMixin
|
||||
|
||||
class ExampleNode(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {"required": {}}
|
||||
```
|
||||
|
||||
Full example is in [examples/example_nodes.py](examples/example_nodes.py).
|
||||
|
||||
# Types
|
||||
A few primary types are documented below. More complete information is available via the docstrings on each type.
|
||||
|
||||
## `IO`
|
||||
|
||||
A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
|
||||
|
||||
- `ANY`: `"*"`
|
||||
- `NUMBER`: `"FLOAT,INT"`
|
||||
- `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
|
||||
|
||||
## `ComfyNodeABC`
|
||||
|
||||
An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
|
||||
|
||||
### Type hinting for `INPUT_TYPES`
|
||||
|
||||

|
||||
|
||||
### `INPUT_TYPES` return dict
|
||||
|
||||

|
||||
|
||||
### Options for individual inputs
|
||||
|
||||

|
||||
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from typing import Callable, Protocol, TypedDict, Optional, List
|
||||
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
|
||||
|
||||
|
||||
class UnetApplyFunction(Protocol):
|
||||
@ -30,3 +31,15 @@ class UnetParams(TypedDict):
|
||||
|
||||
|
||||
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
|
||||
|
||||
|
||||
__all__ = [
|
||||
"UnetWrapperFunction",
|
||||
UnetApplyConds.__name__,
|
||||
UnetParams.__name__,
|
||||
UnetApplyFunction.__name__,
|
||||
IO.__name__,
|
||||
InputTypeDict.__name__,
|
||||
ComfyNodeABC.__name__,
|
||||
CheckLazyMixin.__name__,
|
||||
]
|
||||
28
comfy/comfy_types/examples/example_nodes.py
Normal file
28
comfy/comfy_types/examples/example_nodes.py
Normal file
@ -0,0 +1,28 @@
|
||||
from comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||||
from inspect import cleandoc
|
||||
|
||||
|
||||
class ExampleNode(ComfyNodeABC):
|
||||
"""An example node that just adds 1 to an input integer.
|
||||
|
||||
* Requires an IDE configured with analysis paths etc to be worth looking at.
|
||||
* Not intended for use in ComfyUI.
|
||||
"""
|
||||
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
CATEGORY = "examples"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"input_int": (IO.INT, {"defaultInput": True}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.INT,)
|
||||
RETURN_NAMES = ("input_plus_one",)
|
||||
FUNCTION = "execute"
|
||||
|
||||
def execute(self, input_int: int):
|
||||
return (input_int + 1,)
|
||||
BIN
comfy/comfy_types/examples/input_options.png
Normal file
BIN
comfy/comfy_types/examples/input_options.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 19 KiB |
BIN
comfy/comfy_types/examples/input_types.png
Normal file
BIN
comfy/comfy_types/examples/input_types.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
BIN
comfy/comfy_types/examples/required_hint.png
Normal file
BIN
comfy/comfy_types/examples/required_hint.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 19 KiB |
274
comfy/comfy_types/node_typing.py
Normal file
274
comfy/comfy_types/node_typing.py
Normal file
@ -0,0 +1,274 @@
|
||||
"""Comfy-specific type hinting"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal, TypedDict
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class StrEnum(str, Enum):
|
||||
"""Base class for string enums. Python's StrEnum is not available until 3.11."""
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.value
|
||||
|
||||
|
||||
class IO(StrEnum):
|
||||
"""Node input/output data types.
|
||||
|
||||
Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
|
||||
"""
|
||||
|
||||
STRING = "STRING"
|
||||
IMAGE = "IMAGE"
|
||||
MASK = "MASK"
|
||||
LATENT = "LATENT"
|
||||
BOOLEAN = "BOOLEAN"
|
||||
INT = "INT"
|
||||
FLOAT = "FLOAT"
|
||||
CONDITIONING = "CONDITIONING"
|
||||
SAMPLER = "SAMPLER"
|
||||
SIGMAS = "SIGMAS"
|
||||
GUIDER = "GUIDER"
|
||||
NOISE = "NOISE"
|
||||
CLIP = "CLIP"
|
||||
CONTROL_NET = "CONTROL_NET"
|
||||
VAE = "VAE"
|
||||
MODEL = "MODEL"
|
||||
CLIP_VISION = "CLIP_VISION"
|
||||
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
|
||||
STYLE_MODEL = "STYLE_MODEL"
|
||||
GLIGEN = "GLIGEN"
|
||||
UPSCALE_MODEL = "UPSCALE_MODEL"
|
||||
AUDIO = "AUDIO"
|
||||
WEBCAM = "WEBCAM"
|
||||
POINT = "POINT"
|
||||
FACE_ANALYSIS = "FACE_ANALYSIS"
|
||||
BBOX = "BBOX"
|
||||
SEGS = "SEGS"
|
||||
|
||||
ANY = "*"
|
||||
"""Always matches any type, but at a price.
|
||||
|
||||
Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
|
||||
"""
|
||||
NUMBER = "FLOAT,INT"
|
||||
"""A float or an int - could be either"""
|
||||
PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
|
||||
"""Could be any of: string, float, int, or bool"""
|
||||
|
||||
def __ne__(self, value: object) -> bool:
|
||||
if self == "*" or value == "*":
|
||||
return False
|
||||
if not isinstance(value, str):
|
||||
return True
|
||||
a = frozenset(self.split(","))
|
||||
b = frozenset(value.split(","))
|
||||
return not (b.issubset(a) or a.issubset(b))
|
||||
|
||||
|
||||
class InputTypeOptions(TypedDict):
|
||||
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
||||
|
||||
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
|
||||
"""
|
||||
|
||||
default: bool | str | float | int | list | tuple
|
||||
"""The default value of the widget"""
|
||||
defaultInput: bool
|
||||
"""Defaults to an input slot rather than a widget"""
|
||||
forceInput: bool
|
||||
"""`defaultInput` and also don't allow converting to a widget"""
|
||||
lazy: bool
|
||||
"""Declares that this input uses lazy evaluation"""
|
||||
rawLink: bool
|
||||
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
||||
tooltip: str
|
||||
"""Tooltip for the input (or widget), shown on pointer hover"""
|
||||
# class InputTypeNumber(InputTypeOptions):
|
||||
# default: float | int
|
||||
min: float
|
||||
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
||||
max: float
|
||||
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
||||
step: float
|
||||
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
||||
round: float
|
||||
"""Floats are rounded by this value (``FLOAT``)"""
|
||||
# class InputTypeBoolean(InputTypeOptions):
|
||||
# default: bool
|
||||
label_on: str
|
||||
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
||||
label_on: str
|
||||
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
||||
# class InputTypeString(InputTypeOptions):
|
||||
# default: str
|
||||
multiline: bool
|
||||
"""Use a multiline text box (``STRING``)"""
|
||||
placeholder: str
|
||||
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
||||
# Deprecated:
|
||||
# defaultVal: str
|
||||
dynamicPrompts: bool
|
||||
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
||||
|
||||
|
||||
class HiddenInputTypeDict(TypedDict):
|
||||
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
||||
|
||||
node_id: Literal["UNIQUE_ID"]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
unique_id: Literal["UNIQUE_ID"]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
prompt: Literal["PROMPT"]
|
||||
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
||||
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
||||
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
||||
dynprompt: Literal["DYNPROMPT"]
|
||||
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
||||
|
||||
|
||||
class InputTypeDict(TypedDict):
|
||||
"""Provides type hinting for node INPUT_TYPES.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
|
||||
"""
|
||||
|
||||
required: dict[str, tuple[IO, InputTypeOptions]]
|
||||
"""Describes all inputs that must be connected for the node to execute."""
|
||||
optional: dict[str, tuple[IO, InputTypeOptions]]
|
||||
"""Describes inputs which do not need to be connected."""
|
||||
hidden: HiddenInputTypeDict
|
||||
"""Offers advanced functionality and server-client communication.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
||||
"""
|
||||
|
||||
|
||||
class ComfyNodeABC(ABC):
|
||||
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
|
||||
"""
|
||||
|
||||
DESCRIPTION: str
|
||||
"""Node description, shown as a tooltip when hovering over the node.
|
||||
|
||||
Usage::
|
||||
|
||||
# Explicitly define the description
|
||||
DESCRIPTION = "Example description here."
|
||||
|
||||
# Use the docstring of the node class.
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
"""
|
||||
CATEGORY: str
|
||||
"""The category of the node, as per the "Add Node" menu.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
|
||||
"""
|
||||
EXPERIMENTAL: bool
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
"""Defines node inputs.
|
||||
|
||||
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
|
||||
* The ``optional`` key can be added to describe inputs which do not need to be connected.
|
||||
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
|
||||
"""
|
||||
return {"required": {}}
|
||||
|
||||
OUTPUT_NODE: bool
|
||||
"""Flags this node as an output node, causing any inputs it requires to be executed.
|
||||
|
||||
If a node is not connected to any output nodes, that node will not be executed. Usage::
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
From the docs:
|
||||
|
||||
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
|
||||
"""
|
||||
INPUT_IS_LIST: bool
|
||||
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
|
||||
|
||||
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
|
||||
|
||||
From the docs:
|
||||
|
||||
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
||||
"""
|
||||
OUTPUT_IS_LIST: tuple[bool]
|
||||
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
||||
|
||||
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
||||
|
||||
A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
|
||||
|
||||
RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
|
||||
OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
|
||||
|
||||
From the docs:
|
||||
|
||||
In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
|
||||
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
|
||||
specifying which outputs which should be so treated.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
||||
"""
|
||||
|
||||
RETURN_TYPES: tuple[IO]
|
||||
"""A tuple representing the outputs of this node.
|
||||
|
||||
Usage::
|
||||
|
||||
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
|
||||
"""
|
||||
RETURN_NAMES: tuple[str]
|
||||
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
|
||||
"""
|
||||
OUTPUT_TOOLTIPS: tuple[str]
|
||||
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
||||
FUNCTION: str
|
||||
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
|
||||
"""
|
||||
|
||||
|
||||
class CheckLazyMixin:
|
||||
"""Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
|
||||
|
||||
def check_lazy_status(self, **kwargs) -> list[str]:
|
||||
"""Returns a list of input names that should be evaluated.
|
||||
|
||||
This basic mixin impl. requires all inputs.
|
||||
|
||||
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
|
||||
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
|
||||
|
||||
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
|
||||
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
|
||||
"""
|
||||
|
||||
need = [name for name in kwargs if kwargs[name] is None]
|
||||
return need
|
||||
@ -20,6 +20,7 @@ import logging
|
||||
import math
|
||||
import os
|
||||
from enum import Enum
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import torch
|
||||
|
||||
@ -30,11 +31,15 @@ from . import model_patcher
|
||||
from . import ops
|
||||
from . import utils
|
||||
from .cldm import cldm, mmdit
|
||||
from .cldm.dit_embedder import ControlNetEmbedder
|
||||
from .ldm.cascade import controlnet as cascade_controlnet
|
||||
from .ldm.flux import controlnet as controlnet_flux
|
||||
from .ldm.hydit.controlnet import HunYuanControlNet
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .hooks import HookGroup
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
@ -79,6 +84,8 @@ class ControlBase:
|
||||
self.concat_mask = False
|
||||
self.extra_concat_orig = []
|
||||
self.extra_concat = None
|
||||
self.extra_hooks: HookGroup = None
|
||||
self.preprocess_image = lambda a: a
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
||||
self.cond_hint_original = cond_hint
|
||||
@ -116,6 +123,14 @@ class ControlBase:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def get_extra_hooks(self):
|
||||
out = []
|
||||
if self.extra_hooks is not None:
|
||||
out.append(self.extra_hooks)
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_extra_hooks()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
@ -130,6 +145,8 @@ class ControlBase:
|
||||
c.strength_type = self.strength_type
|
||||
c.concat_mask = self.concat_mask
|
||||
c.extra_concat_orig = self.extra_concat_orig.copy()
|
||||
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
|
||||
c.preprocess_image = self.preprocess_image
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
@ -182,7 +199,7 @@ class ControlBase:
|
||||
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, ckpt_name: str = None):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a, ckpt_name: str = None):
|
||||
super().__init__()
|
||||
self.control_model = control_model
|
||||
self.load_device = load_device
|
||||
@ -198,11 +215,12 @@ class ControlNet(ControlBase):
|
||||
self.extra_conds += extra_conds
|
||||
self.strength_type = strength_type
|
||||
self.concat_mask = concat_mask
|
||||
self.preprocess_image = preprocess_image
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
@ -226,6 +244,7 @@ class ControlNet(ControlBase):
|
||||
if self.latent_format is not None:
|
||||
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
self.cond_hint = self.preprocess_image(self.cond_hint)
|
||||
if self.vae is not None:
|
||||
loaded_models = model_management.loaded_models(only_currently_used=True)
|
||||
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
||||
@ -458,6 +477,82 @@ def load_controlnet_mmdit(sd, model_options=None):
|
||||
return control
|
||||
|
||||
|
||||
class ControlNetSD35(ControlNet):
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
if self.control_model.double_y_emb:
|
||||
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
|
||||
else:
|
||||
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
c.control_model = self.control_model
|
||||
c.control_model_wrapped = self.control_model_wrapped
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
|
||||
def load_controlnet_sd35(sd, model_options={}):
|
||||
control_type = -1
|
||||
if "control_type" in sd:
|
||||
control_type = round(sd.pop("control_type").item())
|
||||
|
||||
# blur_cnet = control_type == 0
|
||||
canny_cnet = control_type == 1
|
||||
depth_cnet = control_type == 2
|
||||
|
||||
new_sd = {}
|
||||
for k in utils.MMDIT_MAP_BASIC:
|
||||
if k[1] in sd:
|
||||
new_sd[k[0]] = sd.pop(k[1])
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
sd = new_sd
|
||||
|
||||
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
|
||||
depth = y_emb_shape[0] // 64
|
||||
hidden_size = 64 * depth
|
||||
num_heads = depth
|
||||
head_dim = hidden_size // num_heads
|
||||
num_blocks = model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_dtype = model_management.unet_dtype(model_params=-1)
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
control_model = ControlNetEmbedder(img_size=None,
|
||||
patch_size=2,
|
||||
in_chans=16,
|
||||
num_layers=num_blocks,
|
||||
main_model_double=depth,
|
||||
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
|
||||
attention_head_dim=head_dim,
|
||||
num_attention_heads=num_heads,
|
||||
adm_in_channels=2048,
|
||||
device=offload_device,
|
||||
dtype=unet_dtype,
|
||||
operations=operations)
|
||||
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
|
||||
latent_format = latent_formats.SD3()
|
||||
preprocess_image = lambda a: a
|
||||
if canny_cnet:
|
||||
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
|
||||
elif depth_cnet:
|
||||
preprocess_image = lambda a: 1.0 - a
|
||||
|
||||
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet_hunyuandit(controlnet_data, model_options=None):
|
||||
if model_options is None:
|
||||
model_options = {}
|
||||
@ -636,7 +731,10 @@ def load_controlnet_state_dict(state_dict, model=None, model_options=None, ckpt_
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
||||
elif "pos_embed_input.proj.weight" in controlnet_data:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) # SD3 diffusers controlnet
|
||||
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
|
||||
return load_controlnet_sd35(controlnet_data, model_options=model_options) # Stability sd3.5 format
|
||||
else:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) # SD3 diffusers controlnet
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: # mistoline flux
|
||||
@ -756,10 +854,10 @@ class T2IAdapter(ControlBase):
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
|
||||
@ -27,5 +27,8 @@ def load_extra_path_config(yaml_path):
|
||||
full_path = y
|
||||
if base_path is not None:
|
||||
full_path = os.path.join(base_path, full_path)
|
||||
elif not os.path.isabs(full_path):
|
||||
yaml_dir = os.path.dirname(os.path.abspath(yaml_path))
|
||||
full_path = os.path.abspath(os.path.join(yaml_dir, y))
|
||||
logging.info("Adding extra search path {} {}".format(x, full_path))
|
||||
folder_paths.add_model_folder_path(x, full_path, is_default=is_default)
|
||||
|
||||
@ -1,10 +1,9 @@
|
||||
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
from tqdm.auto import trange, tqdm
|
||||
from tqdm.auto import trange
|
||||
|
||||
|
||||
class NoiseScheduleVP:
|
||||
|
||||
690
comfy/hooks.py
Normal file
690
comfy/hooks.py
Normal file
@ -0,0 +1,690 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Callable
|
||||
import enum
|
||||
import math
|
||||
import torch
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
||||
from comfy.model_base import BaseModel
|
||||
from comfy.sd import CLIP
|
||||
import comfy.lora
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
from node_helpers import conditioning_set_values
|
||||
|
||||
class EnumHookMode(enum.Enum):
|
||||
MinVram = "minvram"
|
||||
MaxSpeed = "maxspeed"
|
||||
|
||||
class EnumHookType(enum.Enum):
|
||||
Weight = "weight"
|
||||
Patch = "patch"
|
||||
ObjectPatch = "object_patch"
|
||||
AddModels = "add_models"
|
||||
Callbacks = "callbacks"
|
||||
Wrappers = "wrappers"
|
||||
SetInjections = "add_injections"
|
||||
|
||||
class EnumWeightTarget(enum.Enum):
|
||||
Model = "model"
|
||||
Clip = "clip"
|
||||
|
||||
class _HookRef:
|
||||
pass
|
||||
|
||||
# NOTE: this is an example of how the should_register function should look
|
||||
def default_should_register(hook: 'Hook', model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
return True
|
||||
|
||||
|
||||
class Hook:
|
||||
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
|
||||
hook_keyframe: 'HookKeyframeGroup'=None):
|
||||
self.hook_type = hook_type
|
||||
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
||||
self.hook_id = hook_id
|
||||
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
||||
self.custom_should_register = default_should_register
|
||||
self.auto_apply_to_nonpositive = False
|
||||
|
||||
@property
|
||||
def strength(self):
|
||||
return self.hook_keyframe.strength
|
||||
|
||||
def initialize_timesteps(self, model: 'BaseModel'):
|
||||
self.reset()
|
||||
self.hook_keyframe.initialize_timesteps(model)
|
||||
|
||||
def reset(self):
|
||||
self.hook_keyframe.reset()
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: Hook = subtype()
|
||||
c.hook_type = self.hook_type
|
||||
c.hook_ref = self.hook_ref
|
||||
c.hook_id = self.hook_id
|
||||
c.hook_keyframe = self.hook_keyframe
|
||||
c.custom_should_register = self.custom_should_register
|
||||
# TODO: make this do something
|
||||
c.auto_apply_to_nonpositive = self.auto_apply_to_nonpositive
|
||||
return c
|
||||
|
||||
def should_register(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
return self.custom_should_register(self, model, model_options, target, registered)
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
|
||||
|
||||
def on_apply(self, model: 'ModelPatcher', transformer_options: dict[str]):
|
||||
pass
|
||||
|
||||
def on_unapply(self, model: 'ModelPatcher', transformer_options: dict[str]):
|
||||
pass
|
||||
|
||||
def __eq__(self, other: 'Hook'):
|
||||
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self.hook_ref)
|
||||
|
||||
class WeightHook(Hook):
|
||||
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
||||
super().__init__(hook_type=EnumHookType.Weight)
|
||||
self.weights: dict = None
|
||||
self.weights_clip: dict = None
|
||||
self.need_weight_init = True
|
||||
self._strength_model = strength_model
|
||||
self._strength_clip = strength_clip
|
||||
|
||||
@property
|
||||
def strength_model(self):
|
||||
return self._strength_model * self.strength
|
||||
|
||||
@property
|
||||
def strength_clip(self):
|
||||
return self._strength_clip * self.strength
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
if not self.should_register(model, model_options, target, registered):
|
||||
return False
|
||||
weights = None
|
||||
if target == EnumWeightTarget.Model:
|
||||
strength = self._strength_model
|
||||
else:
|
||||
strength = self._strength_clip
|
||||
|
||||
if self.need_weight_init:
|
||||
key_map = {}
|
||||
if target == EnumWeightTarget.Model:
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
||||
else:
|
||||
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
||||
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
||||
else:
|
||||
if target == EnumWeightTarget.Model:
|
||||
weights = self.weights
|
||||
else:
|
||||
weights = self.weights_clip
|
||||
k = model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
|
||||
registered.append(self)
|
||||
return True
|
||||
# TODO: add logs about any keys that were not applied
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: WeightHook = super().clone(subtype)
|
||||
c.weights = self.weights
|
||||
c.weights_clip = self.weights_clip
|
||||
c.need_weight_init = self.need_weight_init
|
||||
c._strength_model = self._strength_model
|
||||
c._strength_clip = self._strength_clip
|
||||
return c
|
||||
|
||||
class PatchHook(Hook):
|
||||
def __init__(self):
|
||||
super().__init__(hook_type=EnumHookType.Patch)
|
||||
self.patches: dict = None
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: PatchHook = super().clone(subtype)
|
||||
c.patches = self.patches
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class ObjectPatchHook(Hook):
|
||||
def __init__(self):
|
||||
super().__init__(hook_type=EnumHookType.ObjectPatch)
|
||||
self.object_patches: dict = None
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: ObjectPatchHook = super().clone(subtype)
|
||||
c.object_patches = self.object_patches
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class AddModelsHook(Hook):
|
||||
def __init__(self, key: str=None, models: list['ModelPatcher']=None):
|
||||
super().__init__(hook_type=EnumHookType.AddModels)
|
||||
self.key = key
|
||||
self.models = models
|
||||
self.append_when_same = True
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: AddModelsHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.models = self.models.copy() if self.models else self.models
|
||||
c.append_when_same = self.append_when_same
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class CallbackHook(Hook):
|
||||
def __init__(self, key: str=None, callback: Callable=None):
|
||||
super().__init__(hook_type=EnumHookType.Callbacks)
|
||||
self.key = key
|
||||
self.callback = callback
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: CallbackHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.callback = self.callback
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class WrapperHook(Hook):
|
||||
def __init__(self, wrappers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None):
|
||||
super().__init__(hook_type=EnumHookType.Wrappers)
|
||||
self.wrappers_dict = wrappers_dict
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: WrapperHook = super().clone(subtype)
|
||||
c.wrappers_dict = self.wrappers_dict
|
||||
return c
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
if not self.should_register(model, model_options, target, registered):
|
||||
return False
|
||||
add_model_options = {"transformer_options": self.wrappers_dict}
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
|
||||
registered.append(self)
|
||||
return True
|
||||
|
||||
class SetInjectionsHook(Hook):
|
||||
def __init__(self, key: str=None, injections: list['PatcherInjection']=None):
|
||||
super().__init__(hook_type=EnumHookType.SetInjections)
|
||||
self.key = key
|
||||
self.injections = injections
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: SetInjectionsHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.injections = self.injections.copy() if self.injections else self.injections
|
||||
return c
|
||||
|
||||
def add_hook_injections(self, model: 'ModelPatcher'):
|
||||
# TODO: add functionality
|
||||
pass
|
||||
|
||||
class HookGroup:
|
||||
def __init__(self):
|
||||
self.hooks: list[Hook] = []
|
||||
|
||||
def add(self, hook: Hook):
|
||||
if hook not in self.hooks:
|
||||
self.hooks.append(hook)
|
||||
|
||||
def contains(self, hook: Hook):
|
||||
return hook in self.hooks
|
||||
|
||||
def clone(self):
|
||||
c = HookGroup()
|
||||
for hook in self.hooks:
|
||||
c.add(hook.clone())
|
||||
return c
|
||||
|
||||
def clone_and_combine(self, other: 'HookGroup'):
|
||||
c = self.clone()
|
||||
if other is not None:
|
||||
for hook in other.hooks:
|
||||
c.add(hook.clone())
|
||||
return c
|
||||
|
||||
def set_keyframes_on_hooks(self, hook_kf: 'HookKeyframeGroup'):
|
||||
if hook_kf is None:
|
||||
hook_kf = HookKeyframeGroup()
|
||||
else:
|
||||
hook_kf = hook_kf.clone()
|
||||
for hook in self.hooks:
|
||||
hook.hook_keyframe = hook_kf
|
||||
|
||||
def get_dict_repr(self):
|
||||
d: dict[EnumHookType, dict[Hook, None]] = {}
|
||||
for hook in self.hooks:
|
||||
with_type = d.setdefault(hook.hook_type, {})
|
||||
with_type[hook] = None
|
||||
return d
|
||||
|
||||
def get_hooks_for_clip_schedule(self):
|
||||
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
|
||||
for hook in self.hooks:
|
||||
# only care about WeightHooks, for now
|
||||
if hook.hook_type == EnumHookType.Weight:
|
||||
hook_schedule = []
|
||||
# if no hook keyframes, assign default value
|
||||
if len(hook.hook_keyframe.keyframes) == 0:
|
||||
hook_schedule.append(((0.0, 1.0), None))
|
||||
scheduled_hooks[hook] = hook_schedule
|
||||
continue
|
||||
# find ranges of values
|
||||
prev_keyframe = hook.hook_keyframe.keyframes[0]
|
||||
for keyframe in hook.hook_keyframe.keyframes:
|
||||
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
|
||||
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
|
||||
prev_keyframe = keyframe
|
||||
elif keyframe.start_percent == prev_keyframe.start_percent:
|
||||
prev_keyframe = keyframe
|
||||
# create final range, assuming last start_percent was not 1.0
|
||||
if not math.isclose(prev_keyframe.start_percent, 1.0):
|
||||
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
|
||||
scheduled_hooks[hook] = hook_schedule
|
||||
# hooks should not have their schedules in a list of tuples
|
||||
all_ranges: list[tuple[float, float]] = []
|
||||
for range_kfs in scheduled_hooks.values():
|
||||
for t_range, keyframe in range_kfs:
|
||||
all_ranges.append(t_range)
|
||||
# turn list of ranges into boundaries
|
||||
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
|
||||
boundaries_set.add(0.0)
|
||||
boundaries = sorted(boundaries_set)
|
||||
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
|
||||
# with real ranges defined, give appropriate hooks w/ keyframes for each range
|
||||
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
|
||||
for t_range in real_ranges:
|
||||
hooks_schedule = []
|
||||
for hook, val in scheduled_hooks.items():
|
||||
keyframe = None
|
||||
# check if is a keyframe that works for the current t_range
|
||||
for stored_range, stored_kf in val:
|
||||
# if stored start is less than current end, then fits - give it assigned keyframe
|
||||
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
|
||||
keyframe = stored_kf
|
||||
break
|
||||
hooks_schedule.append((hook, keyframe))
|
||||
scheduled_keyframes.append((t_range, hooks_schedule))
|
||||
return scheduled_keyframes
|
||||
|
||||
def reset(self):
|
||||
for hook in self.hooks:
|
||||
hook.reset()
|
||||
|
||||
@staticmethod
|
||||
def combine_all_hooks(hooks_list: list['HookGroup'], require_count=0) -> 'HookGroup':
|
||||
actual: list[HookGroup] = []
|
||||
for group in hooks_list:
|
||||
if group is not None:
|
||||
actual.append(group)
|
||||
if len(actual) < require_count:
|
||||
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
||||
# if no hooks, then return None
|
||||
if len(actual) == 0:
|
||||
return None
|
||||
# if only 1 hook, just return itself without cloning
|
||||
elif len(actual) == 1:
|
||||
return actual[0]
|
||||
final_hook: HookGroup = None
|
||||
for hook in actual:
|
||||
if final_hook is None:
|
||||
final_hook = hook.clone()
|
||||
else:
|
||||
final_hook = final_hook.clone_and_combine(hook)
|
||||
return final_hook
|
||||
|
||||
|
||||
class HookKeyframe:
|
||||
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
||||
self.strength = strength
|
||||
# scheduling
|
||||
self.start_percent = float(start_percent)
|
||||
self.start_t = 999999999.9
|
||||
self.guarantee_steps = guarantee_steps
|
||||
|
||||
def clone(self):
|
||||
c = HookKeyframe(strength=self.strength,
|
||||
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
||||
c.start_t = self.start_t
|
||||
return c
|
||||
|
||||
class HookKeyframeGroup:
|
||||
def __init__(self):
|
||||
self.keyframes: list[HookKeyframe] = []
|
||||
self._current_keyframe: HookKeyframe = None
|
||||
self._current_used_steps = 0
|
||||
self._current_index = 0
|
||||
self._current_strength = None
|
||||
self._curr_t = -1.
|
||||
|
||||
# properties shadow those of HookWeightsKeyframe
|
||||
@property
|
||||
def strength(self):
|
||||
if self._current_keyframe is not None:
|
||||
return self._current_keyframe.strength
|
||||
return 1.0
|
||||
|
||||
def reset(self):
|
||||
self._current_keyframe = None
|
||||
self._current_used_steps = 0
|
||||
self._current_index = 0
|
||||
self._current_strength = None
|
||||
self.curr_t = -1.
|
||||
self._set_first_as_current()
|
||||
|
||||
def add(self, keyframe: HookKeyframe):
|
||||
# add to end of list, then sort
|
||||
self.keyframes.append(keyframe)
|
||||
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
||||
self._set_first_as_current()
|
||||
|
||||
def _set_first_as_current(self):
|
||||
if len(self.keyframes) > 0:
|
||||
self._current_keyframe = self.keyframes[0]
|
||||
else:
|
||||
self._current_keyframe = None
|
||||
|
||||
def has_index(self, index: int):
|
||||
return index >= 0 and index < len(self.keyframes)
|
||||
|
||||
def is_empty(self):
|
||||
return len(self.keyframes) == 0
|
||||
|
||||
def clone(self):
|
||||
c = HookKeyframeGroup()
|
||||
for keyframe in self.keyframes:
|
||||
c.keyframes.append(keyframe.clone())
|
||||
c._set_first_as_current()
|
||||
return c
|
||||
|
||||
def initialize_timesteps(self, model: 'BaseModel'):
|
||||
for keyframe in self.keyframes:
|
||||
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
||||
|
||||
def prepare_current_keyframe(self, curr_t: float) -> bool:
|
||||
if self.is_empty():
|
||||
return False
|
||||
if curr_t == self._curr_t:
|
||||
return False
|
||||
prev_index = self._current_index
|
||||
prev_strength = self._current_strength
|
||||
# if met guaranteed steps, look for next keyframe in case need to switch
|
||||
if self._current_used_steps >= self._current_keyframe.guarantee_steps:
|
||||
# if has next index, loop through and see if need to switch
|
||||
if self.has_index(self._current_index+1):
|
||||
for i in range(self._current_index+1, len(self.keyframes)):
|
||||
eval_c = self.keyframes[i]
|
||||
# check if start_t is greater or equal to curr_t
|
||||
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
||||
if eval_c.start_t >= curr_t:
|
||||
self._current_index = i
|
||||
self._current_strength = eval_c.strength
|
||||
self._current_keyframe = eval_c
|
||||
self._current_used_steps = 0
|
||||
# if guarantee_steps greater than zero, stop searching for other keyframes
|
||||
if self._current_keyframe.guarantee_steps > 0:
|
||||
break
|
||||
# if eval_c is outside the percent range, stop looking further
|
||||
else: break
|
||||
# update steps current context is used
|
||||
self._current_used_steps += 1
|
||||
# update current timestep this was performed on
|
||||
self._curr_t = curr_t
|
||||
# return True if keyframe changed, False if no change
|
||||
return prev_index != self._current_index and prev_strength != self._current_strength
|
||||
|
||||
|
||||
class InterpolationMethod:
|
||||
LINEAR = "linear"
|
||||
EASE_IN = "ease_in"
|
||||
EASE_OUT = "ease_out"
|
||||
EASE_IN_OUT = "ease_in_out"
|
||||
|
||||
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
||||
|
||||
@classmethod
|
||||
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
||||
diff = num_to - num_from
|
||||
if method == cls.LINEAR:
|
||||
weights = torch.linspace(num_from, num_to, length)
|
||||
elif method == cls.EASE_IN:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * np.power(index, 2) + num_from
|
||||
elif method == cls.EASE_OUT:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
||||
elif method == cls.EASE_IN_OUT:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
||||
else:
|
||||
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
||||
if reverse:
|
||||
weights = weights.flip(dims=(0,))
|
||||
return weights
|
||||
|
||||
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
||||
if not objects:
|
||||
return objects
|
||||
elif len(objects) <= 1:
|
||||
return [x for x in objects]
|
||||
# now that we know we have to sort, do it following these rules:
|
||||
# a) if objects have same value of attribute, maintain their relative order
|
||||
# b) perform sorting of the groups of objects with same attributes
|
||||
unique_attrs = {}
|
||||
for o in objects:
|
||||
val_attr = getattr(o, attr)
|
||||
attr_list: list = unique_attrs.get(val_attr, list())
|
||||
attr_list.append(o)
|
||||
if val_attr not in unique_attrs:
|
||||
unique_attrs[val_attr] = attr_list
|
||||
# now that we have the unique attr values grouped together in relative order, sort them by key
|
||||
sorted_attrs = dict(sorted(unique_attrs.items()))
|
||||
# now flatten out the dict into a list to return
|
||||
sorted_list = []
|
||||
for object_list in sorted_attrs.values():
|
||||
sorted_list.extend(object_list)
|
||||
return sorted_list
|
||||
|
||||
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
||||
hook_group.add(hook)
|
||||
hook.weights = lora
|
||||
return hook_group
|
||||
|
||||
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
||||
hook_group.add(hook)
|
||||
patches_model = None
|
||||
patches_clip = None
|
||||
if weights_model is not None:
|
||||
patches_model = {}
|
||||
for key in weights_model:
|
||||
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
||||
if weights_clip is not None:
|
||||
patches_clip = {}
|
||||
for key in weights_clip:
|
||||
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
||||
hook.weights = patches_model
|
||||
hook.weights_clip = patches_clip
|
||||
hook.need_weight_init = False
|
||||
return hook_group
|
||||
|
||||
def get_patch_weights_from_model(model: 'ModelPatcher', discard_model_sampling=True):
|
||||
if model is None:
|
||||
return None
|
||||
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
|
||||
if discard_model_sampling:
|
||||
# do not include ANY model_sampling components of the model that should act as a patch
|
||||
for key in list(patches_model.keys()):
|
||||
if key.startswith("model_sampling"):
|
||||
patches_model.pop(key, None)
|
||||
return patches_model
|
||||
|
||||
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
|
||||
def load_hook_lora_for_models(model: 'ModelPatcher', clip: 'CLIP', lora: dict[str, torch.Tensor],
|
||||
strength_model: float, strength_clip: float):
|
||||
key_map = {}
|
||||
if model is not None:
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
||||
if clip is not None:
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook()
|
||||
hook_group.add(hook)
|
||||
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
|
||||
if model is not None:
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
||||
else:
|
||||
k = ()
|
||||
new_modelpatcher = None
|
||||
|
||||
if clip is not None:
|
||||
new_clip = clip.clone()
|
||||
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
||||
else:
|
||||
k1 = ()
|
||||
new_clip = None
|
||||
k = set(k)
|
||||
k1 = set(k1)
|
||||
for x in loaded:
|
||||
if (x not in k) and (x not in k1):
|
||||
print(f"NOT LOADED {x}")
|
||||
return (new_modelpatcher, new_clip, hook_group)
|
||||
|
||||
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
||||
hooks_key = 'hooks'
|
||||
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
|
||||
if hooks_key not in values:
|
||||
return
|
||||
if hooks_key not in c_dict:
|
||||
hooks_value = values.get(hooks_key, None)
|
||||
if hooks_value is not None:
|
||||
c_dict[hooks_key] = hooks_value
|
||||
return
|
||||
# otherwise, need to combine with minimum duplication via cache
|
||||
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
|
||||
cached_hooks = cache.get(hooks_tuple, None)
|
||||
if cached_hooks is None:
|
||||
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
|
||||
cache[hooks_tuple] = new_hooks
|
||||
c_dict[hooks_key] = new_hooks
|
||||
else:
|
||||
c_dict[hooks_key] = cache[hooks_tuple]
|
||||
|
||||
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True):
|
||||
c = []
|
||||
hooks_combine_cache: dict[tuple[HookGroup, HookGroup], HookGroup] = {}
|
||||
for t in conditioning:
|
||||
n = [t[0], t[1].copy()]
|
||||
for k in values:
|
||||
if append_hooks and k == 'hooks':
|
||||
_combine_hooks_from_values(n[1], values, hooks_combine_cache)
|
||||
else:
|
||||
n[1][k] = values[k]
|
||||
c.append(n)
|
||||
|
||||
return c
|
||||
|
||||
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True):
|
||||
if hooks is None:
|
||||
return cond
|
||||
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks)
|
||||
|
||||
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
||||
if timestep_range is None:
|
||||
return cond
|
||||
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
||||
"end_percent": timestep_range[1]})
|
||||
|
||||
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
||||
if mask is None:
|
||||
return cond
|
||||
set_area_to_bounds = False
|
||||
if set_cond_area != 'default':
|
||||
set_area_to_bounds = True
|
||||
if len(mask.shape) < 3:
|
||||
mask = mask.unsqueeze(0)
|
||||
return conditioning_set_values(cond, {'mask': mask,
|
||||
'set_area_to_bounds': set_area_to_bounds,
|
||||
'mask_strength': strength})
|
||||
|
||||
def combine_conditioning(conds: list):
|
||||
combined_conds = []
|
||||
for cond in conds:
|
||||
combined_conds.extend(cond)
|
||||
return combined_conds
|
||||
|
||||
def combine_with_new_conds(conds: list, new_conds: list):
|
||||
combined_conds = []
|
||||
for c, new_c in zip(conds, new_conds):
|
||||
combined_conds.append(combine_conditioning([c, new_c]))
|
||||
return combined_conds
|
||||
|
||||
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
final_conds = []
|
||||
for c in conds:
|
||||
# first, apply lora_hook to conditioning, if provided
|
||||
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks)
|
||||
# next, apply mask to conditioning
|
||||
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
||||
# apply timesteps, if present
|
||||
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
|
||||
# finally, apply mask to conditioning and store
|
||||
final_conds.append(c)
|
||||
return final_conds
|
||||
|
||||
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
for c, masked_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks)
|
||||
# next, apply mask to new conditioning, if provided
|
||||
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
||||
# apply timesteps, if present
|
||||
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
|
||||
# finally, combine with existing conditioning and store
|
||||
combined_conds.append(combine_conditioning([c, masked_c]))
|
||||
return combined_conds
|
||||
|
||||
def set_default_conds_and_combine(conds: list, new_conds: list,
|
||||
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
for c, new_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks)
|
||||
# next, add default_cond key to cond so that during sampling, it can be identified
|
||||
new_c = conditioning_set_values(new_c, {'default': True})
|
||||
# apply timesteps, if present
|
||||
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
|
||||
# finally, combine with existing conditioning and store
|
||||
combined_conds.append(combine_conditioning([c, new_c]))
|
||||
return combined_conds
|
||||
@ -176,12 +176,14 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
|
||||
if sigma_down == 0:
|
||||
x = denoised
|
||||
else:
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
@ -193,19 +195,22 @@ def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None,
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i+1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i+1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
# Euler method
|
||||
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
||||
if sigmas[i + 1] > 0 and eta > 0:
|
||||
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i + 1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i + 1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
|
||||
# Euler method
|
||||
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
||||
if eta > 0:
|
||||
x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
@ -281,6 +286,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||
|
||||
"""Ancestral sampling with DPM-Solver second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@ -307,6 +315,38 @@ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i+1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i+1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if sigma_down == 0:
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
else:
|
||||
# DPM-Solver-2
|
||||
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
||||
dt_1 = sigma_mid - sigmas[i]
|
||||
dt_2 = sigma_down - sigmas[i]
|
||||
x_2 = x + d * dt_1
|
||||
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
||||
x = x + d_2 * dt_2
|
||||
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
return x
|
||||
|
||||
def linear_multistep_coeff(order, t, i, j):
|
||||
if order - 1 > i:
|
||||
|
||||
@ -233,3 +233,136 @@ class Mochi(LatentFormat):
|
||||
|
||||
class LTXV(LatentFormat):
|
||||
latent_channels = 128
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
|
||||
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
|
||||
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
|
||||
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
|
||||
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
|
||||
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
|
||||
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
|
||||
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
|
||||
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
|
||||
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
|
||||
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
|
||||
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
|
||||
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
|
||||
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
|
||||
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
|
||||
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
|
||||
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
|
||||
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
|
||||
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
|
||||
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
|
||||
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
|
||||
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
|
||||
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
|
||||
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
|
||||
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
|
||||
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
|
||||
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
|
||||
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
|
||||
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
|
||||
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
|
||||
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
|
||||
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
|
||||
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
|
||||
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
|
||||
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
|
||||
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
|
||||
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
|
||||
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
|
||||
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
|
||||
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
|
||||
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
|
||||
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
|
||||
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
|
||||
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
|
||||
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
|
||||
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
|
||||
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
|
||||
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
|
||||
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
|
||||
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
|
||||
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
|
||||
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
|
||||
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
|
||||
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
|
||||
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
|
||||
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
|
||||
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
|
||||
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
|
||||
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
|
||||
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
|
||||
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
|
||||
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
|
||||
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
|
||||
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
|
||||
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
|
||||
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
|
||||
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
|
||||
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
|
||||
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
|
||||
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
|
||||
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
|
||||
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
|
||||
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
|
||||
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
|
||||
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
|
||||
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
|
||||
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
|
||||
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
|
||||
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
|
||||
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
|
||||
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
|
||||
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
|
||||
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
|
||||
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
|
||||
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
|
||||
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
|
||||
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
|
||||
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
|
||||
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
|
||||
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
|
||||
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
|
||||
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
|
||||
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
|
||||
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
|
||||
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
|
||||
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
|
||||
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
|
||||
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
|
||||
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
|
||||
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
|
||||
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
|
||||
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
|
||||
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
|
||||
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
|
||||
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
|
||||
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
|
||||
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
|
||||
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
|
||||
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
|
||||
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
|
||||
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
|
||||
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
|
||||
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
|
||||
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
|
||||
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
|
||||
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
|
||||
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
|
||||
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
|
||||
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
|
||||
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
|
||||
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
|
||||
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
|
||||
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
|
||||
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
|
||||
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
|
||||
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
|
||||
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
|
||||
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
|
||||
]
|
||||
|
||||
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from typing import Literal, Dict, Any
|
||||
from typing import Literal
|
||||
import math
|
||||
from ... import ops
|
||||
ops = ops.disable_weight_init
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor, einsum
|
||||
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
||||
from torch import Tensor
|
||||
from typing import List, Union
|
||||
from einops import rearrange
|
||||
import math
|
||||
from ... import ops
|
||||
|
||||
@ -16,7 +16,6 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from .common import LayerNorm2d_op
|
||||
|
||||
@ -4,7 +4,7 @@ from comfy import ops
|
||||
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
padding_mode = "reflect"
|
||||
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
|
||||
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@ -1,8 +1,6 @@
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ... import ops
|
||||
from ..modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
@ -287,7 +285,7 @@ class HunYuanDiT(nn.Module):
|
||||
style=None,
|
||||
return_dict=False,
|
||||
control=None,
|
||||
transformer_options=None,
|
||||
transformer_options={},
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
@ -315,8 +313,7 @@ class HunYuanDiT(nn.Module):
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
encoder_hidden_states = context
|
||||
text_states = encoder_hidden_states # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
@ -364,6 +361,8 @@ class HunYuanDiT(nn.Module):
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
controls = None
|
||||
if control:
|
||||
controls = control.get("output", None)
|
||||
@ -375,9 +374,20 @@ class HunYuanDiT(nn.Module):
|
||||
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
|
||||
else:
|
||||
skip = skips.pop()
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
else:
|
||||
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
|
||||
skip = None
|
||||
|
||||
if ("double_block", layer) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
|
||||
|
||||
if layer < (self.depth // 2 - 1):
|
||||
skips.append(x)
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..modules.attention import optimized_attention
|
||||
from ... import ops
|
||||
|
||||
|
||||
@ -380,6 +380,7 @@ class LTXVModel(torch.nn.Module):
|
||||
positional_embedding_max_pos=[20, 2048, 2048],
|
||||
dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.generator = None
|
||||
self.dtype = dtype
|
||||
self.out_channels = in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
@ -416,13 +417,15 @@ class LTXVModel(torch.nn.Module):
|
||||
|
||||
self.patchifier = SymmetricPatchifier(1)
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, **kwargs):
|
||||
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
|
||||
indices_grid = self.patchifier.get_grid(
|
||||
orig_num_frames=x.shape[2],
|
||||
orig_height=x.shape[3],
|
||||
orig_width=x.shape[4],
|
||||
batch_size=x.shape[0],
|
||||
scale_grid=((1 / frame_rate) * 8, 32, 32), #TODO: controlable frame rate
|
||||
scale_grid=((1 / frame_rate) * 8, 32, 32),
|
||||
device=x.device,
|
||||
)
|
||||
|
||||
@ -430,10 +433,22 @@ class LTXVModel(torch.nn.Module):
|
||||
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
|
||||
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
|
||||
ts *= input_ts
|
||||
ts[:, :, 0] = 0.0
|
||||
ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
|
||||
timestep = self.patchifier.patchify(ts)
|
||||
input_x = x.clone()
|
||||
x[:, :, 0] = guiding_latent[:, :, 0]
|
||||
if guiding_latent_noise_scale > 0:
|
||||
if self.generator is None:
|
||||
self.generator = torch.Generator(device=x.device).manual_seed(42)
|
||||
elif self.generator.device != x.device:
|
||||
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
|
||||
|
||||
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
|
||||
scale = guiding_latent_noise_scale * (input_ts ** 2)
|
||||
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
|
||||
|
||||
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
|
||||
|
||||
|
||||
orig_shape = list(x.shape)
|
||||
|
||||
@ -469,14 +484,24 @@ class LTXVModel(torch.nn.Module):
|
||||
batch_size, -1, x.shape[-1]
|
||||
)
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
x = block(
|
||||
x,
|
||||
context=context,
|
||||
attention_mask=attention_mask,
|
||||
timestep=timestep,
|
||||
pe=pe
|
||||
)
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(
|
||||
x,
|
||||
context=context,
|
||||
attention_mask=attention_mask,
|
||||
timestep=timestep,
|
||||
pe=pe
|
||||
)
|
||||
|
||||
# 3. Output
|
||||
scale_shift_values = (
|
||||
|
||||
@ -3,7 +3,7 @@ from torch import nn
|
||||
from functools import partial
|
||||
import math
|
||||
from einops import rearrange
|
||||
from typing import Any, Mapping, Optional, Tuple, Union, List
|
||||
from typing import Optional, Tuple, Union
|
||||
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
||||
from .pixel_norm import PixelNorm
|
||||
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from .dual_conv3d import DualConv3d
|
||||
from .causal_conv3d import CausalConv3d
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Tuple, Union
|
||||
import logging as logpy
|
||||
|
||||
from ..modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
@ -1,16 +1,16 @@
|
||||
import logging
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Dict, Optional, List
|
||||
from typing import Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..attention import optimized_attention
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .util import timestep_embedding
|
||||
from .... import ops
|
||||
from ..attention import optimized_attention
|
||||
from ... import common_dit
|
||||
from .... import ops
|
||||
|
||||
|
||||
def default(x, y):
|
||||
if x is not None:
|
||||
|
||||
@ -3,7 +3,6 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from typing import Optional, Any
|
||||
import logging
|
||||
|
||||
from .... import model_management
|
||||
|
||||
@ -1,23 +1,25 @@
|
||||
import logging
|
||||
from abc import abstractmethod
|
||||
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
import logging
|
||||
|
||||
from .util import (
|
||||
checkpoint,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
AlphaBlender,
|
||||
)
|
||||
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
||||
from ...util import exists
|
||||
from .... import ops
|
||||
from .... import patcher_extension
|
||||
|
||||
ops = ops.disable_weight_init
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
@ -29,7 +31,8 @@ class TimestepBlock(nn.Module):
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
||||
|
||||
# This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
||||
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
||||
for layer in ts:
|
||||
if isinstance(layer, VideoResBlock):
|
||||
@ -47,9 +50,19 @@ def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, out
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
if "patches" in transformer_options and "forward_timestep_embed_patch" in transformer_options["patches"]:
|
||||
found_patched = False
|
||||
for class_type, handler in transformer_options["patches"]["forward_timestep_embed_patch"]:
|
||||
if isinstance(layer, class_type):
|
||||
x = handler(layer, x, emb, context, transformer_options, output_shape, time_context, num_video_frames, image_only_indicator)
|
||||
found_patched = True
|
||||
break
|
||||
if found_patched:
|
||||
continue
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
@ -59,6 +72,7 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
def forward(self, *args, **kwargs):
|
||||
return forward_timestep_embed(self, *args, **kwargs)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
@ -95,6 +109,7 @@ class Upsample(nn.Module):
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
@ -141,23 +156,23 @@ class ResBlock(TimestepBlock):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
exchange_temb_dims=False,
|
||||
skip_t_emb=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
exchange_temb_dims=False,
|
||||
skip_t_emb=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@ -231,7 +246,6 @@ class ResBlock(TimestepBlock):
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
@ -266,23 +280,23 @@ class ResBlock(TimestepBlock):
|
||||
|
||||
class VideoResBlock(ResBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
video_kernel_size=3,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
out_channels=None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
video_kernel_size=3,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
out_channels=None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
super().__init__(
|
||||
channels,
|
||||
@ -324,11 +338,11 @@ class VideoResBlock(ResBlock):
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator = None,
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator=None,
|
||||
) -> th.Tensor:
|
||||
x = super().forward(x, emb)
|
||||
|
||||
@ -353,6 +367,7 @@ class Timestep(nn.Module):
|
||||
def forward(self, t):
|
||||
return timestep_embedding(t, self.dim)
|
||||
|
||||
|
||||
def apply_control(h, control, name):
|
||||
if control is not None and name in control and len(control[name]) > 0:
|
||||
ctrl = control[name].pop()
|
||||
@ -363,6 +378,7 @@ def apply_control(h, control, name):
|
||||
logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
|
||||
return h
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
@ -390,50 +406,50 @@ class UNetModel(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
dtype=th.float32,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
use_temporal_resblock=False,
|
||||
use_temporal_attention=False,
|
||||
time_context_dim=None,
|
||||
extra_ff_mix_layer=False,
|
||||
use_spatial_context=False,
|
||||
merge_strategy=None,
|
||||
merge_factor=0.0,
|
||||
video_kernel_size=None,
|
||||
disable_temporal_crossattention=False,
|
||||
max_ddpm_temb_period=10000,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
operations=ops,
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
dtype=th.float32,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
use_temporal_resblock=False,
|
||||
use_temporal_attention=False,
|
||||
time_context_dim=None,
|
||||
extra_ff_mix_layer=False,
|
||||
use_spatial_context=False,
|
||||
merge_strategy=None,
|
||||
merge_factor=0.0,
|
||||
video_kernel_size=None,
|
||||
disable_temporal_crossattention=False,
|
||||
max_ddpm_temb_period=10000,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
operations=ops,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -525,13 +541,13 @@ class UNetModel(nn.Module):
|
||||
ds = 1
|
||||
|
||||
def get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disable_self_attn=False,
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disable_self_attn=False,
|
||||
):
|
||||
if use_temporal_attention:
|
||||
return SpatialVideoTransformer(
|
||||
@ -556,27 +572,27 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
else:
|
||||
return SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def get_resblock(
|
||||
merge_factor,
|
||||
merge_strategy,
|
||||
video_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
merge_factor,
|
||||
merge_strategy,
|
||||
video_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
if self.use_temporal_resblocks:
|
||||
return VideoResBlock(
|
||||
@ -640,7 +656,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
@ -649,8 +665,8 @@ class UNetModel(nn.Module):
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(get_attention_layer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
@ -692,7 +708,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
mid_block = [
|
||||
get_resblock(
|
||||
@ -715,24 +731,24 @@ class UNetModel(nn.Module):
|
||||
if transformer_depth_middle >= -1:
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [get_attention_layer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
||||
),
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
||||
),
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self._feature_size += ch
|
||||
|
||||
@ -766,7 +782,7 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
@ -813,12 +829,19 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
return patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
patcher_extension.get_all_wrappers(patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timesteps, context, y, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
@ -836,7 +859,7 @@ class UNetModel(nn.Module):
|
||||
time_context = kwargs.get("time_context", None)
|
||||
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
@ -872,7 +895,6 @@ class UNetModel(nn.Module):
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = apply_control(h, control, 'middle')
|
||||
|
||||
|
||||
for id, module in enumerate(self.output_blocks):
|
||||
transformer_options["block"] = ("output", id)
|
||||
hsp = hs.pop()
|
||||
|
||||
@ -1,10 +1,10 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .util import extract_into_tensor, make_beta_schedule
|
||||
from ...util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
||||
@ -80,6 +80,3 @@ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
z = self.q_sample(x, noise_level, seed=seed)
|
||||
return z, noise_level
|
||||
|
||||
|
||||
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
# thanks!
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import functools
|
||||
from typing import Callable, Iterable, Union
|
||||
from typing import Iterable, Union
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
@ -36,7 +36,7 @@ LORA_CLIP_MAP = {
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load) -> PatchDict:
|
||||
def load_lora(lora, to_load, log_missing=True) -> PatchDict:
|
||||
patch_dict: PatchDict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
@ -65,6 +65,7 @@ def load_lora(lora, to_load) -> PatchDict:
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = B_name = None
|
||||
|
||||
@ -82,6 +83,9 @@ def load_lora(lora, to_load) -> PatchDict:
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name = "{}.lora_linear_layer.down.weight".format(x)
|
||||
@ -206,9 +210,10 @@ def load_lora(lora, to_load) -> PatchDict:
|
||||
patch_dict[to_load[x]] = ("set", (set_weight,))
|
||||
loaded_keys.add(set_weight_name)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
logging.warning("lora key not loaded: {}".format(x))
|
||||
if log_missing:
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
logging.warning("lora key not loaded: {}".format(x))
|
||||
|
||||
return patch_dict
|
||||
|
||||
@ -307,7 +312,7 @@ def model_lora_keys_unet(model, key_map=None):
|
||||
key_map["lora_prior_unet_{}".format(key_lora)] = k # cascade lora: TODO put lora key prefix in the model config
|
||||
key_map["{}".format(k[:-len(".weight")])] = k # generic lora format without any weird key names
|
||||
else:
|
||||
key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names
|
||||
key_map["{}".format(k)] = k # generic lora format for not .weight without any weird key names
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
@ -364,6 +369,12 @@ def model_lora_keys_unet(model, key_map=None):
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # onetrainer
|
||||
|
||||
if isinstance(model, model_base.GenmoMochi):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"): # Official Mochi lora format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
@ -422,7 +433,7 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
|
||||
return padded_tensor
|
||||
|
||||
|
||||
def calculate_weight(patches: ModelPatchesDictValue, weight, key, intermediate_dtype=torch.float32):
|
||||
def calculate_weight(patches: ModelPatchesDictValue, weight, key, intermediate_dtype=torch.float32, original_weights=None):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
v = p[1]
|
||||
@ -465,6 +476,11 @@ def calculate_weight(patches: ModelPatchesDictValue, weight, key, intermediate_d
|
||||
weight += function(strength * model_management.cast_to_device(diff, weight.device, weight.dtype))
|
||||
elif patch_type == "set":
|
||||
weight.copy_(v[0])
|
||||
elif patch_type == "model_as_lora":
|
||||
target_weight: torch.Tensor = v[0]
|
||||
diff_weight = model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
|
||||
model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
|
||||
weight += function(strength * model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": # lora/locon
|
||||
mat1 = model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
|
||||
@ -34,14 +34,16 @@ from .ldm.aura.mmdit import MMDiT as AuraMMDiT
|
||||
from .ldm.cascade.stage_b import StageB
|
||||
from .ldm.cascade.stage_c import StageC
|
||||
from .ldm.flux import model as flux_model
|
||||
from .ldm.lightricks.model import LTXVModel
|
||||
from .ldm.genmo.joint_model.asymm_models_joint import AsymmDiTJoint
|
||||
from .ldm.hydit.models import HunYuanDiT
|
||||
from .ldm.lightricks.model import LTXVModel
|
||||
from .ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
|
||||
from .ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
from .ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from .model_management_types import ModelManageable
|
||||
from .ops import Operations
|
||||
from .patcher_extension import WrapperExecutor, WrappersMP, get_all_wrappers
|
||||
|
||||
|
||||
class ModelType(Enum):
|
||||
@ -109,6 +111,8 @@ class BaseModel(torch.nn.Module):
|
||||
self.manual_cast_dtype = model_config.manual_cast_dtype
|
||||
self.device: torch.device = device
|
||||
self.operations: Optional[Operations]
|
||||
self.current_patcher: Optional[ModelManageable] = None
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
@ -137,6 +141,13 @@ class BaseModel(torch.nn.Module):
|
||||
self.training = False
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
return WrapperExecutor.new_class_executor(
|
||||
self._apply_model,
|
||||
self,
|
||||
get_all_wrappers(WrappersMP.APPLY_MODEL, transformer_options)
|
||||
).execute(x, t, c_concat, c_crossattn, control, transformer_options, **kwargs)
|
||||
|
||||
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
if c_concat is not None:
|
||||
@ -576,7 +587,6 @@ class IP2P(BaseModel):
|
||||
return self.process_ip2p_image_in(image)
|
||||
|
||||
|
||||
|
||||
class SD15_instructpix2pix(IP2P, BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
@ -746,7 +756,13 @@ class Flux(BaseModel):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=flux_model.Flux)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size)
|
||||
try:
|
||||
# Handle Flux control loras dynamically changing the img_in weight.
|
||||
num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size)
|
||||
except:
|
||||
# Some cases like tensorrt might not have the weights accessible
|
||||
num_channels = self.model_config.unet_config["in_channels"]
|
||||
|
||||
out_channels = self.model_config.unet_config["out_channels"]
|
||||
|
||||
if num_channels <= out_channels:
|
||||
@ -765,7 +781,7 @@ class Flux(BaseModel):
|
||||
if num_channels <= out_channels * 2:
|
||||
return image
|
||||
|
||||
#inpaint model
|
||||
# inpaint model
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.ones_like(noise)[:, :1]
|
||||
@ -788,6 +804,7 @@ class Flux(BaseModel):
|
||||
out['guidance'] = conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
|
||||
return out
|
||||
|
||||
|
||||
class GenmoMochi(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=AsymmDiTJoint)
|
||||
@ -803,9 +820,10 @@ class GenmoMochi(BaseModel):
|
||||
out['c_crossattn'] = conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
|
||||
class LTXV(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=LTXVModel) #TODO
|
||||
super().__init__(model_config, model_type, device=device, unet_model=LTXVModel) # TODO
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@ -820,5 +838,9 @@ class LTXV(BaseModel):
|
||||
if guiding_latent is not None:
|
||||
out['guiding_latent'] = conds.CONDRegular(guiding_latent)
|
||||
|
||||
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None)
|
||||
if guiding_latent_noise_scale is not None:
|
||||
out["guiding_latent_noise_scale"] = conds.CONDConstant(guiding_latent_noise_scale)
|
||||
|
||||
out['frame_rate'] = conds.CONDConstant(kwargs.get("frame_rate", 25))
|
||||
return out
|
||||
|
||||
@ -1,2 +0,0 @@
|
||||
# model_manager/__init__.py
|
||||
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_filename
|
||||
@ -1,238 +0,0 @@
|
||||
# NOTE: This was an experiment and WILL BE REMOVED
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Callable, Any, Optional, Awaitable, Dict
|
||||
|
||||
import aiohttp
|
||||
|
||||
from ..cmd.folder_paths import folder_names_and_paths, get_folder_paths # pylint: disable=import-error
|
||||
|
||||
|
||||
class DownloadStatusType(Enum):
|
||||
PENDING = "pending"
|
||||
IN_PROGRESS = "in_progress"
|
||||
COMPLETED = "completed"
|
||||
ERROR = "error"
|
||||
|
||||
|
||||
@dataclass
|
||||
class DownloadModelStatus():
|
||||
status: str
|
||||
progress_percentage: float
|
||||
message: str
|
||||
already_existed: bool = False
|
||||
|
||||
def __init__(self, status: DownloadStatusType, progress_percentage: float, message: str, already_existed: bool):
|
||||
self.status = status.value # Store the string value of the Enum
|
||||
self.progress_percentage = progress_percentage
|
||||
self.message = message
|
||||
self.already_existed = already_existed
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"status": self.status,
|
||||
"progress_percentage": self.progress_percentage,
|
||||
"message": self.message,
|
||||
"already_existed": self.already_existed
|
||||
}
|
||||
|
||||
|
||||
async def download_model(model_download_request: Callable[[str], Awaitable[aiohttp.ClientResponse]],
|
||||
model_name: str,
|
||||
model_url: str,
|
||||
model_directory: str,
|
||||
folder_path: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
progress_interval: float = 1.0) -> DownloadModelStatus:
|
||||
"""
|
||||
Download a model file from a given URL into the models directory.
|
||||
|
||||
Args:
|
||||
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
|
||||
A function that makes an HTTP request. This makes it easier to mock in unit tests.
|
||||
model_name (str):
|
||||
The name of the model file to be downloaded. This will be the filename on disk.
|
||||
model_url (str):
|
||||
The URL from which to download the model.
|
||||
model_directory (str):
|
||||
The subdirectory within the main models directory where the model
|
||||
should be saved (e.g., 'checkpoints', 'loras', etc.).
|
||||
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
|
||||
An asynchronous function to call with progress updates.
|
||||
folder_path (str);
|
||||
Path to which model folder should be used as the root.
|
||||
|
||||
Returns:
|
||||
DownloadModelStatus: The result of the download operation.
|
||||
"""
|
||||
if not validate_filename(model_name):
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
"Invalid model name",
|
||||
False
|
||||
)
|
||||
|
||||
if not model_directory in folder_names_and_paths:
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
"Invalid or unrecognized model directory. model_directory must be a known model type (eg 'checkpoints'). If you are seeing this error for a custom model type, ensure the relevant custom nodes are installed and working.",
|
||||
False
|
||||
)
|
||||
|
||||
if not folder_path in get_folder_paths(model_directory):
|
||||
return DownloadModelStatus(
|
||||
DownloadStatusType.ERROR,
|
||||
0,
|
||||
f"Invalid folder path '{folder_path}', does not match the list of known directories ({get_folder_paths(model_directory)}). If you're seeing this in the downloader UI, you may need to refresh the page.",
|
||||
False
|
||||
)
|
||||
|
||||
file_path = create_model_path(model_name, folder_path)
|
||||
existing_file = await check_file_exists(file_path, model_name, progress_callback)
|
||||
if existing_file:
|
||||
return existing_file
|
||||
|
||||
try:
|
||||
logging.info(f"Downloading {model_name} from {model_url}")
|
||||
status = DownloadModelStatus(DownloadStatusType.PENDING, 0, f"Starting download of {model_name}", False)
|
||||
await progress_callback(model_name, status)
|
||||
|
||||
response = await model_download_request(model_url)
|
||||
if response.status != 200:
|
||||
error_message = f"Failed to download {model_name}. Status code: {response.status}"
|
||||
logging.error(error_message)
|
||||
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
await progress_callback(model_name, status)
|
||||
return DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
|
||||
return await track_download_progress(response, file_path, model_name, progress_callback, progress_interval)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in downloading model: {e}")
|
||||
return await handle_download_error(e, model_name, progress_callback)
|
||||
|
||||
|
||||
def create_model_path(model_name: str, folder_path: str) -> str:
|
||||
os.makedirs(folder_path, exist_ok=True)
|
||||
file_path = os.path.join(folder_path, model_name)
|
||||
|
||||
# Ensure the resulting path is still within the base directory
|
||||
abs_file_path = os.path.abspath(file_path)
|
||||
abs_base_dir = os.path.abspath(folder_path)
|
||||
if os.path.commonprefix([abs_file_path, abs_base_dir]) != abs_base_dir:
|
||||
raise Exception(f"Invalid model directory: {folder_path}/{model_name}")
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
async def check_file_exists(file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]]
|
||||
) -> Optional[DownloadModelStatus]:
|
||||
if os.path.exists(file_path):
|
||||
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"{model_name} already exists", True)
|
||||
await progress_callback(model_name, status)
|
||||
return status
|
||||
return None
|
||||
|
||||
|
||||
async def track_download_progress(response: aiohttp.ClientResponse,
|
||||
file_path: str,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
|
||||
|
||||
interval: float = 1.0) -> DownloadModelStatus:
|
||||
try:
|
||||
total_size = int(response.headers.get('Content-Length', 0))
|
||||
downloaded = 0
|
||||
last_update_time = time.time()
|
||||
|
||||
async def update_progress():
|
||||
nonlocal last_update_time
|
||||
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
|
||||
status = DownloadModelStatus(DownloadStatusType.IN_PROGRESS, progress, f"Downloading {model_name}", False)
|
||||
await progress_callback(model_name, status)
|
||||
last_update_time = time.time()
|
||||
|
||||
temp_file_path = file_path + '.tmp'
|
||||
with open(temp_file_path, 'wb') as f:
|
||||
chunk_iterator = response.content.iter_chunked(8192)
|
||||
while True:
|
||||
try:
|
||||
chunk = await chunk_iterator.__anext__()
|
||||
except StopAsyncIteration:
|
||||
break
|
||||
f.write(chunk)
|
||||
downloaded += len(chunk)
|
||||
|
||||
if time.time() - last_update_time >= interval:
|
||||
await update_progress()
|
||||
|
||||
os.rename(temp_file_path, file_path)
|
||||
|
||||
await update_progress()
|
||||
|
||||
logging.info(f"Successfully downloaded {model_name}. Total downloaded: {downloaded}")
|
||||
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"Successfully downloaded {model_name}", False)
|
||||
await progress_callback(model_name, status)
|
||||
|
||||
return status
|
||||
except Exception as e:
|
||||
logging.error(f"Error in track_download_progress: {e}")
|
||||
logging.error(traceback.format_exc())
|
||||
return await handle_download_error(e, model_name, progress_callback)
|
||||
|
||||
|
||||
async def handle_download_error(e: Exception,
|
||||
model_name: str,
|
||||
progress_callback: Callable[[str, DownloadModelStatus], Any]
|
||||
) -> DownloadModelStatus:
|
||||
error_message = f"Error downloading {model_name}: {str(e)}"
|
||||
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
|
||||
await progress_callback(model_name, status)
|
||||
return status
|
||||
|
||||
|
||||
def validate_filename(filename: str) -> bool:
|
||||
"""
|
||||
Validate a filename to ensure it's safe and doesn't contain any path traversal attempts.
|
||||
|
||||
Args:
|
||||
filename (str): The filename to validate
|
||||
|
||||
Returns:
|
||||
bool: True if the filename is valid, False otherwise
|
||||
"""
|
||||
if not filename.lower().endswith(('.sft', '.safetensors')):
|
||||
return False
|
||||
|
||||
# Check if the filename is empty, None, or just whitespace
|
||||
if not filename or not filename.strip():
|
||||
return False
|
||||
|
||||
# Check for any directory traversal attempts or invalid characters
|
||||
if any(char in filename for char in ['..', '/', '\\', '\n', '\r', '\t', '\0']):
|
||||
return False
|
||||
|
||||
# Check if the filename starts with a dot (hidden file)
|
||||
if filename.startswith('.'):
|
||||
return False
|
||||
|
||||
# Use a whitelist of allowed characters
|
||||
if not re.match(r'^[a-zA-Z0-9_\-. ]+$', filename):
|
||||
return False
|
||||
|
||||
# Ensure the filename isn't too long
|
||||
if len(filename) > 255:
|
||||
return False
|
||||
|
||||
return True
|
||||
@ -425,6 +425,9 @@ class LoadedModel:
|
||||
if self._patcher_finalizer is not None:
|
||||
self._patcher_finalizer.detach()
|
||||
|
||||
def is_dead(self):
|
||||
return self.real_model() is not None and self.model is None
|
||||
|
||||
|
||||
def use_more_memory(extra_memory, loaded_models, device):
|
||||
for m in loaded_models:
|
||||
@ -480,7 +483,7 @@ def _free_memory(memory_required, device, keep_loaded=[]):
|
||||
for i in range(len(current_loaded_models) - 1, -1, -1):
|
||||
shift_model = current_loaded_models[i]
|
||||
if shift_model.device == device:
|
||||
if shift_model not in keep_loaded:
|
||||
if shift_model not in keep_loaded and not shift_model.is_dead():
|
||||
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
||||
shift_model.currently_used = False
|
||||
|
||||
@ -621,7 +624,7 @@ def cleanup_models_gc():
|
||||
do_gc = False
|
||||
for i in range(len(current_loaded_models)):
|
||||
cur = current_loaded_models[i]
|
||||
if cur.real_model() is not None and cur.model is None:
|
||||
if cur.is_dead():
|
||||
logging.info("Potential memory leak detected with model {}, doing a full garbage collect, for maximum performance avoid circular references in the model code.".format(cur.real_model().__class__.__name__))
|
||||
do_gc = True
|
||||
break
|
||||
@ -632,7 +635,7 @@ def cleanup_models_gc():
|
||||
|
||||
for i in range(len(current_loaded_models)):
|
||||
cur = current_loaded_models[i]
|
||||
if cur.real_model() is not None and cur.model is None:
|
||||
if cur.is_dead():
|
||||
logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__))
|
||||
|
||||
|
||||
@ -694,6 +697,10 @@ def maximum_vram_for_weights(device=None) -> int:
|
||||
def unet_dtype(device=None, model_params=0, supported_dtypes=(torch.float16, torch.bfloat16, torch.float32)):
|
||||
if model_params < 0:
|
||||
model_params = 1000000000000000000000
|
||||
if args.fp32_unet:
|
||||
return torch.float32
|
||||
if args.fp64_unet:
|
||||
return torch.float64
|
||||
if args.bf16_unet:
|
||||
return torch.bfloat16
|
||||
if args.fp16_unet:
|
||||
@ -741,7 +748,7 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=(torch.float16, tor
|
||||
|
||||
# None means no manual cast
|
||||
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=(torch.float16, torch.bfloat16, torch.float32)):
|
||||
if weight_dtype == torch.float32:
|
||||
if weight_dtype == torch.float32 or weight_dtype == torch.float64:
|
||||
return None
|
||||
|
||||
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -265,7 +265,7 @@ class ModelSamplingDiscreteFlow(torch.nn.Module):
|
||||
return 1.0
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return 1.0 - percent
|
||||
return time_snr_shift(self.shift, 1.0 - percent)
|
||||
|
||||
|
||||
class StableCascadeSampling(ModelSamplingDiscrete):
|
||||
@ -360,4 +360,4 @@ class ModelSamplingFlux(torch.nn.Module):
|
||||
return 1.0
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return 1.0 - percent
|
||||
return flux_time_shift(self.shift, 1.0, 1.0 - percent)
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
|
||||
import os
|
||||
@ -20,6 +21,7 @@ from .. import sd
|
||||
from .. import utils
|
||||
from .. import clip_vision as clip_vision_module
|
||||
from .. import model_management
|
||||
from ..comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||||
from ..cli_args import args
|
||||
|
||||
from ..cmd import folder_paths, latent_preview
|
||||
@ -43,16 +45,16 @@ def interrupt_processing(value=True):
|
||||
interrupt_current_processing(value)
|
||||
|
||||
|
||||
class CLIPTextEncode:
|
||||
class CLIPTextEncode(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
|
||||
"clip": ("CLIP", {"tooltip": "The CLIP model used for encoding the text."})
|
||||
"text": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
|
||||
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
RETURN_TYPES = (IO.CONDITIONING,)
|
||||
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
@ -61,9 +63,8 @@ class CLIPTextEncode:
|
||||
|
||||
def encode(self, clip, text):
|
||||
tokens = clip.tokenize(text)
|
||||
output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True)
|
||||
cond = output.pop("cond")
|
||||
return ([[cond, output]], )
|
||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||
|
||||
|
||||
class ConditioningCombine:
|
||||
@classmethod
|
||||
@ -644,9 +645,7 @@ class LoraLoader:
|
||||
if self.loaded_lora[0] == lora_path:
|
||||
lora = self.loaded_lora[1]
|
||||
else:
|
||||
temp = self.loaded_lora
|
||||
self.loaded_lora = None
|
||||
del temp
|
||||
|
||||
if lora is None:
|
||||
lora = utils.load_torch_file(lora_path, safe_load=True)
|
||||
@ -1003,15 +1002,19 @@ class CLIPVisionEncode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_vision": ("CLIP_VISION",),
|
||||
"image": ("IMAGE",)
|
||||
"image": ("IMAGE",),
|
||||
"crop": (["center", "none"],)
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
|
||||
def encode(self, clip_vision, image):
|
||||
output = clip_vision.encode_image(image)
|
||||
def encode(self, clip_vision, image, crop):
|
||||
crop_image = True
|
||||
if crop != "center":
|
||||
crop_image = False
|
||||
output = clip_vision.encode_image(image, crop=crop_image)
|
||||
return (output,)
|
||||
|
||||
class StyleModelLoader:
|
||||
@ -1036,14 +1039,19 @@ class StyleModelApply:
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"style_model": ("STYLE_MODEL", ),
|
||||
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
|
||||
"strength_type": (["multiply"], ),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "apply_stylemodel"
|
||||
|
||||
CATEGORY = "conditioning/style_model"
|
||||
|
||||
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
||||
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength, strength_type):
|
||||
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
||||
if strength_type == "multiply":
|
||||
cond *= strength
|
||||
|
||||
c = []
|
||||
for t in conditioning:
|
||||
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
||||
|
||||
@ -321,7 +321,7 @@ def fp8_linear(self, input):
|
||||
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
inn = torch.clamp(input, min=-448, max=448).reshape(-1, input.shape[2]).to(dtype)
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
|
||||
|
||||
156
comfy/patcher_extension.py
Normal file
156
comfy/patcher_extension.py
Normal file
@ -0,0 +1,156 @@
|
||||
from __future__ import annotations
|
||||
from typing import Callable
|
||||
|
||||
class CallbacksMP:
|
||||
ON_CLONE = "on_clone"
|
||||
ON_LOAD = "on_load_after"
|
||||
ON_DETACH = "on_detach_after"
|
||||
ON_CLEANUP = "on_cleanup"
|
||||
ON_PRE_RUN = "on_pre_run"
|
||||
ON_PREPARE_STATE = "on_prepare_state"
|
||||
ON_APPLY_HOOKS = "on_apply_hooks"
|
||||
ON_REGISTER_ALL_HOOK_PATCHES = "on_register_all_hook_patches"
|
||||
ON_INJECT_MODEL = "on_inject_model"
|
||||
ON_EJECT_MODEL = "on_eject_model"
|
||||
|
||||
# callbacks dict is in the format:
|
||||
# {"call_type": {"key": [Callable1, Callable2, ...]} }
|
||||
@classmethod
|
||||
def init_callbacks(cls) -> dict[str, dict[str, list[Callable]]]:
|
||||
return {}
|
||||
|
||||
def add_callback(call_type: str, callback: Callable, transformer_options: dict, is_model_options=False):
|
||||
add_callback_with_key(call_type, None, callback, transformer_options, is_model_options)
|
||||
|
||||
def add_callback_with_key(call_type: str, key: str, callback: Callable, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.setdefault("transformer_options", {})
|
||||
callbacks: dict[str, dict[str, list]] = transformer_options.setdefault("callbacks", {})
|
||||
c = callbacks.setdefault(call_type, {}).setdefault(key, [])
|
||||
c.append(callback)
|
||||
|
||||
def get_callbacks_with_key(call_type: str, key: str, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.get("transformer_options", {})
|
||||
c_list = []
|
||||
callbacks: dict[str, list] = transformer_options.get("callbacks", {})
|
||||
c_list.extend(callbacks.get(call_type, {}).get(key, []))
|
||||
return c_list
|
||||
|
||||
def get_all_callbacks(call_type: str, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.get("transformer_options", {})
|
||||
c_list = []
|
||||
callbacks: dict[str, list] = transformer_options.get("callbacks", {})
|
||||
for c in callbacks.get(call_type, {}).values():
|
||||
c_list.extend(c)
|
||||
return c_list
|
||||
|
||||
class WrappersMP:
|
||||
OUTER_SAMPLE = "outer_sample"
|
||||
SAMPLER_SAMPLE = "sampler_sample"
|
||||
CALC_COND_BATCH = "calc_cond_batch"
|
||||
APPLY_MODEL = "apply_model"
|
||||
DIFFUSION_MODEL = "diffusion_model"
|
||||
|
||||
# wrappers dict is in the format:
|
||||
# {"wrapper_type": {"key": [Callable1, Callable2, ...]} }
|
||||
@classmethod
|
||||
def init_wrappers(cls) -> dict[str, dict[str, list[Callable]]]:
|
||||
return {}
|
||||
|
||||
def add_wrapper(wrapper_type: str, wrapper: Callable, transformer_options: dict, is_model_options=False):
|
||||
add_wrapper_with_key(wrapper_type, None, wrapper, transformer_options, is_model_options)
|
||||
|
||||
def add_wrapper_with_key(wrapper_type: str, key: str, wrapper: Callable, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.setdefault("transformer_options", {})
|
||||
wrappers: dict[str, dict[str, list]] = transformer_options.setdefault("wrappers", {})
|
||||
w = wrappers.setdefault(wrapper_type, {}).setdefault(key, [])
|
||||
w.append(wrapper)
|
||||
|
||||
def get_wrappers_with_key(wrapper_type: str, key: str, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.get("transformer_options", {})
|
||||
w_list = []
|
||||
wrappers: dict[str, list] = transformer_options.get("wrappers", {})
|
||||
w_list.extend(wrappers.get(wrapper_type, {}).get(key, []))
|
||||
return w_list
|
||||
|
||||
def get_all_wrappers(wrapper_type: str, transformer_options: dict, is_model_options=False):
|
||||
if is_model_options:
|
||||
transformer_options = transformer_options.get("transformer_options", {})
|
||||
w_list = []
|
||||
wrappers: dict[str, list] = transformer_options.get("wrappers", {})
|
||||
for w in wrappers.get(wrapper_type, {}).values():
|
||||
w_list.extend(w)
|
||||
return w_list
|
||||
|
||||
class WrapperExecutor:
|
||||
"""Handles call stack of wrappers around a function in an ordered manner."""
|
||||
def __init__(self, original: Callable, class_obj: object, wrappers: list[Callable], idx: int):
|
||||
# NOTE: class_obj exists so that wrappers surrounding a class method can access
|
||||
# the class instance at runtime via executor.class_obj
|
||||
self.original = original
|
||||
self.class_obj = class_obj
|
||||
self.wrappers = wrappers.copy()
|
||||
self.idx = idx
|
||||
self.is_last = idx == len(wrappers)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
"""Calls the next wrapper or original function, whichever is appropriate."""
|
||||
new_executor = self._create_next_executor()
|
||||
return new_executor.execute(*args, **kwargs)
|
||||
|
||||
def execute(self, *args, **kwargs):
|
||||
"""Used to initiate executor internally - DO NOT use this if you received executor in wrapper."""
|
||||
args = list(args)
|
||||
kwargs = dict(kwargs)
|
||||
if self.is_last:
|
||||
return self.original(*args, **kwargs)
|
||||
return self.wrappers[self.idx](self, *args, **kwargs)
|
||||
|
||||
def _create_next_executor(self) -> 'WrapperExecutor':
|
||||
new_idx = self.idx + 1
|
||||
if new_idx > len(self.wrappers):
|
||||
raise Exception(f"Wrapper idx exceeded available wrappers; something went very wrong.")
|
||||
if self.class_obj is None:
|
||||
return WrapperExecutor.new_executor(self.original, self.wrappers, new_idx)
|
||||
return WrapperExecutor.new_class_executor(self.original, self.class_obj, self.wrappers, new_idx)
|
||||
|
||||
@classmethod
|
||||
def new_executor(cls, original: Callable, wrappers: list[Callable], idx=0):
|
||||
return cls(original, class_obj=None, wrappers=wrappers, idx=idx)
|
||||
|
||||
@classmethod
|
||||
def new_class_executor(cls, original: Callable, class_obj: object, wrappers: list[Callable], idx=0):
|
||||
return cls(original, class_obj, wrappers, idx=idx)
|
||||
|
||||
class PatcherInjection:
|
||||
def __init__(self, inject: Callable, eject: Callable):
|
||||
self.inject = inject
|
||||
self.eject = eject
|
||||
|
||||
def copy_nested_dicts(input_dict: dict):
|
||||
new_dict = input_dict.copy()
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
new_dict[key] = copy_nested_dicts(value)
|
||||
elif isinstance(value, list):
|
||||
new_dict[key] = value.copy()
|
||||
return new_dict
|
||||
|
||||
def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True):
|
||||
if copy_dict1:
|
||||
merged_dict = copy_nested_dicts(dict1)
|
||||
else:
|
||||
merged_dict = dict1
|
||||
for key, value in dict2.items():
|
||||
if isinstance(value, dict):
|
||||
curr_value = merged_dict.setdefault(key, {})
|
||||
merged_dict[key] = merge_nested_dicts(value, curr_value)
|
||||
elif isinstance(value, list):
|
||||
merged_dict.setdefault(key, []).extend(value)
|
||||
else:
|
||||
merged_dict[key] = value
|
||||
return merged_dict
|
||||
@ -1,38 +1,88 @@
|
||||
import torch
|
||||
from . import model_management
|
||||
from . import utils
|
||||
import uuid
|
||||
|
||||
from .controlnet import ControlBase
|
||||
from . import conds
|
||||
from . import hooks
|
||||
from . import model_management
|
||||
from . import patcher_extension
|
||||
from . import utils
|
||||
from .model_base import BaseModel
|
||||
from .model_patcher import ModelPatcher
|
||||
|
||||
|
||||
def prepare_mask(noise_mask, shape, device):
|
||||
return utils.reshape_mask(noise_mask, shape).to(device)
|
||||
|
||||
|
||||
def get_models_from_cond(cond, model_type):
|
||||
models = []
|
||||
for c in cond:
|
||||
if model_type in c:
|
||||
models += [c[model_type]]
|
||||
if isinstance(c[model_type], list):
|
||||
models += c[model_type]
|
||||
else:
|
||||
models += [c[model_type]]
|
||||
return models
|
||||
|
||||
|
||||
def get_hooks_from_cond(cond, hooks_dict: dict[hooks.EnumHookType, dict[hooks.Hook, None]]):
|
||||
# get hooks from conds, and collect cnets so they can be checked for extra_hooks
|
||||
cnets: list[ControlBase] = []
|
||||
for c in cond:
|
||||
if 'hooks' in c:
|
||||
for hook in c['hooks'].hooks:
|
||||
hook: hooks.Hook
|
||||
with_type = hooks_dict.setdefault(hook.hook_type, {})
|
||||
with_type[hook] = None
|
||||
if 'control' in c:
|
||||
cnets.append(c['control'])
|
||||
|
||||
def get_extra_hooks_from_cnet(cnet: ControlBase, _list: list):
|
||||
if cnet.extra_hooks is not None:
|
||||
_list.append(cnet.extra_hooks)
|
||||
if cnet.previous_controlnet is None:
|
||||
return _list
|
||||
return get_extra_hooks_from_cnet(cnet.previous_controlnet, _list)
|
||||
|
||||
hooks_list = []
|
||||
cnets = set(cnets)
|
||||
for base_cnet in cnets:
|
||||
get_extra_hooks_from_cnet(base_cnet, hooks_list)
|
||||
extra_hooks = hooks.HookGroup.combine_all_hooks(hooks_list)
|
||||
if extra_hooks is not None:
|
||||
for hook in extra_hooks.hooks:
|
||||
with_type = hooks_dict.setdefault(hook.hook_type, {})
|
||||
with_type[hook] = None
|
||||
|
||||
return hooks_dict
|
||||
|
||||
|
||||
def convert_cond(cond):
|
||||
out = []
|
||||
for c in cond:
|
||||
temp = c[1].copy()
|
||||
model_conds = temp.get("model_conds", {})
|
||||
if c[0] is not None:
|
||||
model_conds["c_crossattn"] = conds.CONDCrossAttn(c[0]) #TODO: remove
|
||||
model_conds["c_crossattn"] = conds.CONDCrossAttn(c[0]) # TODO: remove
|
||||
temp["cross_attn"] = c[0]
|
||||
temp["model_conds"] = model_conds
|
||||
temp["uuid"] = uuid.uuid4()
|
||||
out.append(temp)
|
||||
return out
|
||||
|
||||
|
||||
def get_additional_models(conds, dtype):
|
||||
"""loads additional models in conditioning"""
|
||||
cnets = []
|
||||
cnets: list[ControlBase] = []
|
||||
gligen = []
|
||||
add_models = []
|
||||
hooks: dict[hooks.EnumHookType, dict[hooks.Hook, None]] = {}
|
||||
|
||||
for k in conds:
|
||||
cnets += get_models_from_cond(conds[k], "control")
|
||||
gligen += get_models_from_cond(conds[k], "gligen")
|
||||
add_models += get_models_from_cond(conds[k], "additional_models")
|
||||
get_hooks_from_cond(conds[k], hooks)
|
||||
|
||||
control_nets = set(cnets)
|
||||
|
||||
@ -43,9 +93,12 @@ def get_additional_models(conds, dtype):
|
||||
inference_memory += m.inference_memory_requirements(dtype)
|
||||
|
||||
gligen = [x[1] for x in gligen]
|
||||
models = control_models + gligen
|
||||
hook_models = [x.model for x in hooks.get(hooks.EnumHookType.AddModels, {}).keys()]
|
||||
models = control_models + gligen + add_models + hook_models
|
||||
|
||||
return models, inference_memory
|
||||
|
||||
|
||||
def cleanup_additional_models(models):
|
||||
"""cleanup additional models that were loaded"""
|
||||
for m in models:
|
||||
@ -53,10 +106,11 @@ def cleanup_additional_models(models):
|
||||
m.cleanup()
|
||||
|
||||
|
||||
def prepare_sampling(model, noise_shape, conds):
|
||||
def prepare_sampling(model: 'ModelPatcher', noise_shape, conds):
|
||||
device = model.load_device
|
||||
real_model = None
|
||||
real_model: 'BaseModel' = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||
model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||
@ -64,6 +118,7 @@ def prepare_sampling(model, noise_shape, conds):
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
|
||||
def cleanup_models(conds, models):
|
||||
cleanup_additional_models(models)
|
||||
|
||||
@ -72,3 +127,15 @@ def cleanup_models(conds, models):
|
||||
control_cleanup += get_models_from_cond(conds[k], "control")
|
||||
|
||||
cleanup_additional_models(set(control_cleanup))
|
||||
|
||||
|
||||
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
# check for hooks in conds - if not registered, see if can be applied
|
||||
hooks = {}
|
||||
for k in conds:
|
||||
get_hooks_from_cond(conds[k], hooks)
|
||||
# add wrappers and callbacks from ModelPatcher to transformer_options
|
||||
model_options["transformer_options"]["wrappers"] = patcher_extension.copy_nested_dicts(model.wrappers)
|
||||
model_options["transformer_options"]["callbacks"] = patcher_extension.copy_nested_dicts(model.callbacks)
|
||||
# register hooks on model/model_options
|
||||
model.register_all_hook_patches(hooks, hooks.EnumWeightTarget.Model, model_options)
|
||||
|
||||
@ -1,17 +1,25 @@
|
||||
from .component_model.deprecation import _deprecate_method
|
||||
from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .extra_samplers import uni_pc
|
||||
import torch
|
||||
from __future__ import annotations
|
||||
|
||||
import collections
|
||||
from . import model_management
|
||||
import math
|
||||
import logging
|
||||
import scipy.stats
|
||||
import math
|
||||
|
||||
import numpy
|
||||
import scipy.stats
|
||||
import torch
|
||||
|
||||
from . import hooks
|
||||
from . import model_management
|
||||
from . import model_patcher
|
||||
from . import patcher_extension
|
||||
from . import sampler_helpers
|
||||
from .component_model.deprecation import _deprecate_method
|
||||
from .controlnet import ControlBase
|
||||
from .extra_samplers import uni_pc
|
||||
from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .model_base import BaseModel
|
||||
from .model_management_types import ModelOptions
|
||||
|
||||
from .model_patcher import ModelPatcher
|
||||
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES
|
||||
|
||||
|
||||
@ -46,7 +54,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
if "mask_strength" in conds:
|
||||
mask_strength = conds["mask_strength"]
|
||||
mask = conds['mask']
|
||||
assert(mask.shape[1:] == x_in.shape[2:])
|
||||
assert (mask.shape[1:] == x_in.shape[2:])
|
||||
|
||||
mask = mask[:input_x.shape[0]]
|
||||
if area is not None:
|
||||
@ -65,17 +73,18 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
if area[len(dims) + i] != 0:
|
||||
for t in range(rr):
|
||||
m = mult.narrow(i + 2, t, 1)
|
||||
m *= ((1.0/rr) * (t + 1))
|
||||
m *= ((1.0 / rr) * (t + 1))
|
||||
if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
|
||||
for t in range(rr):
|
||||
m = mult.narrow(i + 2, area[i] - 1 - t, 1)
|
||||
m *= ((1.0/rr) * (t + 1))
|
||||
m *= ((1.0 / rr) * (t + 1))
|
||||
|
||||
conditioning = {}
|
||||
model_conds = conds["model_conds"]
|
||||
for c in model_conds:
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
|
||||
|
||||
hooks = conds.get('hooks', None)
|
||||
control = conds.get('control', None)
|
||||
|
||||
patches = None
|
||||
@ -91,8 +100,9 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
|
||||
patches['middle_patch'] = [gligen_patch]
|
||||
|
||||
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
|
||||
return cond_obj(input_x, mult, conditioning, area, control, patches)
|
||||
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches', 'uuid', 'hooks'])
|
||||
return cond_obj(input_x, mult, conditioning, area, control, patches, conds['uuid'], hooks)
|
||||
|
||||
|
||||
def cond_equal_size(c1, c2):
|
||||
if c1 is c2:
|
||||
@ -104,6 +114,7 @@ def cond_equal_size(c1, c2):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def can_concat_cond(c1, c2):
|
||||
if c1.input_x.shape != c2.input_x.shape:
|
||||
return False
|
||||
@ -124,6 +135,7 @@ def can_concat_cond(c1, c2):
|
||||
|
||||
return cond_equal_size(c1.conditioning, c2.conditioning)
|
||||
|
||||
|
||||
def cond_cat(c_list):
|
||||
c_crossattn = []
|
||||
c_concat = []
|
||||
@ -144,121 +156,200 @@ def cond_cat(c_list):
|
||||
|
||||
return out
|
||||
|
||||
def calc_cond_batch(model: BaseModel, conds, x_in: torch.Tensor, timestep: torch.Tensor, model_options: ModelOptions):
|
||||
|
||||
def finalize_default_conds(model: BaseModel, hooked_to_run: dict[hooks.HookGroup, list[tuple[tuple, int]]], default_conds: list[list[dict]], x_in, timestep):
|
||||
# need to figure out remaining unmasked area for conds
|
||||
default_mults = []
|
||||
for _ in default_conds:
|
||||
default_mults.append(torch.ones_like(x_in))
|
||||
# look through each finalized cond in hooked_to_run for 'mult' and subtract it from each cond
|
||||
for lora_hooks, to_run in hooked_to_run.items():
|
||||
for cond_obj, i in to_run:
|
||||
# if no default_cond for cond_type, do nothing
|
||||
if len(default_conds[i]) == 0:
|
||||
continue
|
||||
area: list[int] = cond_obj.area
|
||||
if area is not None:
|
||||
curr_default_mult: torch.Tensor = default_mults[i]
|
||||
dims = len(area) // 2
|
||||
for i in range(dims):
|
||||
curr_default_mult = curr_default_mult.narrow(i + 2, area[i + dims], area[i])
|
||||
curr_default_mult -= cond_obj.mult
|
||||
else:
|
||||
default_mults[i] -= cond_obj.mult
|
||||
# for each default_mult, ReLU to make negatives=0, and then check for any nonzeros
|
||||
for i, mult in enumerate(default_mults):
|
||||
# if no default_cond for cond type, do nothing
|
||||
if len(default_conds[i]) == 0:
|
||||
continue
|
||||
torch.nn.functional.relu(mult, inplace=True)
|
||||
# if mult is all zeros, then don't add default_cond
|
||||
if torch.max(mult) == 0.0:
|
||||
continue
|
||||
|
||||
cond = default_conds[i]
|
||||
for x in cond:
|
||||
# do get_area_and_mult to get all the expected values
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
# replace p's mult with calculated mult
|
||||
p = p._replace(mult=mult)
|
||||
if p.hooks is not None:
|
||||
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks)
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
|
||||
|
||||
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
executor = patcher_extension.WrapperExecutor.new_executor(
|
||||
_calc_cond_batch,
|
||||
patcher_extension.get_all_wrappers(patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, conds, x_in, timestep, model_options)
|
||||
|
||||
|
||||
def _calc_cond_batch(model: BaseModel, conds, x_in: torch.Tensor, timestep: torch.Tensor, model_options: ModelOptions):
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
to_run = []
|
||||
# separate conds by matching hooks
|
||||
hooked_to_run: dict[hooks.HookGroup, list[tuple[tuple, int]]] = {}
|
||||
default_conds = []
|
||||
has_default_conds = False
|
||||
|
||||
for i in range(len(conds)):
|
||||
out_conds.append(torch.zeros_like(x_in))
|
||||
out_counts.append(torch.ones_like(x_in) * 1e-37)
|
||||
|
||||
cond = conds[i]
|
||||
default_c = []
|
||||
if cond is not None:
|
||||
for x in cond:
|
||||
if 'default' in x:
|
||||
default_c.append(x)
|
||||
has_default_conds = True
|
||||
continue
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
if p.hooks is not None:
|
||||
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks)
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
default_conds.append(default_c)
|
||||
|
||||
to_run += [(p, i)]
|
||||
if has_default_conds:
|
||||
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep)
|
||||
|
||||
while len(to_run) > 0:
|
||||
first = to_run[0]
|
||||
first_shape = first[0][0].shape
|
||||
to_batch_temp = []
|
||||
for x in range(len(to_run)):
|
||||
if can_concat_cond(to_run[x][0], first[0]):
|
||||
to_batch_temp += [x]
|
||||
model.current_patcher.prepare_state(timestep)
|
||||
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
# run every hooked_to_run separately
|
||||
for hooks, to_run in hooked_to_run.items():
|
||||
while len(to_run) > 0:
|
||||
first = to_run[0]
|
||||
first_shape = first[0][0].shape
|
||||
to_batch_temp = []
|
||||
for x in range(len(to_run)):
|
||||
if can_concat_cond(to_run[x][0], first[0]):
|
||||
to_batch_temp += [x]
|
||||
|
||||
free_memory = model_management.get_free_memory(x_in.device)
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
|
||||
input_x = []
|
||||
mult = []
|
||||
c = []
|
||||
cond_or_uncond = []
|
||||
area = []
|
||||
control = None
|
||||
patches = None
|
||||
for x in to_batch:
|
||||
o = to_run.pop(x)
|
||||
p = o[0]
|
||||
input_x.append(p.input_x)
|
||||
mult.append(p.mult)
|
||||
c.append(p.conditioning)
|
||||
area.append(p.area)
|
||||
cond_or_uncond.append(o[1])
|
||||
control = p.control
|
||||
patches = p.patches
|
||||
free_memory = model_management.get_free_memory(x_in.device)
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp) // i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
batch_chunks = len(cond_or_uncond)
|
||||
input_x = torch.cat(input_x)
|
||||
c = cond_cat(c)
|
||||
timestep_ = torch.cat([timestep] * batch_chunks)
|
||||
input_x = []
|
||||
mult = []
|
||||
c = []
|
||||
cond_or_uncond = []
|
||||
uuids = []
|
||||
area = []
|
||||
control = None
|
||||
patches = None
|
||||
for x in to_batch:
|
||||
o = to_run.pop(x)
|
||||
p = o[0]
|
||||
input_x.append(p.input_x)
|
||||
mult.append(p.mult)
|
||||
c.append(p.conditioning)
|
||||
area.append(p.area)
|
||||
cond_or_uncond.append(o[1])
|
||||
uuids.append(p.uuid)
|
||||
control = p.control
|
||||
patches = p.patches
|
||||
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
|
||||
batch_chunks = len(cond_or_uncond)
|
||||
input_x = torch.cat(input_x)
|
||||
c = cond_cat(c)
|
||||
timestep_ = torch.cat([timestep] * batch_chunks)
|
||||
|
||||
transformer_options = {}
|
||||
if 'transformer_options' in model_options:
|
||||
transformer_options = model_options['transformer_options'].copy()
|
||||
transformer_options = model.current_patcher.apply_hooks(hooks=hooks)
|
||||
if 'transformer_options' in model_options:
|
||||
transformer_options = patcher_extension.merge_nested_dicts(transformer_options,
|
||||
model_options['transformer_options'],
|
||||
copy_dict1=False)
|
||||
|
||||
if patches is not None:
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
if patches is not None:
|
||||
# TODO: replace with merge_nested_dicts function
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["uuids"] = uuids[:]
|
||||
transformer_options["sigmas"] = timestep
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["sigmas"] = timestep
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
else:
|
||||
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
|
||||
for o in range(batch_chunks):
|
||||
cond_index = cond_or_uncond[o]
|
||||
a = area[o]
|
||||
if a is None:
|
||||
out_conds[cond_index] += output[o] * mult[o]
|
||||
out_counts[cond_index] += mult[o]
|
||||
else:
|
||||
out_c = out_conds[cond_index]
|
||||
out_cts = out_counts[cond_index]
|
||||
dims = len(a) // 2
|
||||
for i in range(dims):
|
||||
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
|
||||
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
|
||||
out_c += output[o] * mult[o]
|
||||
out_cts += mult[o]
|
||||
for o in range(batch_chunks):
|
||||
cond_index = cond_or_uncond[o]
|
||||
a = area[o]
|
||||
if a is None:
|
||||
out_conds[cond_index] += output[o] * mult[o]
|
||||
out_counts[cond_index] += mult[o]
|
||||
else:
|
||||
out_c = out_conds[cond_index]
|
||||
out_cts = out_counts[cond_index]
|
||||
dims = len(a) // 2
|
||||
for i in range(dims):
|
||||
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
|
||||
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
|
||||
out_c += output[o] * mult[o]
|
||||
out_cts += mult[o]
|
||||
|
||||
for i in range(len(out_conds)):
|
||||
out_conds[i] /= out_counts[i]
|
||||
|
||||
return out_conds
|
||||
|
||||
|
||||
@_deprecate_method(version="0.0.2", message="The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
|
||||
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
|
||||
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): # TODO: remove
|
||||
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
|
||||
|
||||
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options:ModelOptions=None, cond=None, uncond=None):
|
||||
|
||||
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options: ModelOptions = None, cond=None, uncond=None):
|
||||
if model_options is None:
|
||||
model_options = {}
|
||||
if "sampler_cfg_function" in model_options:
|
||||
@ -275,9 +366,10 @@ def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_o
|
||||
|
||||
return cfg_result
|
||||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns denoised
|
||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options:ModelOptions=None, seed=None):
|
||||
|
||||
# The main sampling function shared by all the samplers
|
||||
# Returns denoised
|
||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options: ModelOptions = None, seed=None):
|
||||
if model_options is None:
|
||||
model_options = {}
|
||||
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
|
||||
@ -289,9 +381,9 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
|
||||
for fn in model_options.get("sampler_pre_cfg_function", []):
|
||||
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
args = {"conds": conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
out = fn(args)
|
||||
out = fn(args)
|
||||
|
||||
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
|
||||
|
||||
@ -300,7 +392,8 @@ class KSamplerX0Inpaint:
|
||||
def __init__(self, model, sigmas):
|
||||
self.inner_model = model
|
||||
self.sigmas = sigmas
|
||||
def __call__(self, x, sigma, denoise_mask, model_options:ModelOptions=None, seed=None):
|
||||
|
||||
def __call__(self, x, sigma, denoise_mask, model_options: ModelOptions = None, seed=None):
|
||||
if model_options is None:
|
||||
model_options = {}
|
||||
if denoise_mask is not None:
|
||||
@ -313,6 +406,7 @@ class KSamplerX0Inpaint:
|
||||
out = out * denoise_mask + self.latent_image * latent_mask
|
||||
return out
|
||||
|
||||
|
||||
def simple_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
@ -322,6 +416,7 @@ def simple_scheduler(model_sampling, steps):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
|
||||
def ddim_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
@ -339,6 +434,7 @@ def ddim_scheduler(model_sampling, steps):
|
||||
sigs = sigs[::-1]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
|
||||
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
s = model_sampling
|
||||
start = s.timestep(s.sigma_max)
|
||||
@ -363,6 +459,7 @@ def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
|
||||
# Implemented based on: https://arxiv.org/abs/2407.12173
|
||||
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
||||
total_timesteps = (len(model_sampling.sigmas) - 1)
|
||||
@ -378,6 +475,7 @@ def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
|
||||
# from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41
|
||||
def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None):
|
||||
if steps == 1:
|
||||
@ -399,6 +497,7 @@ def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, line
|
||||
sigma_schedule = [1.0 - x for x in sigma_schedule]
|
||||
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
|
||||
|
||||
|
||||
def get_mask_aabb(masks):
|
||||
if masks.numel() == 0:
|
||||
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
||||
@ -422,6 +521,7 @@ def get_mask_aabb(masks):
|
||||
|
||||
return bounding_boxes, is_empty
|
||||
|
||||
|
||||
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
|
||||
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
|
||||
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
|
||||
@ -452,8 +552,8 @@ def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
|
||||
if mask.shape[1:] != dims:
|
||||
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
|
||||
|
||||
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
|
||||
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
|
||||
if modified.get("set_area_to_bounds", False): # TODO: handle dim != 2
|
||||
bounds = torch.max(torch.abs(mask), dim=0).values.unsqueeze(0)
|
||||
boxes, is_empty = get_mask_aabb(bounds)
|
||||
if is_empty[0]:
|
||||
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
|
||||
@ -469,11 +569,13 @@ def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
|
||||
modified['mask'] = mask
|
||||
conditions[i] = modified
|
||||
|
||||
|
||||
@_deprecate_method(version="0.3.2", message="WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
|
||||
def resolve_areas_and_cond_masks(conditions, h, w, device):
|
||||
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
|
||||
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c): # TODO: handle dim != 2
|
||||
if 'area' not in c:
|
||||
return
|
||||
|
||||
@ -502,9 +604,10 @@ def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
|
||||
return
|
||||
|
||||
out = c.copy()
|
||||
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
|
||||
out['model_conds'] = smallest['model_conds'].copy() # TODO: which fields should be copied?
|
||||
conds += [out]
|
||||
|
||||
|
||||
def calculate_start_end_timesteps(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
@ -512,10 +615,15 @@ def calculate_start_end_timesteps(model, conds):
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
if 'start_percent' in x:
|
||||
timestep_start = s.percent_to_sigma(x['start_percent'])
|
||||
if 'end_percent' in x:
|
||||
timestep_end = s.percent_to_sigma(x['end_percent'])
|
||||
# handle clip hook schedule, if needed
|
||||
if 'clip_start_percent' in x:
|
||||
timestep_start = s.percent_to_sigma(max(x['clip_start_percent'], x.get('start_percent', 0.0)))
|
||||
timestep_end = s.percent_to_sigma(min(x['clip_end_percent'], x.get('end_percent', 1.0)))
|
||||
else:
|
||||
if 'start_percent' in x:
|
||||
timestep_start = s.percent_to_sigma(x['start_percent'])
|
||||
if 'end_percent' in x:
|
||||
timestep_end = s.percent_to_sigma(x['end_percent'])
|
||||
|
||||
if (timestep_start is not None) or (timestep_end is not None):
|
||||
n = x.copy()
|
||||
@ -525,6 +633,7 @@ def calculate_start_end_timesteps(model, conds):
|
||||
n['timestep_end'] = timestep_end
|
||||
conds[t] = n
|
||||
|
||||
|
||||
def pre_run_control(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
@ -536,6 +645,7 @@ def pre_run_control(model, conds):
|
||||
if 'control' in x:
|
||||
x['control'].pre_run(model, percent_to_timestep_function)
|
||||
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
cond_other = []
|
||||
@ -571,6 +681,7 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond[temp[1]] = n
|
||||
|
||||
|
||||
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
@ -578,7 +689,7 @@ def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwar
|
||||
params["device"] = device
|
||||
params["noise"] = noise
|
||||
default_width = None
|
||||
if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
|
||||
if len(noise.shape) >= 4: # TODO: 8 multiple should be set by the model
|
||||
default_width = noise.shape[3] * 8
|
||||
params["width"] = params.get("width", default_width)
|
||||
params["height"] = params.get("height", noise.shape[2] * 8)
|
||||
@ -596,6 +707,7 @@ def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwar
|
||||
conds[t] = x
|
||||
return conds
|
||||
|
||||
|
||||
class Sampler:
|
||||
def sample(self):
|
||||
pass
|
||||
@ -605,11 +717,13 @@ class Sampler:
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis"]
|
||||
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
self.sampler_function = sampler_function
|
||||
@ -620,7 +734,7 @@ class KSAMPLER(Sampler):
|
||||
extra_args["denoise_mask"] = denoise_mask
|
||||
model_k = KSamplerX0Inpaint(model_wrap, sigmas)
|
||||
model_k.latent_image = latent_image
|
||||
if self.inpaint_options.get("random", False): #TODO: Should this be the default?
|
||||
if self.inpaint_options.get("random", False): # TODO: Should this be the default?
|
||||
generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
|
||||
model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
|
||||
else:
|
||||
@ -649,6 +763,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
sigma_min = sigmas[-2]
|
||||
total_steps = len(sigmas) - 1
|
||||
return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
|
||||
|
||||
sampler_function = dpm_fast_function
|
||||
elif sampler_name == "dpm_adaptive":
|
||||
def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
|
||||
@ -659,6 +774,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
if sigma_min == 0:
|
||||
sigma_min = sigmas[-2]
|
||||
return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
|
||||
|
||||
sampler_function = dpm_adaptive_function
|
||||
else:
|
||||
sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
|
||||
@ -678,13 +794,19 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
|
||||
for k in conds:
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
# make sure each cond area has an opposite one with the same area
|
||||
for k in conds:
|
||||
for c in conds[k]:
|
||||
for kk in conds:
|
||||
if k != kk:
|
||||
create_cond_with_same_area_if_none(conds[kk], c)
|
||||
|
||||
for k in conds:
|
||||
for c in conds[k]:
|
||||
if 'hooks' in c:
|
||||
for hook in c['hooks'].hooks:
|
||||
hook.initialize_timesteps(model)
|
||||
|
||||
for k in conds:
|
||||
pre_run_control(model, conds[k])
|
||||
|
||||
@ -697,9 +819,46 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
|
||||
|
||||
return conds
|
||||
|
||||
|
||||
def preprocess_conds_hooks(conds: dict[str, list[dict[str]]]):
|
||||
# determine which ControlNets have extra_hooks that should be combined with normal hooks
|
||||
hook_replacement: dict[tuple[ControlBase, hooks.HookGroup], list[dict]] = {}
|
||||
for k in conds:
|
||||
for kk in conds[k]:
|
||||
if 'control' in kk:
|
||||
control: 'ControlBase' = kk['control']
|
||||
extra_hooks = control.get_extra_hooks()
|
||||
if len(extra_hooks) > 0:
|
||||
hooks: hooks.HookGroup = kk.get('hooks', None)
|
||||
to_replace = hook_replacement.setdefault((control, hooks), [])
|
||||
to_replace.append(kk)
|
||||
# if nothing to replace, do nothing
|
||||
if len(hook_replacement) == 0:
|
||||
return
|
||||
|
||||
# for optimal sampling performance, common ControlNets + hook combos should have identical hooks
|
||||
# on the cond dicts
|
||||
for key, conds_to_modify in hook_replacement.items():
|
||||
control = key[0]
|
||||
hooks = key[1]
|
||||
hooks = hooks.HookGroup.combine_all_hooks(control.get_extra_hooks() + [hooks])
|
||||
# if combined hooks are not None, set as new hooks for all relevant conds
|
||||
if hooks is not None:
|
||||
for cond in conds_to_modify:
|
||||
cond['hooks'] = hooks
|
||||
|
||||
|
||||
def get_total_hook_groups_in_conds(conds: dict[str, list[dict[str]]]):
|
||||
hooks_set = set()
|
||||
for k in conds:
|
||||
for kk in conds[k]:
|
||||
hooks_set.add(kk.get('hooks', None))
|
||||
return len(hooks_set)
|
||||
|
||||
|
||||
class CFGGuider:
|
||||
def __init__(self, model_patcher):
|
||||
self.model_patcher = model_patcher
|
||||
self.model_patcher: 'ModelPatcher' = model_patcher
|
||||
self.model_options = model_patcher.model_options
|
||||
self.original_conds = {}
|
||||
self.cfg = 1.0
|
||||
@ -721,24 +880,22 @@ class CFGGuider:
|
||||
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||
|
||||
def inner_sample(self, noise, latent_image, device, sampler: KSAMPLER, sigmas, denoise_mask, callback, disable_pbar, seed):
|
||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: # Don't shift the empty latent image.
|
||||
latent_image = self.inner_model.process_latent_in(latent_image)
|
||||
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
|
||||
|
||||
extra_args = {"model_options": self.model_options, "seed":seed}
|
||||
extra_args = {"model_options": model_patcher.create_model_options_clone(self.model_options), "seed": seed}
|
||||
|
||||
samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
executor = patcher_extension.WrapperExecutor.new_class_executor(
|
||||
sampler.sample,
|
||||
sampler,
|
||||
patcher_extension.get_all_wrappers(patcher_extension.WrappersMP.SAMPLER_SAMPLE, extra_args["model_options"], is_model_options=True)
|
||||
)
|
||||
samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
def sample(self, noise, latent_image, sampler: KSAMPLER, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
|
||||
def outer_sample(self, noise, latent_image, sampler: KSAMPLER, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
self.inner_model, self.conds, self.loaded_models = sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
@ -749,14 +906,48 @@ class CFGGuider:
|
||||
latent_image = latent_image.to(device)
|
||||
sigmas = sigmas.to(device)
|
||||
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
try:
|
||||
self.model_patcher.pre_run()
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
finally:
|
||||
self.model_patcher.cleanup()
|
||||
|
||||
sampler_helpers.cleanup_models(self.conds, self.loaded_models)
|
||||
del self.inner_model
|
||||
del self.conds
|
||||
del self.loaded_models
|
||||
return output
|
||||
|
||||
def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
preprocess_conds_hooks(self.conds)
|
||||
|
||||
try:
|
||||
orig_model_options = self.model_options
|
||||
self.model_options = model_patcher.create_model_options_clone(self.model_options)
|
||||
# if one hook type (or just None), then don't bother caching weights for hooks (will never change after first step)
|
||||
orig_hook_mode = self.model_patcher.hook_mode
|
||||
if get_total_hook_groups_in_conds(self.conds) <= 1:
|
||||
self.model_patcher.hook_mode = hooks.EnumHookMode.MinVram
|
||||
sampler_helpers.prepare_model_patcher(self.model_patcher, self.conds, self.model_options)
|
||||
executor = patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self.outer_sample,
|
||||
self,
|
||||
patcher_extension.get_all_wrappers(patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True)
|
||||
)
|
||||
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
finally:
|
||||
self.model_options = orig_model_options
|
||||
self.model_patcher.hook_mode = orig_hook_mode
|
||||
self.model_patcher.restore_hook_patches()
|
||||
|
||||
del self.conds
|
||||
return output
|
||||
|
||||
|
||||
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
cfg_guider = CFGGuider(model)
|
||||
@ -765,7 +956,6 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
|
||||
|
||||
|
||||
def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
sigmas = None
|
||||
|
||||
@ -791,6 +981,7 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
|
||||
return sigmas
|
||||
|
||||
|
||||
def sampler_object(name):
|
||||
if name == "uni_pc":
|
||||
sampler = KSAMPLER(uni_pc.sample_unipc)
|
||||
@ -802,6 +993,7 @@ def sampler_object(name):
|
||||
sampler = ksampler(name)
|
||||
return sampler
|
||||
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = SCHEDULER_NAMES
|
||||
SAMPLERS = SAMPLER_NAMES
|
||||
@ -842,7 +1034,7 @@ class KSampler:
|
||||
if denoise <= 0.0:
|
||||
self.sigmas = torch.FloatTensor([])
|
||||
else:
|
||||
new_steps = int(steps/denoise)
|
||||
new_steps = int(steps / denoise)
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
|
||||
83
comfy/sd.py
83
comfy/sd.py
@ -6,14 +6,13 @@ import os.path
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
import comfy.ldm.flux.redux
|
||||
import comfy.text_encoders.lt
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
from . import clip_vision
|
||||
from . import diffusers_convert
|
||||
from . import gligen
|
||||
from . import lora
|
||||
from . import model_detection
|
||||
from . import model_management
|
||||
from . import model_patcher
|
||||
@ -21,10 +20,11 @@ from . import model_sampling
|
||||
from . import sd1_clip
|
||||
from . import sdxl_clip
|
||||
from . import utils
|
||||
from . import lora
|
||||
from . import hooks
|
||||
from .ldm.audio.autoencoder import AudioOobleckVAE
|
||||
from .ldm.cascade.stage_a import StageA
|
||||
from .ldm.cascade.stage_c_coder import StageC_coder
|
||||
from .ldm.flux.redux import ReduxImageEncoder
|
||||
from .ldm.genmo.vae import model as genmo_model
|
||||
from .ldm.lightricks.vae import causal_video_autoencoder as lightricks
|
||||
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
||||
@ -37,6 +37,7 @@ from .text_encoders import flux
|
||||
from .text_encoders import genmo
|
||||
from .text_encoders import hydit
|
||||
from .text_encoders import long_clipl
|
||||
from .text_encoders import lt
|
||||
from .text_encoders import sa_t5
|
||||
from .text_encoders import sd2_clip
|
||||
from .text_encoders import sd3_clip
|
||||
@ -107,9 +108,13 @@ class CLIP:
|
||||
|
||||
self.tokenizer: "sd1_clip.SD1Tokenizer" = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.patcher.hook_mode = hooks.EnumHookMode.MinVram
|
||||
self.patcher.is_clip = True
|
||||
self.apply_hooks_to_conds = None
|
||||
if params['device'] == load_device:
|
||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||
self.layer_idx = None
|
||||
self.use_clip_schedule = False
|
||||
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
||||
|
||||
def clone(self):
|
||||
@ -119,6 +124,8 @@ class CLIP:
|
||||
# cloning the tokenizer allows the vocab updates to work more idiomatically
|
||||
n.tokenizer = self.tokenizer.clone()
|
||||
n.layer_idx = self.layer_idx
|
||||
n.use_clip_schedule = self.use_clip_schedule
|
||||
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
||||
return n
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
@ -130,6 +137,69 @@ class CLIP:
|
||||
def tokenize(self, text, return_word_ids=False):
|
||||
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
||||
|
||||
def add_hooks_to_dict(self, pooled_dict: dict[str]):
|
||||
if self.apply_hooks_to_conds:
|
||||
pooled_dict["hooks"] = self.apply_hooks_to_conds
|
||||
return pooled_dict
|
||||
|
||||
def encode_from_tokens_scheduled(self, tokens, unprojected=False, add_dict: dict[str] = {}, show_pbar=True):
|
||||
all_cond_pooled: list[tuple[torch.Tensor, dict[str]]] = []
|
||||
all_hooks = self.patcher.forced_hooks
|
||||
if all_hooks is None or not self.use_clip_schedule:
|
||||
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
|
||||
return_pooled = "unprojected" if unprojected else True
|
||||
pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
|
||||
cond = pooled_dict.pop("cond")
|
||||
# add/update any keys with the provided add_dict
|
||||
pooled_dict.update(add_dict)
|
||||
all_cond_pooled.append([cond, pooled_dict])
|
||||
else:
|
||||
scheduled_keyframes = all_hooks.get_hooks_for_clip_schedule()
|
||||
|
||||
self.cond_stage_model.reset_clip_options()
|
||||
if self.layer_idx is not None:
|
||||
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
||||
if unprojected:
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
all_hooks.reset()
|
||||
self.patcher.patch_hooks(None)
|
||||
if show_pbar:
|
||||
pbar = ProgressBar(len(scheduled_keyframes))
|
||||
|
||||
for scheduled_opts in scheduled_keyframes:
|
||||
t_range = scheduled_opts[0]
|
||||
# don't bother encoding any conds outside of start_percent and end_percent bounds
|
||||
if "start_percent" in add_dict:
|
||||
if t_range[1] < add_dict["start_percent"]:
|
||||
continue
|
||||
if "end_percent" in add_dict:
|
||||
if t_range[0] > add_dict["end_percent"]:
|
||||
continue
|
||||
hooks_keyframes = scheduled_opts[1]
|
||||
for hook, keyframe in hooks_keyframes:
|
||||
hook.hook_keyframe._current_keyframe = keyframe
|
||||
# apply appropriate hooks with values that match new hook_keyframe
|
||||
self.patcher.patch_hooks(all_hooks)
|
||||
# perform encoding as normal
|
||||
o = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = o[:2]
|
||||
pooled_dict = {"pooled_output": pooled}
|
||||
# add clip_start_percent and clip_end_percent in pooled
|
||||
pooled_dict["clip_start_percent"] = t_range[0]
|
||||
pooled_dict["clip_end_percent"] = t_range[1]
|
||||
# add/update any keys with the provided add_dict
|
||||
pooled_dict.update(add_dict)
|
||||
# add hooks stored on clip
|
||||
self.add_hooks_to_dict(pooled_dict)
|
||||
all_cond_pooled.append([cond, pooled_dict])
|
||||
if show_pbar:
|
||||
pbar.update(1)
|
||||
model_management.throw_exception_if_processing_interrupted()
|
||||
all_hooks.reset()
|
||||
return all_cond_pooled
|
||||
|
||||
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
|
||||
self.cond_stage_model.reset_clip_options()
|
||||
|
||||
@ -147,6 +217,7 @@ class CLIP:
|
||||
if len(o) > 2:
|
||||
for k in o[2]:
|
||||
out[k] = o[2][k]
|
||||
self.add_hooks_to_dict(out)
|
||||
return out
|
||||
|
||||
if return_pooled:
|
||||
@ -470,7 +541,7 @@ def load_style_model(ckpt_path):
|
||||
if "style_embedding" in keys:
|
||||
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
elif "redux_down.weight" in keys:
|
||||
model = comfy.ldm.flux.redux.ReduxImageEncoder()
|
||||
model = ReduxImageEncoder()
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
@ -577,8 +648,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.LTXV:
|
||||
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
||||
clip_target.clip = lt.ltxv_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = lt.LTXVT5Tokenizer
|
||||
else: # CLIPType.MOCHI
|
||||
clip_target.clip = genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = genmo.MochiT5Tokenizer
|
||||
|
||||
@ -659,6 +659,15 @@ class Flux(supported_models_base.BASE):
|
||||
t5_detect = sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(flux.FluxTokenizer, flux.flux_clip(**t5_detect))
|
||||
|
||||
class FluxInpaint(Flux):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
"guidance_embed": True,
|
||||
"in_channels": 96,
|
||||
}
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
class FluxSchnell(Flux):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
@ -733,6 +742,6 @@ class LTXV(supported_models_base.BASE):
|
||||
t5_detect = sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(lt.LTXVT5Tokenizer, lt.ltxv_te(**t5_detect))
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell, GenmoMochi, LTXV]
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -220,6 +220,11 @@ class T5Stack(torch.nn.Module):
|
||||
intermediate = None
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True)
|
||||
past_bias = None
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.block) + intermediate_output
|
||||
|
||||
for i, l in enumerate(self.block):
|
||||
x, past_bias = l(x, mask, past_bias, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
|
||||
39
comfy/validation.py
Normal file
39
comfy/validation.py
Normal file
@ -0,0 +1,39 @@
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def validate_node_input(
|
||||
received_type: str, input_type: str, strict: bool = False
|
||||
) -> bool:
|
||||
"""
|
||||
received_type and input_type are both strings of the form "T1,T2,...".
|
||||
|
||||
If strict is True, the input_type must contain the received_type.
|
||||
For example, if received_type is "STRING" and input_type is "STRING,INT",
|
||||
this will return True. But if received_type is "STRING,INT" and input_type is
|
||||
"INT", this will return False.
|
||||
|
||||
If strict is False, the input_type must have overlap with the received_type.
|
||||
For example, if received_type is "STRING,BOOLEAN" and input_type is "STRING,INT",
|
||||
this will return True.
|
||||
|
||||
Supports pre-union type extension behaviour of ``__ne__`` overrides.
|
||||
"""
|
||||
# If the types are exactly the same, we can return immediately
|
||||
# Use pre-union behaviour: inverse of `__ne__`
|
||||
if not received_type != input_type:
|
||||
return True
|
||||
|
||||
# Not equal, and not strings
|
||||
if not isinstance(received_type, str) or not isinstance(input_type, str):
|
||||
return False
|
||||
|
||||
# Split the type strings into sets for comparison
|
||||
received_types = set(t.strip() for t in received_type.split(","))
|
||||
input_types = set(t.strip() for t in input_type.split(","))
|
||||
|
||||
if strict:
|
||||
# In strict mode, all received types must be in the input types
|
||||
return received_types.issubset(input_types)
|
||||
else:
|
||||
# In non-strict mode, there must be at least one type in common
|
||||
return len(received_types.intersection(input_types)) > 0
|
||||
103
comfy/web/assets/ExtensionPanel-C-oQXg_k.js
generated
vendored
103
comfy/web/assets/ExtensionPanel-C-oQXg_k.js
generated
vendored
@ -1,103 +0,0 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, c8 as useExtensionStore, u as useSettingStore, r as ref, o as onMounted, q as computed, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, z as unref, bS as script$1, A as createBaseVNode, x as createBlock, N as Fragment, O as renderList, a4 as toDisplayString, av as createTextVNode, bQ as script$3, j as createCommentVNode, D as script$4 } from "./index-bi78Y1IN.js";
|
||||
import { s as script, a as script$2 } from "./index-ftUEqmu1.js";
|
||||
import "./index-bCeMLtLM.js";
|
||||
const _hoisted_1 = { class: "extension-panel" };
|
||||
const _hoisted_2 = { class: "mt-4" };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "ExtensionPanel",
|
||||
setup(__props) {
|
||||
const extensionStore = useExtensionStore();
|
||||
const settingStore = useSettingStore();
|
||||
const editingEnabledExtensions = ref({});
|
||||
onMounted(() => {
|
||||
extensionStore.extensions.forEach((ext) => {
|
||||
editingEnabledExtensions.value[ext.name] = extensionStore.isExtensionEnabled(ext.name);
|
||||
});
|
||||
});
|
||||
const changedExtensions = computed(() => {
|
||||
return extensionStore.extensions.filter(
|
||||
(ext) => editingEnabledExtensions.value[ext.name] !== extensionStore.isExtensionEnabled(ext.name)
|
||||
);
|
||||
});
|
||||
const hasChanges = computed(() => {
|
||||
return changedExtensions.value.length > 0;
|
||||
});
|
||||
const updateExtensionStatus = /* @__PURE__ */ __name(() => {
|
||||
const editingDisabledExtensionNames = Object.entries(
|
||||
editingEnabledExtensions.value
|
||||
).filter(([_, enabled]) => !enabled).map(([name]) => name);
|
||||
settingStore.set("Comfy.Extension.Disabled", [
|
||||
...extensionStore.inactiveDisabledExtensionNames,
|
||||
...editingDisabledExtensionNames
|
||||
]);
|
||||
}, "updateExtensionStatus");
|
||||
const applyChanges = /* @__PURE__ */ __name(() => {
|
||||
window.location.reload();
|
||||
}, "applyChanges");
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("div", _hoisted_1, [
|
||||
createVNode(unref(script$2), {
|
||||
value: unref(extensionStore).extensions,
|
||||
stripedRows: "",
|
||||
size: "small"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script), {
|
||||
field: "name",
|
||||
header: _ctx.$t("extensionName"),
|
||||
sortable: ""
|
||||
}, null, 8, ["header"]),
|
||||
createVNode(unref(script), { pt: {
|
||||
bodyCell: "flex items-center justify-end"
|
||||
} }, {
|
||||
body: withCtx((slotProps) => [
|
||||
createVNode(unref(script$1), {
|
||||
modelValue: editingEnabledExtensions.value[slotProps.data.name],
|
||||
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
|
||||
onChange: updateExtensionStatus
|
||||
}, null, 8, ["modelValue", "onUpdate:modelValue"])
|
||||
]),
|
||||
_: 1
|
||||
})
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["value"]),
|
||||
createBaseVNode("div", _hoisted_2, [
|
||||
hasChanges.value ? (openBlock(), createBlock(unref(script$3), {
|
||||
key: 0,
|
||||
severity: "info"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("ul", null, [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(changedExtensions.value, (ext) => {
|
||||
return openBlock(), createElementBlock("li", {
|
||||
key: ext.name
|
||||
}, [
|
||||
createBaseVNode("span", null, toDisplayString(unref(extensionStore).isExtensionEnabled(ext.name) ? "[-]" : "[+]"), 1),
|
||||
createTextVNode(" " + toDisplayString(ext.name), 1)
|
||||
]);
|
||||
}), 128))
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true),
|
||||
createVNode(unref(script$4), {
|
||||
label: _ctx.$t("reloadToApplyChanges"),
|
||||
icon: "pi pi-refresh",
|
||||
onClick: applyChanges,
|
||||
disabled: !hasChanges.value,
|
||||
text: "",
|
||||
fluid: "",
|
||||
severity: "danger"
|
||||
}, null, 8, ["label", "disabled"])
|
||||
])
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
export {
|
||||
_sfc_main as default
|
||||
};
|
||||
//# sourceMappingURL=ExtensionPanel-C-oQXg_k.js.map
|
||||
1
comfy/web/assets/ExtensionPanel-C-oQXg_k.js.map
generated
vendored
1
comfy/web/assets/ExtensionPanel-C-oQXg_k.js.map
generated
vendored
@ -1 +0,0 @@
|
||||
{"version":3,"file":"ExtensionPanel-C-oQXg_k.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <div class=\"extension-panel\">\n <DataTable :value=\"extensionStore.extensions\" stripedRows size=\"small\">\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n <div class=\"mt-4\">\n <Message v-if=\"hasChanges\" severity=\"info\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n </Message>\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n icon=\"pi pi-refresh\"\n @click=\"applyChanges\"\n :disabled=\"!hasChanges\"\n text\n fluid\n severity=\"danger\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;AAmDA,UAAM,iBAAiB,kBAAkB;AACzC,UAAM,eAAe,gBAAgB;AAE/B,UAAA,2BAA2B,IAA6B,EAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAC9C;AAAA,IAAA,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IACH,GAX8B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS,OAAO;AAAA,IACzB,GAHqB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
|
||||
117
comfy/web/assets/ExtensionPanel-DsD42OtO.js
generated
vendored
Normal file
117
comfy/web/assets/ExtensionPanel-DsD42OtO.js
generated
vendored
Normal file
@ -0,0 +1,117 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, r as ref, c6 as FilterMatchMode, ca as useExtensionStore, u as useSettingStore, o as onMounted, q as computed, g as openBlock, x as createBlock, y as withCtx, i as createVNode, c7 as SearchBox, z as unref, bT as script, A as createBaseVNode, h as createElementBlock, O as renderList, a6 as toDisplayString, aw as createTextVNode, N as Fragment, D as script$1, j as createCommentVNode, bV as script$3, c8 as _sfc_main$1 } from "./index-CoOvI8ZH.js";
|
||||
import { s as script$2, a as script$4 } from "./index-DK6Kev7f.js";
|
||||
import "./index-D4DWQPPQ.js";
|
||||
const _hoisted_1 = { class: "flex justify-end" };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "ExtensionPanel",
|
||||
setup(__props) {
|
||||
const filters = ref({
|
||||
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
|
||||
});
|
||||
const extensionStore = useExtensionStore();
|
||||
const settingStore = useSettingStore();
|
||||
const editingEnabledExtensions = ref({});
|
||||
onMounted(() => {
|
||||
extensionStore.extensions.forEach((ext) => {
|
||||
editingEnabledExtensions.value[ext.name] = extensionStore.isExtensionEnabled(ext.name);
|
||||
});
|
||||
});
|
||||
const changedExtensions = computed(() => {
|
||||
return extensionStore.extensions.filter(
|
||||
(ext) => editingEnabledExtensions.value[ext.name] !== extensionStore.isExtensionEnabled(ext.name)
|
||||
);
|
||||
});
|
||||
const hasChanges = computed(() => {
|
||||
return changedExtensions.value.length > 0;
|
||||
});
|
||||
const updateExtensionStatus = /* @__PURE__ */ __name(() => {
|
||||
const editingDisabledExtensionNames = Object.entries(
|
||||
editingEnabledExtensions.value
|
||||
).filter(([_, enabled]) => !enabled).map(([name]) => name);
|
||||
settingStore.set("Comfy.Extension.Disabled", [
|
||||
...extensionStore.inactiveDisabledExtensionNames,
|
||||
...editingDisabledExtensionNames
|
||||
]);
|
||||
}, "updateExtensionStatus");
|
||||
const applyChanges = /* @__PURE__ */ __name(() => {
|
||||
window.location.reload();
|
||||
}, "applyChanges");
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createBlock(_sfc_main$1, {
|
||||
value: "Extension",
|
||||
class: "extension-panel"
|
||||
}, {
|
||||
header: withCtx(() => [
|
||||
createVNode(SearchBox, {
|
||||
modelValue: filters.value["global"].value,
|
||||
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
|
||||
placeholder: _ctx.$t("searchExtensions") + "..."
|
||||
}, null, 8, ["modelValue", "placeholder"]),
|
||||
hasChanges.value ? (openBlock(), createBlock(unref(script), {
|
||||
key: 0,
|
||||
severity: "info",
|
||||
"pt:text": "w-full"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("ul", null, [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(changedExtensions.value, (ext) => {
|
||||
return openBlock(), createElementBlock("li", {
|
||||
key: ext.name
|
||||
}, [
|
||||
createBaseVNode("span", null, toDisplayString(unref(extensionStore).isExtensionEnabled(ext.name) ? "[-]" : "[+]"), 1),
|
||||
createTextVNode(" " + toDisplayString(ext.name), 1)
|
||||
]);
|
||||
}), 128))
|
||||
]),
|
||||
createBaseVNode("div", _hoisted_1, [
|
||||
createVNode(unref(script$1), {
|
||||
label: _ctx.$t("reloadToApplyChanges"),
|
||||
onClick: applyChanges,
|
||||
outlined: "",
|
||||
severity: "danger"
|
||||
}, null, 8, ["label"])
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true)
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script$4), {
|
||||
value: unref(extensionStore).extensions,
|
||||
stripedRows: "",
|
||||
size: "small",
|
||||
filters: filters.value
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script$2), {
|
||||
field: "name",
|
||||
header: _ctx.$t("extensionName"),
|
||||
sortable: ""
|
||||
}, null, 8, ["header"]),
|
||||
createVNode(unref(script$2), { pt: {
|
||||
bodyCell: "flex items-center justify-end"
|
||||
} }, {
|
||||
body: withCtx((slotProps) => [
|
||||
createVNode(unref(script$3), {
|
||||
modelValue: editingEnabledExtensions.value[slotProps.data.name],
|
||||
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
|
||||
onChange: updateExtensionStatus
|
||||
}, null, 8, ["modelValue", "onUpdate:modelValue"])
|
||||
]),
|
||||
_: 1
|
||||
})
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["value", "filters"])
|
||||
]),
|
||||
_: 1
|
||||
});
|
||||
};
|
||||
}
|
||||
});
|
||||
export {
|
||||
_sfc_main as default
|
||||
};
|
||||
//# sourceMappingURL=ExtensionPanel-DsD42OtO.js.map
|
||||
1
comfy/web/assets/ExtensionPanel-DsD42OtO.js.map
generated
vendored
Normal file
1
comfy/web/assets/ExtensionPanel-DsD42OtO.js.map
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"version":3,"file":"ExtensionPanel-DsD42OtO.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Extension\" class=\"extension-panel\">\n <template #header>\n <SearchBox\n v-model=\"filters['global'].value\"\n :placeholder=\"$t('searchExtensions') + '...'\"\n />\n <Message v-if=\"hasChanges\" severity=\"info\" pt:text=\"w-full\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n <div class=\"flex justify-end\">\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n @click=\"applyChanges\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n </template>\n <DataTable\n :value=\"extensionStore.extensions\"\n stripedRows\n size=\"small\"\n :filters=\"filters\"\n >\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport { FilterMatchMode } from '@primevue/core/api'\nimport PanelTemplate from './PanelTemplate.vue'\nimport SearchBox from '@/components/common/SearchBox.vue'\n\nconst filters = ref({\n global: { value: '', matchMode: FilterMatchMode.CONTAINS }\n})\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;AA8DA,UAAM,UAAU,IAAI;AAAA,MAClB,QAAQ,EAAE,OAAO,IAAI,WAAW,gBAAgB,SAAS;AAAA,IAAA,CAC1D;AAED,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
|
||||
526
comfy/web/assets/GraphView-DRxVGgSM.js → comfy/web/assets/GraphView-BW5soyxY.js
generated
vendored
526
comfy/web/assets/GraphView-DRxVGgSM.js → comfy/web/assets/GraphView-BW5soyxY.js
generated
vendored
File diff suppressed because one or more lines are too long
1
comfy/web/assets/GraphView-BW5soyxY.js.map
generated
vendored
Normal file
1
comfy/web/assets/GraphView-BW5soyxY.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
14
comfy/web/assets/GraphView-Che8kBOh.css → comfy/web/assets/GraphView-DtkYXy38.css
generated
vendored
14
comfy/web/assets/GraphView-Che8kBOh.css → comfy/web/assets/GraphView-DtkYXy38.css
generated
vendored
@ -158,10 +158,10 @@
|
||||
z-index: 9999;
|
||||
}
|
||||
|
||||
[data-v-9eb975c3] .p-togglebutton::before {
|
||||
[data-v-783f8efe] .p-togglebutton::before {
|
||||
display: none
|
||||
}
|
||||
[data-v-9eb975c3] .p-togglebutton {
|
||||
[data-v-783f8efe] .p-togglebutton {
|
||||
position: relative;
|
||||
flex-shrink: 0;
|
||||
border-radius: 0px;
|
||||
@ -169,14 +169,14 @@
|
||||
padding-left: 0.5rem;
|
||||
padding-right: 0.5rem
|
||||
}
|
||||
[data-v-9eb975c3] .p-togglebutton.p-togglebutton-checked {
|
||||
[data-v-783f8efe] .p-togglebutton.p-togglebutton-checked {
|
||||
border-bottom-width: 2px;
|
||||
border-bottom-color: var(--p-button-text-primary-color)
|
||||
}
|
||||
[data-v-9eb975c3] .p-togglebutton-checked .close-button,[data-v-9eb975c3] .p-togglebutton:hover .close-button {
|
||||
[data-v-783f8efe] .p-togglebutton-checked .close-button,[data-v-783f8efe] .p-togglebutton:hover .close-button {
|
||||
visibility: visible
|
||||
}
|
||||
.status-indicator[data-v-9eb975c3] {
|
||||
.status-indicator[data-v-783f8efe] {
|
||||
position: absolute;
|
||||
font-weight: 700;
|
||||
font-size: 1.5rem;
|
||||
@ -184,10 +184,10 @@
|
||||
left: 50%;
|
||||
transform: translate(-50%, -50%)
|
||||
}
|
||||
[data-v-9eb975c3] .p-togglebutton:hover .status-indicator {
|
||||
[data-v-783f8efe] .p-togglebutton:hover .status-indicator {
|
||||
display: none
|
||||
}
|
||||
[data-v-9eb975c3] .p-togglebutton .close-button {
|
||||
[data-v-783f8efe] .p-togglebutton .close-button {
|
||||
visibility: hidden
|
||||
}
|
||||
|
||||
90
comfy/web/assets/InstallView-CWxVNQLN.js → comfy/web/assets/InstallView-C6UIhIu4.js
generated
vendored
90
comfy/web/assets/InstallView-CWxVNQLN.js → comfy/web/assets/InstallView-C6UIhIu4.js
generated
vendored
File diff suppressed because one or more lines are too long
1
comfy/web/assets/InstallView-C6UIhIu4.js.map
generated
vendored
Normal file
1
comfy/web/assets/InstallView-C6UIhIu4.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
8
comfy/web/assets/KeybindingPanel-BFXf1pwv.css
generated
vendored
8
comfy/web/assets/KeybindingPanel-BFXf1pwv.css
generated
vendored
@ -1,8 +0,0 @@
|
||||
|
||||
[data-v-2d8b3a76] .p-datatable-tbody > tr > td {
|
||||
padding: 0.25rem;
|
||||
min-height: 2rem
|
||||
}
|
||||
[data-v-2d8b3a76] .p-datatable-row-selected .actions,[data-v-2d8b3a76] .p-datatable-selectable-row:hover .actions {
|
||||
visibility: visible
|
||||
}
|
||||
273
comfy/web/assets/KeybindingPanel-BlBHQABM.js
generated
vendored
273
comfy/web/assets/KeybindingPanel-BlBHQABM.js
generated
vendored
@ -1,273 +0,0 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, N as Fragment, O as renderList, i as createVNode, y as withCtx, av as createTextVNode, a4 as toDisplayString, z as unref, az as script, j as createCommentVNode, r as ref, c5 as FilterMatchMode, M as useKeybindingStore, F as useCommandStore, aI as watchEffect, be as useToast, t as resolveDirective, c6 as SearchBox, A as createBaseVNode, D as script$2, x as createBlock, an as script$4, bi as withModifiers, bQ as script$5, aG as script$6, v as withDirectives, c0 as KeyComboImpl, c7 as KeybindingImpl, _ as _export_sfc } from "./index-bi78Y1IN.js";
|
||||
import { s as script$1, a as script$3 } from "./index-ftUEqmu1.js";
|
||||
import "./index-bCeMLtLM.js";
|
||||
const _hoisted_1$1 = {
|
||||
key: 0,
|
||||
class: "px-2"
|
||||
};
|
||||
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
|
||||
__name: "KeyComboDisplay",
|
||||
props: {
|
||||
keyCombo: {},
|
||||
isModified: { type: Boolean, default: false }
|
||||
},
|
||||
setup(__props) {
|
||||
const props = __props;
|
||||
const keySequences = computed(() => props.keyCombo.getKeySequences());
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("span", null, [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(keySequences.value, (sequence, index) => {
|
||||
return openBlock(), createElementBlock(Fragment, { key: index }, [
|
||||
createVNode(unref(script), {
|
||||
severity: _ctx.isModified ? "info" : "secondary"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createTextVNode(toDisplayString(sequence), 1)
|
||||
]),
|
||||
_: 2
|
||||
}, 1032, ["severity"]),
|
||||
index < keySequences.value.length - 1 ? (openBlock(), createElementBlock("span", _hoisted_1$1, "+")) : createCommentVNode("", true)
|
||||
], 64);
|
||||
}), 128))
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
const _hoisted_1 = { class: "keybinding-panel" };
|
||||
const _hoisted_2 = { class: "actions invisible flex flex-row" };
|
||||
const _hoisted_3 = ["title"];
|
||||
const _hoisted_4 = { key: 1 };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "KeybindingPanel",
|
||||
setup(__props) {
|
||||
const filters = ref({
|
||||
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
|
||||
});
|
||||
const keybindingStore = useKeybindingStore();
|
||||
const commandStore = useCommandStore();
|
||||
const commandsData = computed(() => {
|
||||
return Object.values(commandStore.commands).map((command) => ({
|
||||
id: command.id,
|
||||
keybinding: keybindingStore.getKeybindingByCommandId(command.id)
|
||||
}));
|
||||
});
|
||||
const selectedCommandData = ref(null);
|
||||
const editDialogVisible = ref(false);
|
||||
const newBindingKeyCombo = ref(null);
|
||||
const currentEditingCommand = ref(null);
|
||||
const keybindingInput = ref(null);
|
||||
const existingKeybindingOnCombo = computed(() => {
|
||||
if (!currentEditingCommand.value) {
|
||||
return null;
|
||||
}
|
||||
if (currentEditingCommand.value.keybinding?.combo?.equals(
|
||||
newBindingKeyCombo.value
|
||||
)) {
|
||||
return null;
|
||||
}
|
||||
if (!newBindingKeyCombo.value) {
|
||||
return null;
|
||||
}
|
||||
return keybindingStore.getKeybinding(newBindingKeyCombo.value);
|
||||
});
|
||||
function editKeybinding(commandData) {
|
||||
currentEditingCommand.value = commandData;
|
||||
newBindingKeyCombo.value = commandData.keybinding ? commandData.keybinding.combo : null;
|
||||
editDialogVisible.value = true;
|
||||
}
|
||||
__name(editKeybinding, "editKeybinding");
|
||||
watchEffect(() => {
|
||||
if (editDialogVisible.value) {
|
||||
setTimeout(() => {
|
||||
keybindingInput.value?.$el?.focus();
|
||||
}, 300);
|
||||
}
|
||||
});
|
||||
function removeKeybinding(commandData) {
|
||||
if (commandData.keybinding) {
|
||||
keybindingStore.unsetKeybinding(commandData.keybinding);
|
||||
keybindingStore.persistUserKeybindings();
|
||||
}
|
||||
}
|
||||
__name(removeKeybinding, "removeKeybinding");
|
||||
function captureKeybinding(event) {
|
||||
const keyCombo = KeyComboImpl.fromEvent(event);
|
||||
newBindingKeyCombo.value = keyCombo;
|
||||
}
|
||||
__name(captureKeybinding, "captureKeybinding");
|
||||
function cancelEdit() {
|
||||
editDialogVisible.value = false;
|
||||
currentEditingCommand.value = null;
|
||||
newBindingKeyCombo.value = null;
|
||||
}
|
||||
__name(cancelEdit, "cancelEdit");
|
||||
function saveKeybinding() {
|
||||
if (currentEditingCommand.value && newBindingKeyCombo.value) {
|
||||
const updated = keybindingStore.updateKeybindingOnCommand(
|
||||
new KeybindingImpl({
|
||||
commandId: currentEditingCommand.value.id,
|
||||
combo: newBindingKeyCombo.value
|
||||
})
|
||||
);
|
||||
if (updated) {
|
||||
keybindingStore.persistUserKeybindings();
|
||||
}
|
||||
}
|
||||
cancelEdit();
|
||||
}
|
||||
__name(saveKeybinding, "saveKeybinding");
|
||||
const toast = useToast();
|
||||
async function resetKeybindings() {
|
||||
keybindingStore.resetKeybindings();
|
||||
await keybindingStore.persistUserKeybindings();
|
||||
toast.add({
|
||||
severity: "info",
|
||||
summary: "Info",
|
||||
detail: "Keybindings reset",
|
||||
life: 3e3
|
||||
});
|
||||
}
|
||||
__name(resetKeybindings, "resetKeybindings");
|
||||
return (_ctx, _cache) => {
|
||||
const _directive_tooltip = resolveDirective("tooltip");
|
||||
return openBlock(), createElementBlock("div", _hoisted_1, [
|
||||
createVNode(unref(script$3), {
|
||||
value: commandsData.value,
|
||||
selection: selectedCommandData.value,
|
||||
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
|
||||
"global-filter-fields": ["id"],
|
||||
filters: filters.value,
|
||||
selectionMode: "single",
|
||||
stripedRows: "",
|
||||
pt: {
|
||||
header: "px-0"
|
||||
}
|
||||
}, {
|
||||
header: withCtx(() => [
|
||||
createVNode(SearchBox, {
|
||||
modelValue: filters.value["global"].value,
|
||||
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
|
||||
placeholder: _ctx.$t("searchKeybindings") + "..."
|
||||
}, null, 8, ["modelValue", "placeholder"])
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script$1), {
|
||||
field: "actions",
|
||||
header: ""
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
createBaseVNode("div", _hoisted_2, [
|
||||
createVNode(unref(script$2), {
|
||||
icon: "pi pi-pencil",
|
||||
class: "p-button-text",
|
||||
onClick: /* @__PURE__ */ __name(($event) => editKeybinding(slotProps.data), "onClick")
|
||||
}, null, 8, ["onClick"]),
|
||||
createVNode(unref(script$2), {
|
||||
icon: "pi pi-trash",
|
||||
class: "p-button-text p-button-danger",
|
||||
onClick: /* @__PURE__ */ __name(($event) => removeKeybinding(slotProps.data), "onClick"),
|
||||
disabled: !slotProps.data.keybinding
|
||||
}, null, 8, ["onClick", "disabled"])
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
}),
|
||||
createVNode(unref(script$1), {
|
||||
field: "id",
|
||||
header: "Command ID",
|
||||
sortable: "",
|
||||
class: "max-w-64 2xl:max-w-full"
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
createBaseVNode("div", {
|
||||
class: "overflow-hidden text-ellipsis whitespace-nowrap",
|
||||
title: slotProps.data.id
|
||||
}, toDisplayString(slotProps.data.id), 9, _hoisted_3)
|
||||
]),
|
||||
_: 1
|
||||
}),
|
||||
createVNode(unref(script$1), {
|
||||
field: "keybinding",
|
||||
header: "Keybinding"
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
|
||||
key: 0,
|
||||
keyCombo: slotProps.data.keybinding.combo,
|
||||
isModified: unref(keybindingStore).isCommandKeybindingModified(slotProps.data.id)
|
||||
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_4, "-"))
|
||||
]),
|
||||
_: 1
|
||||
})
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["value", "selection", "filters"]),
|
||||
createVNode(unref(script$6), {
|
||||
class: "min-w-96",
|
||||
visible: editDialogVisible.value,
|
||||
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
|
||||
modal: "",
|
||||
header: currentEditingCommand.value?.id,
|
||||
onHide: cancelEdit
|
||||
}, {
|
||||
footer: withCtx(() => [
|
||||
createVNode(unref(script$2), {
|
||||
label: "Save",
|
||||
icon: "pi pi-check",
|
||||
onClick: saveKeybinding,
|
||||
disabled: !!existingKeybindingOnCombo.value,
|
||||
autofocus: ""
|
||||
}, null, 8, ["disabled"])
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("div", null, [
|
||||
createVNode(unref(script$4), {
|
||||
class: "mb-2 text-center",
|
||||
ref_key: "keybindingInput",
|
||||
ref: keybindingInput,
|
||||
modelValue: newBindingKeyCombo.value?.toString() ?? "",
|
||||
placeholder: "Press keys for new binding",
|
||||
onKeydown: withModifiers(captureKeybinding, ["stop", "prevent"]),
|
||||
autocomplete: "off",
|
||||
fluid: "",
|
||||
invalid: !!existingKeybindingOnCombo.value
|
||||
}, null, 8, ["modelValue", "invalid"]),
|
||||
existingKeybindingOnCombo.value ? (openBlock(), createBlock(unref(script$5), {
|
||||
key: 0,
|
||||
severity: "error"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
_cache[3] || (_cache[3] = createTextVNode(" Keybinding already exists on ")),
|
||||
createVNode(unref(script), {
|
||||
severity: "secondary",
|
||||
value: existingKeybindingOnCombo.value.commandId
|
||||
}, null, 8, ["value"])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true)
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["visible", "header"]),
|
||||
withDirectives(createVNode(unref(script$2), {
|
||||
class: "mt-4",
|
||||
label: _ctx.$t("reset"),
|
||||
icon: "pi pi-trash",
|
||||
severity: "danger",
|
||||
fluid: "",
|
||||
text: "",
|
||||
onClick: resetKeybindings
|
||||
}, null, 8, ["label"]), [
|
||||
[_directive_tooltip, _ctx.$t("resetKeybindingsTooltip")]
|
||||
])
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-2d8b3a76"]]);
|
||||
export {
|
||||
KeybindingPanel as default
|
||||
};
|
||||
//# sourceMappingURL=KeybindingPanel-BlBHQABM.js.map
|
||||
1
comfy/web/assets/KeybindingPanel-BlBHQABM.js.map
generated
vendored
1
comfy/web/assets/KeybindingPanel-BlBHQABM.js.map
generated
vendored
File diff suppressed because one or more lines are too long
8
comfy/web/assets/KeybindingPanel-C-7KE-Kw.css
generated
vendored
Normal file
8
comfy/web/assets/KeybindingPanel-C-7KE-Kw.css
generated
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
[data-v-9d7e362e] .p-datatable-tbody > tr > td {
|
||||
padding: 0.25rem;
|
||||
min-height: 2rem
|
||||
}
|
||||
[data-v-9d7e362e] .p-datatable-row-selected .actions,[data-v-9d7e362e] .p-datatable-selectable-row:hover .actions {
|
||||
visibility: visible
|
||||
}
|
||||
279
comfy/web/assets/KeybindingPanel-lcJrxHwZ.js
generated
vendored
Normal file
279
comfy/web/assets/KeybindingPanel-lcJrxHwZ.js
generated
vendored
Normal file
@ -0,0 +1,279 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, N as Fragment, O as renderList, i as createVNode, y as withCtx, aw as createTextVNode, a6 as toDisplayString, z as unref, aA as script, j as createCommentVNode, r as ref, c6 as FilterMatchMode, M as useKeybindingStore, F as useCommandStore, aJ as watchEffect, bg as useToast, t as resolveDirective, x as createBlock, c7 as SearchBox, A as createBaseVNode, D as script$2, ao as script$4, bk as withModifiers, bT as script$5, aH as script$6, v as withDirectives, c8 as _sfc_main$2, P as pushScopeId, Q as popScopeId, c1 as KeyComboImpl, c9 as KeybindingImpl, _ as _export_sfc } from "./index-CoOvI8ZH.js";
|
||||
import { s as script$1, a as script$3 } from "./index-DK6Kev7f.js";
|
||||
import "./index-D4DWQPPQ.js";
|
||||
const _hoisted_1$1 = {
|
||||
key: 0,
|
||||
class: "px-2"
|
||||
};
|
||||
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
|
||||
__name: "KeyComboDisplay",
|
||||
props: {
|
||||
keyCombo: {},
|
||||
isModified: { type: Boolean, default: false }
|
||||
},
|
||||
setup(__props) {
|
||||
const props = __props;
|
||||
const keySequences = computed(() => props.keyCombo.getKeySequences());
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("span", null, [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(keySequences.value, (sequence, index) => {
|
||||
return openBlock(), createElementBlock(Fragment, { key: index }, [
|
||||
createVNode(unref(script), {
|
||||
severity: _ctx.isModified ? "info" : "secondary"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createTextVNode(toDisplayString(sequence), 1)
|
||||
]),
|
||||
_: 2
|
||||
}, 1032, ["severity"]),
|
||||
index < keySequences.value.length - 1 ? (openBlock(), createElementBlock("span", _hoisted_1$1, "+")) : createCommentVNode("", true)
|
||||
], 64);
|
||||
}), 128))
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-9d7e362e"), n = n(), popScopeId(), n), "_withScopeId");
|
||||
const _hoisted_1 = { class: "actions invisible flex flex-row" };
|
||||
const _hoisted_2 = ["title"];
|
||||
const _hoisted_3 = { key: 1 };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "KeybindingPanel",
|
||||
setup(__props) {
|
||||
const filters = ref({
|
||||
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
|
||||
});
|
||||
const keybindingStore = useKeybindingStore();
|
||||
const commandStore = useCommandStore();
|
||||
const commandsData = computed(() => {
|
||||
return Object.values(commandStore.commands).map((command) => ({
|
||||
id: command.id,
|
||||
keybinding: keybindingStore.getKeybindingByCommandId(command.id)
|
||||
}));
|
||||
});
|
||||
const selectedCommandData = ref(null);
|
||||
const editDialogVisible = ref(false);
|
||||
const newBindingKeyCombo = ref(null);
|
||||
const currentEditingCommand = ref(null);
|
||||
const keybindingInput = ref(null);
|
||||
const existingKeybindingOnCombo = computed(() => {
|
||||
if (!currentEditingCommand.value) {
|
||||
return null;
|
||||
}
|
||||
if (currentEditingCommand.value.keybinding?.combo?.equals(
|
||||
newBindingKeyCombo.value
|
||||
)) {
|
||||
return null;
|
||||
}
|
||||
if (!newBindingKeyCombo.value) {
|
||||
return null;
|
||||
}
|
||||
return keybindingStore.getKeybinding(newBindingKeyCombo.value);
|
||||
});
|
||||
function editKeybinding(commandData) {
|
||||
currentEditingCommand.value = commandData;
|
||||
newBindingKeyCombo.value = commandData.keybinding ? commandData.keybinding.combo : null;
|
||||
editDialogVisible.value = true;
|
||||
}
|
||||
__name(editKeybinding, "editKeybinding");
|
||||
watchEffect(() => {
|
||||
if (editDialogVisible.value) {
|
||||
setTimeout(() => {
|
||||
keybindingInput.value?.$el?.focus();
|
||||
}, 300);
|
||||
}
|
||||
});
|
||||
function removeKeybinding(commandData) {
|
||||
if (commandData.keybinding) {
|
||||
keybindingStore.unsetKeybinding(commandData.keybinding);
|
||||
keybindingStore.persistUserKeybindings();
|
||||
}
|
||||
}
|
||||
__name(removeKeybinding, "removeKeybinding");
|
||||
function captureKeybinding(event) {
|
||||
const keyCombo = KeyComboImpl.fromEvent(event);
|
||||
newBindingKeyCombo.value = keyCombo;
|
||||
}
|
||||
__name(captureKeybinding, "captureKeybinding");
|
||||
function cancelEdit() {
|
||||
editDialogVisible.value = false;
|
||||
currentEditingCommand.value = null;
|
||||
newBindingKeyCombo.value = null;
|
||||
}
|
||||
__name(cancelEdit, "cancelEdit");
|
||||
function saveKeybinding() {
|
||||
if (currentEditingCommand.value && newBindingKeyCombo.value) {
|
||||
const updated = keybindingStore.updateKeybindingOnCommand(
|
||||
new KeybindingImpl({
|
||||
commandId: currentEditingCommand.value.id,
|
||||
combo: newBindingKeyCombo.value
|
||||
})
|
||||
);
|
||||
if (updated) {
|
||||
keybindingStore.persistUserKeybindings();
|
||||
}
|
||||
}
|
||||
cancelEdit();
|
||||
}
|
||||
__name(saveKeybinding, "saveKeybinding");
|
||||
const toast = useToast();
|
||||
async function resetKeybindings() {
|
||||
keybindingStore.resetKeybindings();
|
||||
await keybindingStore.persistUserKeybindings();
|
||||
toast.add({
|
||||
severity: "info",
|
||||
summary: "Info",
|
||||
detail: "Keybindings reset",
|
||||
life: 3e3
|
||||
});
|
||||
}
|
||||
__name(resetKeybindings, "resetKeybindings");
|
||||
return (_ctx, _cache) => {
|
||||
const _directive_tooltip = resolveDirective("tooltip");
|
||||
return openBlock(), createBlock(_sfc_main$2, {
|
||||
value: "Keybinding",
|
||||
class: "keybinding-panel"
|
||||
}, {
|
||||
header: withCtx(() => [
|
||||
createVNode(SearchBox, {
|
||||
modelValue: filters.value["global"].value,
|
||||
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
|
||||
placeholder: _ctx.$t("searchKeybindings") + "..."
|
||||
}, null, 8, ["modelValue", "placeholder"])
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script$3), {
|
||||
value: commandsData.value,
|
||||
selection: selectedCommandData.value,
|
||||
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
|
||||
"global-filter-fields": ["id"],
|
||||
filters: filters.value,
|
||||
selectionMode: "single",
|
||||
stripedRows: "",
|
||||
pt: {
|
||||
header: "px-0"
|
||||
}
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createVNode(unref(script$1), {
|
||||
field: "actions",
|
||||
header: ""
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
createBaseVNode("div", _hoisted_1, [
|
||||
createVNode(unref(script$2), {
|
||||
icon: "pi pi-pencil",
|
||||
class: "p-button-text",
|
||||
onClick: /* @__PURE__ */ __name(($event) => editKeybinding(slotProps.data), "onClick")
|
||||
}, null, 8, ["onClick"]),
|
||||
createVNode(unref(script$2), {
|
||||
icon: "pi pi-trash",
|
||||
class: "p-button-text p-button-danger",
|
||||
onClick: /* @__PURE__ */ __name(($event) => removeKeybinding(slotProps.data), "onClick"),
|
||||
disabled: !slotProps.data.keybinding
|
||||
}, null, 8, ["onClick", "disabled"])
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
}),
|
||||
createVNode(unref(script$1), {
|
||||
field: "id",
|
||||
header: "Command ID",
|
||||
sortable: "",
|
||||
class: "max-w-64 2xl:max-w-full"
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
createBaseVNode("div", {
|
||||
class: "overflow-hidden text-ellipsis whitespace-nowrap",
|
||||
title: slotProps.data.id
|
||||
}, toDisplayString(slotProps.data.id), 9, _hoisted_2)
|
||||
]),
|
||||
_: 1
|
||||
}),
|
||||
createVNode(unref(script$1), {
|
||||
field: "keybinding",
|
||||
header: "Keybinding"
|
||||
}, {
|
||||
body: withCtx((slotProps) => [
|
||||
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
|
||||
key: 0,
|
||||
keyCombo: slotProps.data.keybinding.combo,
|
||||
isModified: unref(keybindingStore).isCommandKeybindingModified(slotProps.data.id)
|
||||
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_3, "-"))
|
||||
]),
|
||||
_: 1
|
||||
})
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["value", "selection", "filters"]),
|
||||
createVNode(unref(script$6), {
|
||||
class: "min-w-96",
|
||||
visible: editDialogVisible.value,
|
||||
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
|
||||
modal: "",
|
||||
header: currentEditingCommand.value?.id,
|
||||
onHide: cancelEdit
|
||||
}, {
|
||||
footer: withCtx(() => [
|
||||
createVNode(unref(script$2), {
|
||||
label: "Save",
|
||||
icon: "pi pi-check",
|
||||
onClick: saveKeybinding,
|
||||
disabled: !!existingKeybindingOnCombo.value,
|
||||
autofocus: ""
|
||||
}, null, 8, ["disabled"])
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("div", null, [
|
||||
createVNode(unref(script$4), {
|
||||
class: "mb-2 text-center",
|
||||
ref_key: "keybindingInput",
|
||||
ref: keybindingInput,
|
||||
modelValue: newBindingKeyCombo.value?.toString() ?? "",
|
||||
placeholder: "Press keys for new binding",
|
||||
onKeydown: withModifiers(captureKeybinding, ["stop", "prevent"]),
|
||||
autocomplete: "off",
|
||||
fluid: "",
|
||||
invalid: !!existingKeybindingOnCombo.value
|
||||
}, null, 8, ["modelValue", "invalid"]),
|
||||
existingKeybindingOnCombo.value ? (openBlock(), createBlock(unref(script$5), {
|
||||
key: 0,
|
||||
severity: "error"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createTextVNode(" Keybinding already exists on "),
|
||||
createVNode(unref(script), {
|
||||
severity: "secondary",
|
||||
value: existingKeybindingOnCombo.value.commandId
|
||||
}, null, 8, ["value"])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true)
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
}, 8, ["visible", "header"]),
|
||||
withDirectives(createVNode(unref(script$2), {
|
||||
class: "mt-4",
|
||||
label: _ctx.$t("reset"),
|
||||
icon: "pi pi-trash",
|
||||
severity: "danger",
|
||||
fluid: "",
|
||||
text: "",
|
||||
onClick: resetKeybindings
|
||||
}, null, 8, ["label"]), [
|
||||
[_directive_tooltip, _ctx.$t("resetKeybindingsTooltip")]
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
});
|
||||
};
|
||||
}
|
||||
});
|
||||
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-9d7e362e"]]);
|
||||
export {
|
||||
KeybindingPanel as default
|
||||
};
|
||||
//# sourceMappingURL=KeybindingPanel-lcJrxHwZ.js.map
|
||||
1
comfy/web/assets/KeybindingPanel-lcJrxHwZ.js.map
generated
vendored
Normal file
1
comfy/web/assets/KeybindingPanel-lcJrxHwZ.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
150
comfy/web/assets/ServerConfigPanel-x68ubY-c.js
generated
vendored
Normal file
150
comfy/web/assets/ServerConfigPanel-x68ubY-c.js
generated
vendored
Normal file
@ -0,0 +1,150 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { A as createBaseVNode, g as openBlock, h as createElementBlock, aU as markRaw, d as defineComponent, u as useSettingStore, bw as storeToRefs, w as watch, cy as useCopyToClipboard, x as createBlock, y as withCtx, z as unref, bT as script, a6 as toDisplayString, O as renderList, N as Fragment, i as createVNode, D as script$1, j as createCommentVNode, bI as script$2, cz as formatCamelCase, cA as FormItem, c8 as _sfc_main$1, bN as electronAPI } from "./index-CoOvI8ZH.js";
|
||||
import { u as useServerConfigStore } from "./serverConfigStore-cctR8PGG.js";
|
||||
const _hoisted_1$1 = {
|
||||
viewBox: "0 0 24 24",
|
||||
width: "1.2em",
|
||||
height: "1.2em"
|
||||
};
|
||||
const _hoisted_2$1 = /* @__PURE__ */ createBaseVNode("path", {
|
||||
fill: "none",
|
||||
stroke: "currentColor",
|
||||
"stroke-linecap": "round",
|
||||
"stroke-linejoin": "round",
|
||||
"stroke-width": "2",
|
||||
d: "m4 17l6-6l-6-6m8 14h8"
|
||||
}, null, -1);
|
||||
const _hoisted_3$1 = [
|
||||
_hoisted_2$1
|
||||
];
|
||||
function render(_ctx, _cache) {
|
||||
return openBlock(), createElementBlock("svg", _hoisted_1$1, [..._hoisted_3$1]);
|
||||
}
|
||||
__name(render, "render");
|
||||
const __unplugin_components_0 = markRaw({ name: "lucide-terminal", render });
|
||||
const _hoisted_1 = { class: "flex flex-col gap-2" };
|
||||
const _hoisted_2 = { class: "flex justify-end gap-2" };
|
||||
const _hoisted_3 = { class: "flex items-center justify-between" };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "ServerConfigPanel",
|
||||
setup(__props) {
|
||||
const settingStore = useSettingStore();
|
||||
const serverConfigStore = useServerConfigStore();
|
||||
const {
|
||||
serverConfigsByCategory,
|
||||
serverConfigValues,
|
||||
launchArgs,
|
||||
commandLineArgs,
|
||||
modifiedConfigs
|
||||
} = storeToRefs(serverConfigStore);
|
||||
const revertChanges = /* @__PURE__ */ __name(() => {
|
||||
serverConfigStore.revertChanges();
|
||||
}, "revertChanges");
|
||||
const restartApp = /* @__PURE__ */ __name(() => {
|
||||
electronAPI().restartApp();
|
||||
}, "restartApp");
|
||||
watch(launchArgs, (newVal) => {
|
||||
settingStore.set("Comfy.Server.LaunchArgs", newVal);
|
||||
});
|
||||
watch(serverConfigValues, (newVal) => {
|
||||
settingStore.set("Comfy.Server.ServerConfigValues", newVal);
|
||||
});
|
||||
const { copyToClipboard } = useCopyToClipboard();
|
||||
const copyCommandLineArgs = /* @__PURE__ */ __name(async () => {
|
||||
await copyToClipboard(commandLineArgs.value);
|
||||
}, "copyCommandLineArgs");
|
||||
return (_ctx, _cache) => {
|
||||
const _component_i_lucide58terminal = __unplugin_components_0;
|
||||
return openBlock(), createBlock(_sfc_main$1, {
|
||||
value: "Server-Config",
|
||||
class: "server-config-panel"
|
||||
}, {
|
||||
header: withCtx(() => [
|
||||
createBaseVNode("div", _hoisted_1, [
|
||||
unref(modifiedConfigs).length > 0 ? (openBlock(), createBlock(unref(script), {
|
||||
key: 0,
|
||||
severity: "info",
|
||||
"pt:text": "w-full"
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("p", null, toDisplayString(_ctx.$t("serverConfig.modifiedConfigs")), 1),
|
||||
createBaseVNode("ul", null, [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(unref(modifiedConfigs), (config) => {
|
||||
return openBlock(), createElementBlock("li", {
|
||||
key: config.id
|
||||
}, toDisplayString(config.name) + ": " + toDisplayString(config.initialValue) + " → " + toDisplayString(config.value), 1);
|
||||
}), 128))
|
||||
]),
|
||||
createBaseVNode("div", _hoisted_2, [
|
||||
createVNode(unref(script$1), {
|
||||
label: _ctx.$t("serverConfig.revertChanges"),
|
||||
onClick: revertChanges,
|
||||
outlined: ""
|
||||
}, null, 8, ["label"]),
|
||||
createVNode(unref(script$1), {
|
||||
label: _ctx.$t("serverConfig.restart"),
|
||||
onClick: restartApp,
|
||||
outlined: "",
|
||||
severity: "danger"
|
||||
}, null, 8, ["label"])
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true),
|
||||
unref(commandLineArgs) ? (openBlock(), createBlock(unref(script), {
|
||||
key: 1,
|
||||
severity: "secondary",
|
||||
"pt:text": "w-full"
|
||||
}, {
|
||||
icon: withCtx(() => [
|
||||
createVNode(_component_i_lucide58terminal, { class: "text-xl font-bold" })
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("div", _hoisted_3, [
|
||||
createBaseVNode("p", null, toDisplayString(unref(commandLineArgs)), 1),
|
||||
createVNode(unref(script$1), {
|
||||
icon: "pi pi-clipboard",
|
||||
onClick: copyCommandLineArgs,
|
||||
severity: "secondary",
|
||||
text: ""
|
||||
})
|
||||
])
|
||||
]),
|
||||
_: 1
|
||||
})) : createCommentVNode("", true)
|
||||
])
|
||||
]),
|
||||
default: withCtx(() => [
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(Object.entries(unref(serverConfigsByCategory)), ([label, items], i) => {
|
||||
return openBlock(), createElementBlock("div", { key: label }, [
|
||||
i > 0 ? (openBlock(), createBlock(unref(script$2), { key: 0 })) : createCommentVNode("", true),
|
||||
createBaseVNode("h3", null, toDisplayString(unref(formatCamelCase)(label)), 1),
|
||||
(openBlock(true), createElementBlock(Fragment, null, renderList(items, (item) => {
|
||||
return openBlock(), createElementBlock("div", {
|
||||
key: item.name,
|
||||
class: "flex items-center mb-4"
|
||||
}, [
|
||||
createVNode(FormItem, {
|
||||
item,
|
||||
formValue: item.value,
|
||||
"onUpdate:formValue": /* @__PURE__ */ __name(($event) => item.value = $event, "onUpdate:formValue"),
|
||||
id: item.id,
|
||||
labelClass: {
|
||||
"text-highlight": item.initialValue !== item.value
|
||||
}
|
||||
}, null, 8, ["item", "formValue", "onUpdate:formValue", "id", "labelClass"])
|
||||
]);
|
||||
}), 128))
|
||||
]);
|
||||
}), 128))
|
||||
]),
|
||||
_: 1
|
||||
});
|
||||
};
|
||||
}
|
||||
});
|
||||
export {
|
||||
_sfc_main as default
|
||||
};
|
||||
//# sourceMappingURL=ServerConfigPanel-x68ubY-c.js.map
|
||||
1
comfy/web/assets/ServerConfigPanel-x68ubY-c.js.map
generated
vendored
Normal file
1
comfy/web/assets/ServerConfigPanel-x68ubY-c.js.map
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"version":3,"file":"ServerConfigPanel-x68ubY-c.js","sources":["../../src/components/dialog/content/setting/ServerConfigPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Server-Config\" class=\"server-config-panel\">\n <template #header>\n <div class=\"flex flex-col gap-2\">\n <Message\n v-if=\"modifiedConfigs.length > 0\"\n severity=\"info\"\n pt:text=\"w-full\"\n >\n <p>\n {{ $t('serverConfig.modifiedConfigs') }}\n </p>\n <ul>\n <li v-for=\"config in modifiedConfigs\" :key=\"config.id\">\n {{ config.name }}: {{ config.initialValue }} → {{ config.value }}\n </li>\n </ul>\n <div class=\"flex justify-end gap-2\">\n <Button\n :label=\"$t('serverConfig.revertChanges')\"\n @click=\"revertChanges\"\n outlined\n />\n <Button\n :label=\"$t('serverConfig.restart')\"\n @click=\"restartApp\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n <Message v-if=\"commandLineArgs\" severity=\"secondary\" pt:text=\"w-full\">\n <template #icon>\n <i-lucide:terminal class=\"text-xl font-bold\" />\n </template>\n <div class=\"flex items-center justify-between\">\n <p>{{ commandLineArgs }}</p>\n <Button\n icon=\"pi pi-clipboard\"\n @click=\"copyCommandLineArgs\"\n severity=\"secondary\"\n text\n />\n </div>\n </Message>\n </div>\n </template>\n <div\n v-for=\"([label, items], i) in Object.entries(serverConfigsByCategory)\"\n :key=\"label\"\n >\n <Divider v-if=\"i > 0\" />\n <h3>{{ formatCamelCase(label) }}</h3>\n <div\n v-for=\"item in items\"\n :key=\"item.name\"\n class=\"flex items-center mb-4\"\n >\n <FormItem\n :item=\"item\"\n v-model:formValue=\"item.value\"\n :id=\"item.id\"\n :labelClass=\"{\n 'text-highlight': item.initialValue !== item.value\n }\"\n />\n </div>\n </div>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport Divider from 'primevue/divider'\nimport FormItem from '@/components/common/FormItem.vue'\nimport PanelTemplate from './PanelTemplate.vue'\nimport { formatCamelCase } from '@/utils/formatUtil'\nimport { useServerConfigStore } from '@/stores/serverConfigStore'\nimport { storeToRefs } from 'pinia'\nimport { electronAPI } from '@/utils/envUtil'\nimport { useSettingStore } from '@/stores/settingStore'\nimport { watch } from 'vue'\nimport { useCopyToClipboard } from '@/hooks/clipboardHooks'\n\nconst settingStore = useSettingStore()\nconst serverConfigStore = useServerConfigStore()\nconst {\n serverConfigsByCategory,\n serverConfigValues,\n launchArgs,\n commandLineArgs,\n modifiedConfigs\n} = storeToRefs(serverConfigStore)\n\nconst revertChanges = () => {\n serverConfigStore.revertChanges()\n}\n\nconst restartApp = () => {\n electronAPI().restartApp()\n}\n\nwatch(launchArgs, (newVal) => {\n settingStore.set('Comfy.Server.LaunchArgs', newVal)\n})\n\nwatch(serverConfigValues, (newVal) => {\n settingStore.set('Comfy.Server.ServerConfigValues', newVal)\n})\n\nconst { copyToClipboard } = useCopyToClipboard()\nconst copyCommandLineArgs = async () => {\n await copyToClipboard(commandLineArgs.value)\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAqFA,UAAM,eAAe;AACrB,UAAM,oBAAoB;AACpB,UAAA;AAAA,MACJ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA,IACE,YAAY,iBAAiB;AAEjC,UAAM,gBAAgB,6BAAM;AAC1B,wBAAkB,cAAc;AAAA,IAAA,GADZ;AAItB,UAAM,aAAa,6BAAM;AACvB,kBAAA,EAAc;IAAW,GADR;AAIb,UAAA,YAAY,CAAC,WAAW;AACf,mBAAA,IAAI,2BAA2B,MAAM;AAAA,IAAA,CACnD;AAEK,UAAA,oBAAoB,CAAC,WAAW;AACvB,mBAAA,IAAI,mCAAmC,MAAM;AAAA,IAAA,CAC3D;AAEK,UAAA,EAAE,oBAAoB;AAC5B,UAAM,sBAAsB,mCAAY;AAChC,YAAA,gBAAgB,gBAAgB,KAAK;AAAA,IAAA,GADjB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
|
||||
102
comfy/web/assets/ServerStartView-Bb00SCJ5.js
generated
vendored
102
comfy/web/assets/ServerStartView-Bb00SCJ5.js
generated
vendored
@ -1,102 +0,0 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, r as ref, o as onMounted, w as watch, I as onBeforeUnmount, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, A as createBaseVNode, a4 as toDisplayString, z as unref, bJ as script, bK as electronAPI } from "./index-bi78Y1IN.js";
|
||||
import { o as oe, r as rr } from "./index-Ba5g1c58.js";
|
||||
const _hoisted_1$1 = { class: "p-terminal rounded-none h-full w-full" };
|
||||
const _hoisted_2$1 = { class: "px-4 whitespace-pre-wrap" };
|
||||
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
|
||||
__name: "LogTerminal",
|
||||
props: {
|
||||
fetchLogs: { type: Function },
|
||||
fetchInterval: {}
|
||||
},
|
||||
setup(__props) {
|
||||
const props = __props;
|
||||
const log = ref("");
|
||||
const scrollPanelRef = ref(null);
|
||||
const scrolledToBottom = ref(false);
|
||||
let intervalId = 0;
|
||||
onMounted(async () => {
|
||||
const element = scrollPanelRef.value?.$el;
|
||||
const scrollContainer = element?.querySelector(".p-scrollpanel-content");
|
||||
if (scrollContainer) {
|
||||
scrollContainer.addEventListener("scroll", () => {
|
||||
scrolledToBottom.value = scrollContainer.scrollTop + scrollContainer.clientHeight === scrollContainer.scrollHeight;
|
||||
});
|
||||
}
|
||||
const scrollToBottom = /* @__PURE__ */ __name(() => {
|
||||
if (scrollContainer) {
|
||||
scrollContainer.scrollTop = scrollContainer.scrollHeight;
|
||||
}
|
||||
}, "scrollToBottom");
|
||||
watch(log, () => {
|
||||
if (scrolledToBottom.value) {
|
||||
scrollToBottom();
|
||||
}
|
||||
});
|
||||
const fetchLogs = /* @__PURE__ */ __name(async () => {
|
||||
log.value = await props.fetchLogs();
|
||||
}, "fetchLogs");
|
||||
await fetchLogs();
|
||||
scrollToBottom();
|
||||
intervalId = window.setInterval(fetchLogs, props.fetchInterval);
|
||||
});
|
||||
onBeforeUnmount(() => {
|
||||
window.clearInterval(intervalId);
|
||||
});
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("div", _hoisted_1$1, [
|
||||
createVNode(unref(script), {
|
||||
class: "h-full w-full",
|
||||
ref_key: "scrollPanelRef",
|
||||
ref: scrollPanelRef
|
||||
}, {
|
||||
default: withCtx(() => [
|
||||
createBaseVNode("pre", _hoisted_2$1, toDisplayString(log.value), 1)
|
||||
]),
|
||||
_: 1
|
||||
}, 512)
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
|
||||
const _hoisted_2 = { class: "text-2xl font-bold" };
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "ServerStartView",
|
||||
setup(__props) {
|
||||
const electron = electronAPI();
|
||||
const status = ref(oe.INITIAL_STATE);
|
||||
const logs = ref([]);
|
||||
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
|
||||
status.value = newStatus;
|
||||
logs.value = [];
|
||||
}, "updateProgress");
|
||||
const addLogMessage = /* @__PURE__ */ __name((message) => {
|
||||
logs.value = [...logs.value, message];
|
||||
}, "addLogMessage");
|
||||
const fetchLogs = /* @__PURE__ */ __name(async () => {
|
||||
return logs.value.join("\n");
|
||||
}, "fetchLogs");
|
||||
onMounted(() => {
|
||||
electron.sendReady();
|
||||
electron.onProgressUpdate(updateProgress);
|
||||
electron.onLogMessage((message) => {
|
||||
addLogMessage(message);
|
||||
});
|
||||
});
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("div", _hoisted_1, [
|
||||
createBaseVNode("h2", _hoisted_2, toDisplayString(unref(rr)[status.value]), 1),
|
||||
createVNode(_sfc_main$1, {
|
||||
"fetch-logs": fetchLogs,
|
||||
"fetch-interval": 500
|
||||
})
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
export {
|
||||
_sfc_main as default
|
||||
};
|
||||
//# sourceMappingURL=ServerStartView-Bb00SCJ5.js.map
|
||||
1
comfy/web/assets/ServerStartView-Bb00SCJ5.js.map
generated
vendored
1
comfy/web/assets/ServerStartView-Bb00SCJ5.js.map
generated
vendored
@ -1 +0,0 @@
|
||||
{"version":3,"file":"ServerStartView-Bb00SCJ5.js","sources":["../../src/components/common/LogTerminal.vue","../../src/views/ServerStartView.vue"],"sourcesContent":["<!-- A simple read-only terminal component that displays logs. -->\n<template>\n <div class=\"p-terminal rounded-none h-full w-full\">\n <ScrollPanel class=\"h-full w-full\" ref=\"scrollPanelRef\">\n <pre class=\"px-4 whitespace-pre-wrap\">{{ log }}</pre>\n </ScrollPanel>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport ScrollPanel from 'primevue/scrollpanel'\nimport { onBeforeUnmount, onMounted, ref, watch } from 'vue'\n\nconst props = defineProps<{\n fetchLogs: () => Promise<string>\n fetchInterval: number\n}>()\n\nconst log = ref<string>('')\nconst scrollPanelRef = ref<InstanceType<typeof ScrollPanel> | null>(null)\n/**\n * Whether the user has scrolled to the bottom of the terminal.\n * This is used to prevent the terminal from scrolling to the bottom\n * when new logs are fetched.\n */\nconst scrolledToBottom = ref(false)\n\nlet intervalId: number = 0\n\nonMounted(async () => {\n const element = scrollPanelRef.value?.$el\n const scrollContainer = element?.querySelector('.p-scrollpanel-content')\n\n if (scrollContainer) {\n scrollContainer.addEventListener('scroll', () => {\n scrolledToBottom.value =\n scrollContainer.scrollTop + scrollContainer.clientHeight ===\n scrollContainer.scrollHeight\n })\n }\n\n const scrollToBottom = () => {\n if (scrollContainer) {\n scrollContainer.scrollTop = scrollContainer.scrollHeight\n }\n }\n\n watch(log, () => {\n if (scrolledToBottom.value) {\n scrollToBottom()\n }\n })\n\n const fetchLogs = async () => {\n log.value = await props.fetchLogs()\n }\n\n await fetchLogs()\n scrollToBottom()\n intervalId = window.setInterval(fetchLogs, props.fetchInterval)\n})\n\nonBeforeUnmount(() => {\n window.clearInterval(intervalId)\n})\n</script>\n","<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <h2 class=\"text-2xl font-bold\">{{ ProgressMessages[status] }}</h2>\n <LogTerminal :fetch-logs=\"fetchLogs\" :fetch-interval=\"500\" />\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, onMounted } from 'vue'\nimport LogTerminal from '@/components/common/LogTerminal.vue'\nimport {\n ProgressStatus,\n ProgressMessages\n} from '@comfyorg/comfyui-electron-types'\nimport { electronAPI } from '@/utils/envUtil'\n\nconst electron = electronAPI()\n\nconst status = ref<ProgressStatus>(ProgressStatus.INITIAL_STATE)\nconst logs = ref<string[]>([])\n\nconst updateProgress = ({ status: newStatus }: { status: ProgressStatus }) => {\n status.value = newStatus\n logs.value = [] // Clear logs when status changes\n}\n\nconst addLogMessage = (message: string) => {\n logs.value = [...logs.value, message]\n}\n\nconst fetchLogs = async () => {\n return logs.value.join('\\n')\n}\n\nonMounted(() => {\n electron.sendReady()\n electron.onProgressUpdate(updateProgress)\n electron.onLogMessage((message: string) => {\n addLogMessage(message)\n })\n})\n</script>\n"],"names":["ProgressStatus"],"mappings":";;;;;;;;;;;;;AAaA,UAAM,QAAQ;AAKR,UAAA,MAAM,IAAY,EAAE;AACpB,UAAA,iBAAiB,IAA6C,IAAI;AAMlE,UAAA,mBAAmB,IAAI,KAAK;AAElC,QAAI,aAAqB;AAEzB,cAAU,YAAY;AACd,YAAA,UAAU,eAAe,OAAO;AAChC,YAAA,kBAAkB,SAAS,cAAc,wBAAwB;AAEvE,UAAI,iBAAiB;AACH,wBAAA,iBAAiB,UAAU,MAAM;AAC/C,2BAAiB,QACf,gBAAgB,YAAY,gBAAgB,iBAC5C,gBAAgB;AAAA,QAAA,CACnB;AAAA,MAAA;AAGH,YAAM,iBAAiB,6BAAM;AAC3B,YAAI,iBAAiB;AACnB,0BAAgB,YAAY,gBAAgB;AAAA,QAAA;AAAA,MAEhD,GAJuB;AAMvB,YAAM,KAAK,MAAM;AACf,YAAI,iBAAiB,OAAO;AACX,yBAAA;AAAA,QAAA;AAAA,MACjB,CACD;AAED,YAAM,YAAY,mCAAY;AACxB,YAAA,QAAQ,MAAM,MAAM,UAAU;AAAA,MACpC,GAFkB;AAIlB,YAAM,UAAU;AACD,qBAAA;AACf,mBAAa,OAAO,YAAY,WAAW,MAAM,aAAa;AAAA,IAAA,CAC/D;AAED,oBAAgB,MAAM;AACpB,aAAO,cAAc,UAAU;AAAA,IAAA,CAChC;;;;;;;;;;;;;;;;;;;;;;AC9CD,UAAM,WAAW,YAAY;AAEvB,UAAA,SAAS,IAAoBA,GAAe,aAAa;AACzD,UAAA,OAAO,IAAc,EAAE;AAE7B,UAAM,iBAAiB,wBAAC,EAAE,QAAQ,gBAA4C;AAC5E,aAAO,QAAQ;AACf,WAAK,QAAQ,CAAC;AAAA,IAChB,GAHuB;AAKjB,UAAA,gBAAgB,wBAAC,YAAoB;AACzC,WAAK,QAAQ,CAAC,GAAG,KAAK,OAAO,OAAO;AAAA,IACtC,GAFsB;AAItB,UAAM,YAAY,mCAAY;AACrB,aAAA,KAAK,MAAM,KAAK,IAAI;AAAA,IAC7B,GAFkB;AAIlB,cAAU,MAAM;AACd,eAAS,UAAU;AACnB,eAAS,iBAAiB,cAAc;AAC/B,eAAA,aAAa,CAAC,YAAoB;AACzC,sBAAc,OAAO;AAAA,MAAA,CACtB;AAAA,IAAA,CACF;;;;;;;;;;;;"}
|
||||
79
comfy/web/assets/ServerStartView-CqRVtr1h.js
generated
vendored
Normal file
79
comfy/web/assets/ServerStartView-CqRVtr1h.js
generated
vendored
Normal file
@ -0,0 +1,79 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, aD as useI18n, r as ref, o as onMounted, g as openBlock, h as createElementBlock, A as createBaseVNode, aw as createTextVNode, a6 as toDisplayString, z as unref, j as createCommentVNode, i as createVNode, D as script, bM as BaseTerminal, P as pushScopeId, Q as popScopeId, bN as electronAPI, _ as _export_sfc } from "./index-CoOvI8ZH.js";
|
||||
import { P as ProgressStatus } from "./index-BppSBmxJ.js";
|
||||
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-f5429be7"), n = n(), popScopeId(), n), "_withScopeId");
|
||||
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
|
||||
const _hoisted_2 = { class: "text-2xl font-bold" };
|
||||
const _hoisted_3 = { key: 0 };
|
||||
const _hoisted_4 = {
|
||||
key: 0,
|
||||
class: "flex items-center my-4 gap-2"
|
||||
};
|
||||
const _sfc_main = /* @__PURE__ */ defineComponent({
|
||||
__name: "ServerStartView",
|
||||
setup(__props) {
|
||||
const electron = electronAPI();
|
||||
const { t } = useI18n();
|
||||
const status = ref(ProgressStatus.INITIAL_STATE);
|
||||
const electronVersion = ref("");
|
||||
let xterm;
|
||||
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
|
||||
status.value = newStatus;
|
||||
xterm?.clear();
|
||||
}, "updateProgress");
|
||||
const terminalCreated = /* @__PURE__ */ __name(({ terminal, useAutoSize }, root) => {
|
||||
xterm = terminal;
|
||||
useAutoSize(root, true, true);
|
||||
electron.onLogMessage((message) => {
|
||||
terminal.write(message);
|
||||
});
|
||||
terminal.options.cursorBlink = false;
|
||||
terminal.options.disableStdin = true;
|
||||
terminal.options.cursorInactiveStyle = "block";
|
||||
}, "terminalCreated");
|
||||
const reinstall = /* @__PURE__ */ __name(() => electron.reinstall(), "reinstall");
|
||||
const reportIssue = /* @__PURE__ */ __name(() => {
|
||||
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
|
||||
}, "reportIssue");
|
||||
const openLogs = /* @__PURE__ */ __name(() => electron.openLogsFolder(), "openLogs");
|
||||
onMounted(async () => {
|
||||
electron.sendReady();
|
||||
electron.onProgressUpdate(updateProgress);
|
||||
electronVersion.value = await electron.getElectronVersion();
|
||||
});
|
||||
return (_ctx, _cache) => {
|
||||
return openBlock(), createElementBlock("div", _hoisted_1, [
|
||||
createBaseVNode("h2", _hoisted_2, [
|
||||
createTextVNode(toDisplayString(unref(t)(`serverStart.process.${status.value}`)) + " ", 1),
|
||||
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("span", _hoisted_3, " v" + toDisplayString(electronVersion.value), 1)) : createCommentVNode("", true)
|
||||
]),
|
||||
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("div", _hoisted_4, [
|
||||
createVNode(unref(script), {
|
||||
icon: "pi pi-flag",
|
||||
severity: "secondary",
|
||||
label: unref(t)("serverStart.reportIssue"),
|
||||
onClick: reportIssue
|
||||
}, null, 8, ["label"]),
|
||||
createVNode(unref(script), {
|
||||
icon: "pi pi-file",
|
||||
severity: "secondary",
|
||||
label: unref(t)("serverStart.openLogs"),
|
||||
onClick: openLogs
|
||||
}, null, 8, ["label"]),
|
||||
createVNode(unref(script), {
|
||||
icon: "pi pi-refresh",
|
||||
label: unref(t)("serverStart.reinstall"),
|
||||
onClick: reinstall
|
||||
}, null, 8, ["label"])
|
||||
])) : createCommentVNode("", true),
|
||||
createVNode(BaseTerminal, { onCreated: terminalCreated })
|
||||
]);
|
||||
};
|
||||
}
|
||||
});
|
||||
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-f5429be7"]]);
|
||||
export {
|
||||
ServerStartView as default
|
||||
};
|
||||
//# sourceMappingURL=ServerStartView-CqRVtr1h.js.map
|
||||
1
comfy/web/assets/ServerStartView-CqRVtr1h.js.map
generated
vendored
Normal file
1
comfy/web/assets/ServerStartView-CqRVtr1h.js.map
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"version":3,"file":"ServerStartView-CqRVtr1h.js","sources":["../../src/views/ServerStartView.vue"],"sourcesContent":["<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <h2 class=\"text-2xl font-bold\">\n {{ t(`serverStart.process.${status}`) }}\n <span v-if=\"status === ProgressStatus.ERROR\">\n v{{ electronVersion }}\n </span>\n </h2>\n <div\n v-if=\"status === ProgressStatus.ERROR\"\n class=\"flex items-center my-4 gap-2\"\n >\n <Button\n icon=\"pi pi-flag\"\n severity=\"secondary\"\n :label=\"t('serverStart.reportIssue')\"\n @click=\"reportIssue\"\n />\n <Button\n icon=\"pi pi-file\"\n severity=\"secondary\"\n :label=\"t('serverStart.openLogs')\"\n @click=\"openLogs\"\n />\n <Button\n icon=\"pi pi-refresh\"\n :label=\"t('serverStart.reinstall')\"\n @click=\"reinstall\"\n />\n </div>\n <BaseTerminal @created=\"terminalCreated\" />\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { ref, onMounted, Ref } from 'vue'\nimport BaseTerminal from '@/components/bottomPanel/tabs/terminal/BaseTerminal.vue'\nimport { ProgressStatus } from '@comfyorg/comfyui-electron-types'\nimport { electronAPI } from '@/utils/envUtil'\nimport type { useTerminal } from '@/hooks/bottomPanelTabs/useTerminal'\nimport { Terminal } from '@xterm/xterm'\nimport { useI18n } from 'vue-i18n'\n\nconst electron = electronAPI()\nconst { t } = useI18n()\n\nconst status = ref<ProgressStatus>(ProgressStatus.INITIAL_STATE)\nconst electronVersion = ref<string>('')\nlet xterm: Terminal | undefined\n\nconst updateProgress = ({ status: newStatus }: { status: ProgressStatus }) => {\n status.value = newStatus\n xterm?.clear()\n}\n\nconst terminalCreated = (\n { terminal, useAutoSize }: ReturnType<typeof useTerminal>,\n root: Ref<HTMLElement>\n) => {\n xterm = terminal\n\n useAutoSize(root, true, true)\n electron.onLogMessage((message: string) => {\n terminal.write(message)\n })\n\n terminal.options.cursorBlink = false\n terminal.options.disableStdin = true\n terminal.options.cursorInactiveStyle = 'block'\n}\n\nconst reinstall = () => electron.reinstall()\nconst reportIssue = () => {\n window.open('https://forum.comfy.org/c/v1-feedback/', '_blank')\n}\nconst openLogs = () => electron.openLogsFolder()\n\nonMounted(async () => {\n electron.sendReady()\n electron.onProgressUpdate(updateProgress)\n electronVersion.value = await electron.getElectronVersion()\n})\n</script>\n\n<style scoped>\n:deep(.xterm-helper-textarea) {\n /* Hide this as it moves all over when uv is running */\n display: none;\n}\n</style>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;AA8CA,UAAM,WAAW;AACX,UAAA,EAAE,MAAM;AAER,UAAA,SAAS,IAAoB,eAAe,aAAa;AACzD,UAAA,kBAAkB,IAAY,EAAE;AAClC,QAAA;AAEJ,UAAM,iBAAiB,wBAAC,EAAE,QAAQ,gBAA4C;AAC5E,aAAO,QAAQ;AACf,aAAO,MAAM;AAAA,IAAA,GAFQ;AAKvB,UAAM,kBAAkB,wBACtB,EAAE,UAAU,YAAA,GACZ,SACG;AACK,cAAA;AAEI,kBAAA,MAAM,MAAM,IAAI;AACnB,eAAA,aAAa,CAAC,YAAoB;AACzC,iBAAS,MAAM,OAAO;AAAA,MAAA,CACvB;AAED,eAAS,QAAQ,cAAc;AAC/B,eAAS,QAAQ,eAAe;AAChC,eAAS,QAAQ,sBAAsB;AAAA,IAAA,GAbjB;AAgBlB,UAAA,YAAY,6BAAM,SAAS,aAAf;AAClB,UAAM,cAAc,6BAAM;AACjB,aAAA,KAAK,0CAA0C,QAAQ;AAAA,IAAA,GAD5C;AAGd,UAAA,WAAW,6BAAM,SAAS,kBAAf;AAEjB,cAAU,YAAY;AACpB,eAAS,UAAU;AACnB,eAAS,iBAAiB,cAAc;AACxB,sBAAA,QAAQ,MAAM,SAAS,mBAAmB;AAAA,IAAA,CAC3D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
|
||||
5
comfy/web/assets/ServerStartView-Djq8v91B.css
generated
vendored
Normal file
5
comfy/web/assets/ServerStartView-Djq8v91B.css
generated
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
|
||||
[data-v-f5429be7] .xterm-helper-textarea {
|
||||
/* Hide this as it moves all over when uv is running */
|
||||
display: none;
|
||||
}
|
||||
11
comfy/web/assets/WelcomeView-CsOBuA3U.js → comfy/web/assets/WelcomeView-C4D1cggT.js
generated
vendored
11
comfy/web/assets/WelcomeView-CsOBuA3U.js → comfy/web/assets/WelcomeView-C4D1cggT.js
generated
vendored
@ -1,4 +1,11 @@
|
||||
<<<<<<<< HEAD:comfy/web/assets/WelcomeView-CsOBuA3U.js
|
||||
import { d as defineComponent, g as openBlock, h as createElementBlock, A as createBaseVNode, a4 as toDisplayString, i as createVNode, z as unref, D as script, _ as _export_sfc } from "./index-bi78Y1IN.js";
|
||||
========
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { d as defineComponent, g as openBlock, h as createElementBlock, A as createBaseVNode, a6 as toDisplayString, i as createVNode, z as unref, D as script, P as pushScopeId, Q as popScopeId, _ as _export_sfc } from "./index-CoOvI8ZH.js";
|
||||
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-12b8b11b"), n = n(), popScopeId(), n), "_withScopeId");
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/WelcomeView-C4D1cggT.js
|
||||
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
|
||||
const _hoisted_2 = { class: "flex flex-col items-center justify-center gap-8 p-8" };
|
||||
const _hoisted_3 = { class: "animated-gradient-text text-glow select-none" };
|
||||
@ -27,4 +34,8 @@ const WelcomeView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-
|
||||
export {
|
||||
WelcomeView as default
|
||||
};
|
||||
<<<<<<<< HEAD:comfy/web/assets/WelcomeView-CsOBuA3U.js
|
||||
//# sourceMappingURL=WelcomeView-CsOBuA3U.js.map
|
||||
========
|
||||
//# sourceMappingURL=WelcomeView-C4D1cggT.js.map
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/WelcomeView-C4D1cggT.js
|
||||
1
comfy/web/assets/WelcomeView-C4D1cggT.js.map
generated
vendored
Normal file
1
comfy/web/assets/WelcomeView-C4D1cggT.js.map
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"version":3,"file":"WelcomeView-C4D1cggT.js","sources":[],"sourcesContent":[],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
|
||||
52310
comfy/web/assets/index-Ba7IybyO.js
generated
vendored
Normal file
52310
comfy/web/assets/index-Ba7IybyO.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
comfy/web/assets/index-Ba7IybyO.js.map
generated
vendored
Normal file
1
comfy/web/assets/index-Ba7IybyO.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
106
comfy/web/assets/index-BppSBmxJ.js
generated
vendored
Normal file
106
comfy/web/assets/index-BppSBmxJ.js
generated
vendored
Normal file
@ -0,0 +1,106 @@
|
||||
const IPC_CHANNELS = {
|
||||
LOADING_PROGRESS: "loading-progress",
|
||||
IS_PACKAGED: "is-packaged",
|
||||
RENDERER_READY: "renderer-ready",
|
||||
RESTART_APP: "restart-app",
|
||||
REINSTALL: "reinstall",
|
||||
LOG_MESSAGE: "log-message",
|
||||
OPEN_DIALOG: "open-dialog",
|
||||
DOWNLOAD_PROGRESS: "download-progress",
|
||||
START_DOWNLOAD: "start-download",
|
||||
PAUSE_DOWNLOAD: "pause-download",
|
||||
RESUME_DOWNLOAD: "resume-download",
|
||||
CANCEL_DOWNLOAD: "cancel-download",
|
||||
DELETE_MODEL: "delete-model",
|
||||
GET_ALL_DOWNLOADS: "get-all-downloads",
|
||||
GET_ELECTRON_VERSION: "get-electron-version",
|
||||
SEND_ERROR_TO_SENTRY: "send-error-to-sentry",
|
||||
GET_BASE_PATH: "get-base-path",
|
||||
GET_MODEL_CONFIG_PATH: "get-model-config-path",
|
||||
OPEN_PATH: "open-path",
|
||||
OPEN_LOGS_PATH: "open-logs-path",
|
||||
OPEN_DEV_TOOLS: "open-dev-tools",
|
||||
TERMINAL_WRITE: "execute-terminal-command",
|
||||
TERMINAL_RESIZE: "resize-terminal",
|
||||
TERMINAL_RESTORE: "restore-terminal",
|
||||
TERMINAL_ON_OUTPUT: "terminal-output",
|
||||
IS_FIRST_TIME_SETUP: "is-first-time-setup",
|
||||
GET_SYSTEM_PATHS: "get-system-paths",
|
||||
VALIDATE_INSTALL_PATH: "validate-install-path",
|
||||
VALIDATE_COMFYUI_SOURCE: "validate-comfyui-source",
|
||||
SHOW_DIRECTORY_PICKER: "show-directory-picker",
|
||||
INSTALL_COMFYUI: "install-comfyui"
|
||||
};
|
||||
var ProgressStatus = /* @__PURE__ */ ((ProgressStatus2) => {
|
||||
ProgressStatus2["INITIAL_STATE"] = "initial-state";
|
||||
ProgressStatus2["PYTHON_SETUP"] = "python-setup";
|
||||
ProgressStatus2["STARTING_SERVER"] = "starting-server";
|
||||
ProgressStatus2["READY"] = "ready";
|
||||
ProgressStatus2["ERROR"] = "error";
|
||||
return ProgressStatus2;
|
||||
})(ProgressStatus || {});
|
||||
const ProgressMessages = {
|
||||
[
|
||||
"initial-state"
|
||||
/* INITIAL_STATE */
|
||||
]: "Loading...",
|
||||
[
|
||||
"python-setup"
|
||||
/* PYTHON_SETUP */
|
||||
]: "Setting up Python Environment...",
|
||||
[
|
||||
"starting-server"
|
||||
/* STARTING_SERVER */
|
||||
]: "Starting ComfyUI server...",
|
||||
[
|
||||
"ready"
|
||||
/* READY */
|
||||
]: "Finishing...",
|
||||
[
|
||||
"error"
|
||||
/* ERROR */
|
||||
]: "Was not able to start ComfyUI. Please check the logs for more details. You can open it from the Help menu. Please report issues to: https://forum.comfy.org"
|
||||
};
|
||||
const ELECTRON_BRIDGE_API = "electronAPI";
|
||||
const SENTRY_URL_ENDPOINT = "https://942cadba58d247c9cab96f45221aa813@o4507954455314432.ingest.us.sentry.io/4508007940685824";
|
||||
const MigrationItems = [
|
||||
{
|
||||
id: "user_files",
|
||||
label: "User Files",
|
||||
description: "Settings and user-created workflows"
|
||||
},
|
||||
{
|
||||
id: "models",
|
||||
label: "Models",
|
||||
description: "Reference model files from existing ComfyUI installations. (No copy)"
|
||||
}
|
||||
// TODO: Decide whether we want to auto-migrate custom nodes, and install their dependencies.
|
||||
// huchenlei: This is a very essential thing for migration experience.
|
||||
// {
|
||||
// id: 'custom_nodes',
|
||||
// label: 'Custom Nodes',
|
||||
// description: 'Reference custom node files from existing ComfyUI installations. (No copy)',
|
||||
// },
|
||||
];
|
||||
const DEFAULT_SERVER_ARGS = {
|
||||
/** The host to use for the ComfyUI server. */
|
||||
host: "127.0.0.1",
|
||||
/** The port to use for the ComfyUI server. */
|
||||
port: 8e3,
|
||||
// Extra arguments to pass to the ComfyUI server.
|
||||
extraServerArgs: {}
|
||||
};
|
||||
var DownloadStatus = /* @__PURE__ */ ((DownloadStatus2) => {
|
||||
DownloadStatus2["PENDING"] = "pending";
|
||||
DownloadStatus2["IN_PROGRESS"] = "in_progress";
|
||||
DownloadStatus2["COMPLETED"] = "completed";
|
||||
DownloadStatus2["PAUSED"] = "paused";
|
||||
DownloadStatus2["ERROR"] = "error";
|
||||
DownloadStatus2["CANCELLED"] = "cancelled";
|
||||
return DownloadStatus2;
|
||||
})(DownloadStatus || {});
|
||||
export {
|
||||
MigrationItems as M,
|
||||
ProgressStatus as P
|
||||
};
|
||||
//# sourceMappingURL=index-BppSBmxJ.js.map
|
||||
1
comfy/web/assets/index-BppSBmxJ.js.map
generated
vendored
Normal file
1
comfy/web/assets/index-BppSBmxJ.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
9723
comfy/web/assets/index-bi78Y1IN.js → comfy/web/assets/index-CoOvI8ZH.js
generated
vendored
9723
comfy/web/assets/index-bi78Y1IN.js → comfy/web/assets/index-CoOvI8ZH.js
generated
vendored
File diff suppressed because one or more lines are too long
1
comfy/web/assets/index-CoOvI8ZH.js.map
generated
vendored
Normal file
1
comfy/web/assets/index-CoOvI8ZH.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
50
comfy/web/assets/index-D4DWQPPQ.js
generated
vendored
Normal file
50
comfy/web/assets/index-D4DWQPPQ.js
generated
vendored
Normal file
@ -0,0 +1,50 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { cb as script$2, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-CoOvI8ZH.js";
|
||||
var script$1 = {
|
||||
name: "BarsIcon",
|
||||
"extends": script$2
|
||||
};
|
||||
var _hoisted_1$1 = /* @__PURE__ */ createBaseVNode("path", {
|
||||
"fill-rule": "evenodd",
|
||||
"clip-rule": "evenodd",
|
||||
d: "M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z",
|
||||
fill: "currentColor"
|
||||
}, null, -1);
|
||||
var _hoisted_2$1 = [_hoisted_1$1];
|
||||
function render$1(_ctx, _cache, $props, $setup, $data, $options) {
|
||||
return openBlock(), createElementBlock("svg", mergeProps({
|
||||
width: "14",
|
||||
height: "14",
|
||||
viewBox: "0 0 14 14",
|
||||
fill: "none",
|
||||
xmlns: "http://www.w3.org/2000/svg"
|
||||
}, _ctx.pti()), _hoisted_2$1, 16);
|
||||
}
|
||||
__name(render$1, "render$1");
|
||||
script$1.render = render$1;
|
||||
var script = {
|
||||
name: "PlusIcon",
|
||||
"extends": script$2
|
||||
};
|
||||
var _hoisted_1 = /* @__PURE__ */ createBaseVNode("path", {
|
||||
d: "M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z",
|
||||
fill: "currentColor"
|
||||
}, null, -1);
|
||||
var _hoisted_2 = [_hoisted_1];
|
||||
function render(_ctx, _cache, $props, $setup, $data, $options) {
|
||||
return openBlock(), createElementBlock("svg", mergeProps({
|
||||
width: "14",
|
||||
height: "14",
|
||||
viewBox: "0 0 14 14",
|
||||
fill: "none",
|
||||
xmlns: "http://www.w3.org/2000/svg"
|
||||
}, _ctx.pti()), _hoisted_2, 16);
|
||||
}
|
||||
__name(render, "render");
|
||||
script.render = render;
|
||||
export {
|
||||
script as a,
|
||||
script$1 as s
|
||||
};
|
||||
//# sourceMappingURL=index-D4DWQPPQ.js.map
|
||||
1
comfy/web/assets/index-D4DWQPPQ.js.map
generated
vendored
Normal file
1
comfy/web/assets/index-D4DWQPPQ.js.map
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"version":3,"file":"index-D4DWQPPQ.js","sources":["../../node_modules/@primevue/icons/bars/index.mjs","../../node_modules/@primevue/icons/plus/index.mjs"],"sourcesContent":["import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'BarsIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n \"fill-rule\": \"evenodd\",\n \"clip-rule\": \"evenodd\",\n d: \"M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n","import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'PlusIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n d: \"M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n"],"names":["script","BaseIcon","_hoisted_1","createElementVNode","_hoisted_2","render"],"mappings":";;;AAGG,IAACA,WAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWC;AACb;AAEA,IAAIC,eAA0BC,gCAAmB,QAAQ;AAAA,EACvD,aAAa;AAAA,EACb,aAAa;AAAA,EACb,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAIC,eAAa,CAACF,YAAU;AAC5B,SAASG,SAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAGD,cAAY,EAAE;AAChC;AARSC;AAUTL,SAAO,SAASK;ACtBb,IAAC,SAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWJ;AACb;AAEA,IAAI,aAA0BE,gCAAmB,QAAQ;AAAA,EACvD,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAI,aAAa,CAAC,UAAU;AAC5B,SAAS,OAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAG,YAAY,EAAE;AAChC;AARS;AAUT,OAAO,SAAS;","x_google_ignoreList":[0,1]}
|
||||
9
comfy/web/assets/index-ftUEqmu1.js → comfy/web/assets/index-DK6Kev7f.js
generated
vendored
9
comfy/web/assets/index-ftUEqmu1.js → comfy/web/assets/index-DK6Kev7f.js
generated
vendored
@ -1,7 +1,12 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
<<<<<<<< HEAD:comfy/web/assets/index-ftUEqmu1.js
|
||||
import { b6 as script$s, g as openBlock, h as createElementBlock, m as mergeProps, A as createBaseVNode, B as BaseStyle, P as script$t, a4 as toDisplayString, $ as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, J as resolveDynamicComponent, c9 as script$u, l as resolveComponent, C as normalizeClass, au as createSlots, y as withCtx, bw as script$v, bm as script$w, N as Fragment, O as renderList, av as createTextVNode, bc as setAttribute, ba as normalizeProps, p as renderSlot, j as createCommentVNode, ab as script$x, a2 as equals, b7 as script$y, bR as script$z, ca as getFirstFocusableElement, af as OverlayEventBus, a6 as getVNodeProp, ae as resolveFieldData, cb as invokeElementMethod, a0 as getAttribute, cc as getNextElementSibling, W as getOuterWidth, cd as getPreviousElementSibling, D as script$A, aq as script$B, Z as script$C, b9 as script$E, aa as isNotEmpty, bi as withModifiers, U as getOuterHeight, ac as UniqueComponentId, ce as _default, ad as ZIndex, a1 as focus, ah as addStyle, aj as absolutePosition, ak as ConnectedOverlayScrollHandler, al as isTouchDevice, cf as FilterOperator, ap as script$F, cg as FocusTrap, i as createVNode, at as Transition, ch as withKeys, ci as getIndex, s as script$H, cj as isClickable, ck as clearSelection, cl as localeComparator, cm as sort, cn as FilterService, c5 as FilterMatchMode, R as findSingle, bL as findIndexInList, bM as find, co as exportCSV, V as getOffset, cp as getHiddenElementOuterWidth, cq as getHiddenElementOuterHeight, cr as reorderArray, cs as removeClass, ct as addClass, ag as isEmpty, ao as script$I, ar as script$J } from "./index-bi78Y1IN.js";
|
||||
import { s as script$D, a as script$G } from "./index-bCeMLtLM.js";
|
||||
========
|
||||
import { cb as script$s, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps, B as BaseStyle, R as script$t, a6 as toDisplayString, a1 as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, J as resolveDynamicComponent, cc as script$u, l as resolveComponent, C as normalizeClass, av as createSlots, y as withCtx, by as script$v, bo as script$w, N as Fragment, O as renderList, aw as createTextVNode, be as setAttribute, ad as UniqueComponentId, bc as normalizeProps, p as renderSlot, j as createCommentVNode, a4 as equals, b8 as script$x, bU as script$y, cd as getFirstFocusableElement, ag as OverlayEventBus, a8 as getVNodeProp, af as resolveFieldData, ce as invokeElementMethod, a2 as getAttribute, cf as getNextElementSibling, Y as getOuterWidth, cg as getPreviousElementSibling, D as script$z, ar as script$A, a0 as script$B, bb as script$D, ac as isNotEmpty, bk as withModifiers, W as getOuterHeight, ch as _default, ae as ZIndex, a3 as focus, ai as addStyle, ak as absolutePosition, al as ConnectedOverlayScrollHandler, am as isTouchDevice, ci as FilterOperator, aq as script$E, cj as FocusTrap, i as createVNode, au as Transition, ck as withKeys, cl as getIndex, s as script$G, cm as isClickable, cn as clearSelection, co as localeComparator, cp as sort, cq as FilterService, c6 as FilterMatchMode, V as findSingle, bO as findIndexInList, bP as find, cr as exportCSV, X as getOffset, cs as getHiddenElementOuterWidth, ct as getHiddenElementOuterHeight, cu as reorderArray, cv as getWindowScrollTop, cw as removeClass, cx as addClass, ah as isEmpty, ap as script$H, as as script$I } from "./index-CoOvI8ZH.js";
|
||||
import { s as script$C, a as script$F } from "./index-D4DWQPPQ.js";
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/index-DK6Kev7f.js
|
||||
var script$r = {
|
||||
name: "ArrowDownIcon",
|
||||
"extends": script$s
|
||||
@ -8829,4 +8834,8 @@ export {
|
||||
script$d as a,
|
||||
script as s
|
||||
};
|
||||
<<<<<<<< HEAD:comfy/web/assets/index-ftUEqmu1.js
|
||||
//# sourceMappingURL=index-ftUEqmu1.js.map
|
||||
========
|
||||
//# sourceMappingURL=index-DK6Kev7f.js.map
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/index-DK6Kev7f.js
|
||||
1
comfy/web/assets/index-DK6Kev7f.js.map
generated
vendored
Normal file
1
comfy/web/assets/index-DK6Kev7f.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
843
comfy/web/assets/index-BObQyxMu.css → comfy/web/assets/index-U_o182q3.css
generated
vendored
843
comfy/web/assets/index-BObQyxMu.css → comfy/web/assets/index-U_o182q3.css
generated
vendored
File diff suppressed because it is too large
Load Diff
90
comfy/web/assets/serverConfigStore-cctR8PGG.js
generated
vendored
Normal file
90
comfy/web/assets/serverConfigStore-cctR8PGG.js
generated
vendored
Normal file
@ -0,0 +1,90 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { cB as defineStore, r as ref, q as computed } from "./index-CoOvI8ZH.js";
|
||||
const useServerConfigStore = defineStore("serverConfig", () => {
|
||||
const serverConfigById = ref({});
|
||||
const serverConfigs = computed(() => {
|
||||
return Object.values(serverConfigById.value);
|
||||
});
|
||||
const modifiedConfigs = computed(
|
||||
() => {
|
||||
return serverConfigs.value.filter((config) => {
|
||||
return config.initialValue !== config.value;
|
||||
});
|
||||
}
|
||||
);
|
||||
const revertChanges = /* @__PURE__ */ __name(() => {
|
||||
for (const config of modifiedConfigs.value) {
|
||||
config.value = config.initialValue;
|
||||
}
|
||||
}, "revertChanges");
|
||||
const serverConfigsByCategory = computed(() => {
|
||||
return serverConfigs.value.reduce(
|
||||
(acc, config) => {
|
||||
const category = config.category?.[0] ?? "General";
|
||||
acc[category] = acc[category] || [];
|
||||
acc[category].push(config);
|
||||
return acc;
|
||||
},
|
||||
{}
|
||||
);
|
||||
});
|
||||
const serverConfigValues = computed(() => {
|
||||
return Object.fromEntries(
|
||||
serverConfigs.value.map((config) => {
|
||||
return [
|
||||
config.id,
|
||||
config.value === config.defaultValue || config.value === null || config.value === void 0 ? void 0 : config.value
|
||||
];
|
||||
})
|
||||
);
|
||||
});
|
||||
const launchArgs = computed(() => {
|
||||
const args = Object.assign(
|
||||
{},
|
||||
...serverConfigs.value.map((config) => {
|
||||
if (config.value === config.defaultValue || config.value === null || config.value === void 0) {
|
||||
return {};
|
||||
}
|
||||
return config.getValue ? config.getValue(config.value) : { [config.id]: config.value };
|
||||
})
|
||||
);
|
||||
return Object.fromEntries(
|
||||
Object.entries(args).map(([key, value]) => {
|
||||
if (value === true) {
|
||||
return [key, ""];
|
||||
}
|
||||
return [key, value.toString()];
|
||||
})
|
||||
);
|
||||
});
|
||||
const commandLineArgs = computed(() => {
|
||||
return Object.entries(launchArgs.value).map(([key, value]) => [`--${key}`, value]).flat().filter((arg) => arg !== "").join(" ");
|
||||
});
|
||||
function loadServerConfig(configs, values) {
|
||||
for (const config of configs) {
|
||||
const value = values[config.id] ?? config.defaultValue;
|
||||
serverConfigById.value[config.id] = {
|
||||
...config,
|
||||
value,
|
||||
initialValue: value
|
||||
};
|
||||
}
|
||||
}
|
||||
__name(loadServerConfig, "loadServerConfig");
|
||||
return {
|
||||
serverConfigById,
|
||||
serverConfigs,
|
||||
modifiedConfigs,
|
||||
serverConfigsByCategory,
|
||||
serverConfigValues,
|
||||
launchArgs,
|
||||
commandLineArgs,
|
||||
revertChanges,
|
||||
loadServerConfig
|
||||
};
|
||||
});
|
||||
export {
|
||||
useServerConfigStore as u
|
||||
};
|
||||
//# sourceMappingURL=serverConfigStore-cctR8PGG.js.map
|
||||
1
comfy/web/assets/serverConfigStore-cctR8PGG.js.map
generated
vendored
Normal file
1
comfy/web/assets/serverConfigStore-cctR8PGG.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
comfy/web/assets/userSelection-C-TGdC-2.js.map
generated
vendored
1
comfy/web/assets/userSelection-C-TGdC-2.js.map
generated
vendored
File diff suppressed because one or more lines are too long
@ -1,6 +1,10 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
<<<<<<<< HEAD:comfy/web/assets/userSelection-C-TGdC-2.js
|
||||
import { aY as api, bX as $el } from "./index-bi78Y1IN.js";
|
||||
========
|
||||
import { aZ as api, bY as $el } from "./index-CoOvI8ZH.js";
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/userSelection-C6c30qSU.js
|
||||
function createSpinner() {
|
||||
const div = document.createElement("div");
|
||||
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
|
||||
@ -126,4 +130,8 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
|
||||
export {
|
||||
UserSelectionScreen
|
||||
};
|
||||
<<<<<<<< HEAD:comfy/web/assets/userSelection-C-TGdC-2.js
|
||||
//# sourceMappingURL=userSelection-C-TGdC-2.js.map
|
||||
========
|
||||
//# sourceMappingURL=userSelection-C6c30qSU.js.map
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/userSelection-C6c30qSU.js
|
||||
5
comfy/web/assets/userSelection-C6c30qSU.js.map
generated
vendored
Normal file
5
comfy/web/assets/userSelection-C6c30qSU.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
@ -1,6 +1,10 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
<<<<<<<< HEAD:comfy/web/assets/widgetInputs-DjCs8Yab.js
|
||||
import { e as LGraphNode, c as app, c2 as applyTextReplacements, c1 as ComfyWidgets, c4 as addValueControlWidgets, k as LiteGraph } from "./index-bi78Y1IN.js";
|
||||
========
|
||||
import { e as LGraphNode, c as app, c3 as applyTextReplacements, c2 as ComfyWidgets, c5 as addValueControlWidgets, k as LiteGraph } from "./index-CoOvI8ZH.js";
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/widgetInputs-CRPRgKEi.js
|
||||
const CONVERTED_TYPE = "converted-widget";
|
||||
const VALID_TYPES = [
|
||||
"STRING",
|
||||
@ -759,4 +763,8 @@ export {
|
||||
mergeIfValid,
|
||||
setWidgetConfig
|
||||
};
|
||||
<<<<<<<< HEAD:comfy/web/assets/widgetInputs-DjCs8Yab.js
|
||||
//# sourceMappingURL=widgetInputs-DjCs8Yab.js.map
|
||||
========
|
||||
//# sourceMappingURL=widgetInputs-CRPRgKEi.js.map
|
||||
>>>>>>>> 0fd4e6c7787daa922cb0d9bd1241b276b39ce2c5:comfy/web/assets/widgetInputs-CRPRgKEi.js
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user