mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-17 10:02:59 +08:00
refine code
This commit is contained in:
parent
05c2518c6d
commit
2f0d56656e
@ -279,15 +279,3 @@ class Flux(nn.Module):
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
out = out[:, :img_tokens]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
|
||||
|
||||
def load_state_dict(self, state_dict, strict=True, assign=False):
|
||||
# import pdb; pdb.set_trace()
|
||||
"""Override load_state_dict() to add logging"""
|
||||
logging.info(f"Flux load_state_dict start, strict={strict}, state_dict keys count={len(state_dict)}")
|
||||
|
||||
# Call parent's load_state_dict method
|
||||
result = super().load_state_dict(state_dict, strict=strict, assign=assign)
|
||||
|
||||
logging.info(f"Flux load_state_dict end, strict={strict}, state_dict keys count={len(state_dict)}")
|
||||
|
||||
return result
|
||||
|
||||
@ -911,16 +911,4 @@ class UNetModel(nn.Module):
|
||||
return self.id_predictor(h)
|
||||
else:
|
||||
return self.out(h)
|
||||
|
||||
|
||||
def load_state_dict(self, state_dict, strict=True, assign=False):
|
||||
# import pdb; pdb.set_trace()
|
||||
"""Override load_state_dict() to add logging"""
|
||||
logging.info(f"UNetModel load_state_dict start, strict={strict}, state_dict keys count={len(state_dict)}")
|
||||
|
||||
# Call parent's load_state_dict method
|
||||
result = super().load_state_dict(state_dict, strict=strict, assign=assign)
|
||||
|
||||
logging.info(f"UNetModel load_state_dict end, strict={strict}, state_dict keys count={len(state_dict)}")
|
||||
|
||||
return result
|
||||
|
||||
@ -303,10 +303,7 @@ class BaseModel(torch.nn.Module):
|
||||
logging.info(f"model destination device {next(self.diffusion_model.parameters()).device}")
|
||||
to_load = self.model_config.process_unet_state_dict(to_load)
|
||||
logging.info(f"load model {self.model_config} weights process end")
|
||||
# TODO(sf): to mmap
|
||||
# diffusion_model is UNetModel
|
||||
# import pdb; pdb.set_trace()
|
||||
# TODO(sf): here needs to avoid load mmap into cpu mem
|
||||
# replace tensor with mmap tensor by assign
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False, assign=True)
|
||||
free_cpu_memory = get_free_memory(torch.device("cpu"))
|
||||
logging.info(f"load model {self.model_config} weights end, free cpu memory size {free_cpu_memory/(1024*1024*1024)} GB")
|
||||
@ -389,21 +386,6 @@ class BaseModel(torch.nn.Module):
|
||||
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
|
||||
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""Override to() to add custom device management logic"""
|
||||
old_device = self.device if hasattr(self, 'device') else None
|
||||
|
||||
result = super().to(*args, **kwargs)
|
||||
|
||||
if len(args) > 0:
|
||||
if isinstance(args[0], (torch.device, str)):
|
||||
new_device = torch.device(args[0]) if isinstance(args[0], str) else args[0]
|
||||
if 'device' in kwargs:
|
||||
new_device = kwargs['device']
|
||||
|
||||
logging.info(f"BaseModel moved from {old_device} to {new_device}")
|
||||
return result
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
return {}
|
||||
|
||||
|
||||
@ -596,7 +596,6 @@ def minimum_inference_memory():
|
||||
|
||||
def free_memory(memory_required, device, keep_loaded=[]):
|
||||
logging.info("start to free mem")
|
||||
import pdb; pdb.set_trace()
|
||||
cleanup_models_gc()
|
||||
unloaded_model = []
|
||||
can_unload = []
|
||||
|
||||
@ -831,8 +831,11 @@ class ModelPatcher:
|
||||
self.backup.clear()
|
||||
|
||||
|
||||
model_to_mmap(self.model)
|
||||
self.model.device = device_to
|
||||
if device_to is not None:
|
||||
# offload to mmap
|
||||
model_to_mmap(self.model)
|
||||
self.model.device = device_to
|
||||
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
for m in self.model.modules():
|
||||
@ -885,8 +888,7 @@ class ModelPatcher:
|
||||
bias_key = "{}.bias".format(n)
|
||||
if move_weight:
|
||||
cast_weight = self.force_cast_weights
|
||||
# TODO(sf): to mmap
|
||||
# m is what module?
|
||||
# offload to mmap
|
||||
# m.to(device_to)
|
||||
model_to_mmap(m)
|
||||
module_mem += move_weight_functions(m, device_to)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user