mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-09 13:02:31 +08:00
ops: put all post async transfer compute on the main stream
Some models have massive weights that need either complex dequantization or lora patching. Don't do these patchings on the offload stream, instead do them on the main stream to syncrhonize the potentially large vram spikes for these compute processes. This avoids having to assume a worst case scenario of multiple offload streams all spiking VRAM is parallel with whatever the main stream is doing.
This commit is contained in:
parent
e0595fc83e
commit
32d8c7374f
39
comfy/ops.py
39
comfy/ops.py
@ -111,22 +111,24 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
|
||||
if s.bias is not None:
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
|
||||
if bias_has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
|
||||
bias_a = bias
|
||||
weight_a = weight
|
||||
|
||||
if s.bias is not None:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
if weight_has_function or weight.dtype != dtype:
|
||||
with wf_context:
|
||||
weight = weight.to(dtype=dtype)
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
weight = weight.to(dtype=dtype)
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
if offloadable:
|
||||
return weight, bias, offload_stream
|
||||
return weight, bias, (offload_stream, weight_a, bias_a)
|
||||
else:
|
||||
#Legacy function signature
|
||||
return weight, bias
|
||||
@ -135,13 +137,16 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
|
||||
def uncast_bias_weight(s, weight, bias, offload_stream):
|
||||
if offload_stream is None:
|
||||
return
|
||||
if weight is not None:
|
||||
device = weight.device
|
||||
os, weight_a, bias_a = offload_stream
|
||||
if os is None:
|
||||
return
|
||||
if weight_a is not None:
|
||||
device = weight_a.device
|
||||
else:
|
||||
if bias is None:
|
||||
if bias_a is None:
|
||||
return
|
||||
device = bias.device
|
||||
offload_stream.wait_stream(comfy.model_management.current_stream(device))
|
||||
device = bias_a.device
|
||||
os.wait_stream(comfy.model_management.current_stream(device))
|
||||
|
||||
|
||||
class CastWeightBiasOp:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user