mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-13 07:40:50 +08:00
add block-wise scaled int8 quantization based on QuantizedLayout mechanism
add more tests by comparing with manual torch implementation add perf benchmarks fix errors caused by merging default no output quant fix unittest
This commit is contained in:
parent
dd41b74549
commit
3322d21eac
@ -124,6 +124,10 @@ We define 4 possible scaling parameters that should cover most recipes in the ne
|
||||
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|
||||
|--------|---------------|--------------|----------------|-----------------|-------------|
|
||||
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
|
||||
| int8_blockwise | int8 | float32 (per-block) | - | - | - |
|
||||
|
||||
For int8_blockwise with block_size=128 and weight shape (N, K):
|
||||
- weight_scale shape: (N//128, K//128)
|
||||
|
||||
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
|
||||
|
||||
@ -131,7 +135,9 @@ You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
|
||||
|
||||
The metadata stored alongside the checkpoint contains:
|
||||
- **format_version**: String to define a version of the standard
|
||||
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
|
||||
- **layers**: A dictionary mapping layer names to their quantization configuration. Each layer's config is a dictionary with:
|
||||
- **format**: Quantization format string that maps to the definitions found in `QUANT_ALGOS`
|
||||
- **group_size** (optional): Block size for block-wise quantization schemes (e.g., int8_blockwise)
|
||||
|
||||
Example:
|
||||
```json
|
||||
@ -139,9 +145,9 @@ Example:
|
||||
"_quantization_metadata": {
|
||||
"format_version": "1.0",
|
||||
"layers": {
|
||||
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
|
||||
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
|
||||
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
|
||||
"model.layers.0.mlp.up_proj": {"format": "float8_e4m3fn"},
|
||||
"model.layers.0.mlp.down_proj": {"format": "int8_blockwise", "group_size": 128},
|
||||
"model.layers.1.mlp.up_proj": {"format": "int8_blockwise", "group_size": 256}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -54,6 +54,8 @@ def stochastic_rounding(value, dtype, seed=0):
|
||||
return value.to(dtype=torch.float16)
|
||||
if dtype == torch.bfloat16:
|
||||
return value.to(dtype=torch.bfloat16)
|
||||
if dtype == torch.int8:
|
||||
return value.to(dtype=torch.int8)
|
||||
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
||||
generator = torch.Generator(device=value.device)
|
||||
generator.manual_seed(seed)
|
||||
|
||||
1194
comfy/int8_kernels.py
Normal file
1194
comfy/int8_kernels.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -599,11 +599,17 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful
|
||||
self.layout_type = qconfig["comfy_tensor_layout"]
|
||||
|
||||
weight_scale_key = f"{prefix}weight_scale"
|
||||
# Check for per-layer group_size override, otherwise use default from QUANT_ALGOS
|
||||
layer_config = MixedPrecisionOps._layer_quant_config[layer_name]
|
||||
group_size = layer_config.get("group_size", qconfig.get("group_size", None))
|
||||
|
||||
layout_params = {
|
||||
'scale': state_dict.pop(weight_scale_key, None),
|
||||
'orig_dtype': MixedPrecisionOps._compute_dtype,
|
||||
'block_size': qconfig.get("group_size", None),
|
||||
'block_size': group_size,
|
||||
}
|
||||
if qconfig.get("asymmetric_layout", False):
|
||||
layout_params['is_weight'] = True
|
||||
if layout_params['scale'] is not None:
|
||||
manually_loaded_keys.append(weight_scale_key)
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -4,6 +4,7 @@ from typing import Optional
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
|
||||
class BOFTAdapter(WeightAdapterBase):
|
||||
@ -109,7 +110,7 @@ class BOFTAdapter(WeightAdapterBase):
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function((strength * lora_diff).type(weight.dtype))
|
||||
weight += function((strength * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
@ -4,6 +4,7 @@ from typing import Optional
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
|
||||
class GLoRAAdapter(WeightAdapterBase):
|
||||
@ -87,7 +88,7 @@ class GLoRAAdapter(WeightAdapterBase):
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
@ -4,7 +4,7 @@ from typing import Optional
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose
|
||||
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
class HadaWeight(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@ -226,7 +226,7 @@ class LoHaAdapter(WeightAdapterBase):
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
@ -9,6 +9,7 @@ from .base import (
|
||||
weight_decompose,
|
||||
factorization,
|
||||
)
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
|
||||
class LokrDiff(WeightAdapterTrainBase):
|
||||
@ -214,7 +215,7 @@ class LoKrAdapter(WeightAdapterBase):
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
@ -10,6 +10,7 @@ from .base import (
|
||||
pad_tensor_to_shape,
|
||||
tucker_weight_from_conv,
|
||||
)
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
|
||||
class LoraDiff(WeightAdapterTrainBase):
|
||||
@ -206,7 +207,7 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
function,
|
||||
)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
@ -4,6 +4,7 @@ from typing import Optional
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose, factorization
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
|
||||
|
||||
class OFTDiff(WeightAdapterTrainBase):
|
||||
@ -155,7 +156,7 @@ class OFTAdapter(WeightAdapterBase):
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function((strength * lora_diff).type(weight.dtype))
|
||||
weight += function((strength * lora_diff).type(weight.dtype if not isinstance(weight, QuantizedTensor) else torch.float32))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user