mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-15 00:30:55 +08:00
Merge 2e843f309d into cbd68e3d58
This commit is contained in:
commit
342dd2e9a5
@ -391,6 +391,9 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
hidden_states, img_ids, orig_shape = self.process_img(x)
|
||||
num_embeds = hidden_states.shape[1]
|
||||
|
||||
prefetch_queue = comfy.ops.make_prefetch_queue(list(self.transformer_blocks))
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, None)
|
||||
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
@ -440,6 +443,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, block)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -471,6 +475,8 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
if add is not None:
|
||||
hidden_states[:, :add.shape[1]] += add
|
||||
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, block)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
|
||||
@ -538,6 +538,8 @@ class WanModel(torch.nn.Module):
|
||||
List[Tensor]:
|
||||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
prefetch_queue = comfy.ops.make_prefetch_queue(list(self.blocks))
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, None)
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
grid_sizes = x.shape[2:]
|
||||
@ -569,6 +571,7 @@ class WanModel(torch.nn.Module):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, block)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -578,6 +581,7 @@ class WanModel(torch.nn.Module):
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
|
||||
comfy.ops.prefetch_queue_pop(prefetch_queue, x.device, block)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
134
comfy/ops.py
134
comfy/ops.py
@ -22,7 +22,6 @@ import comfy.model_management
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
def run_every_op():
|
||||
if torch.compiler.is_compiling():
|
||||
@ -72,6 +71,93 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
|
||||
def cast_prefetch_all(module, device):
|
||||
if not comfy.model_management.device_supports_non_blocking(device):
|
||||
#Adios! prefetching works against you if you can't get the CPU past it
|
||||
return None
|
||||
|
||||
offload_stream = None
|
||||
|
||||
for n, m in module.named_modules():
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
if m.weight is not None and m.weight.device != device and not hasattr(m, "weight_prefetch"):
|
||||
if offload_stream is None:
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offload_stream is None:
|
||||
return None
|
||||
m.weight_prefetch = comfy.model_management.cast_to(m.weight, None, device, non_blocking=True, copy=True, stream=offload_stream)
|
||||
if m.bias is not None and m.bias.device != device and not hasattr(m, "bias_prefetch"):
|
||||
if offload_stream is None:
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offload_stream is None:
|
||||
return None
|
||||
m.bias_prefetch = comfy.model_management.cast_to(m.bias, None, device, non_blocking=True, copy = True, stream=offload_stream)
|
||||
|
||||
return offload_stream
|
||||
|
||||
|
||||
def uncast_prefetch_all(module):
|
||||
for n, m in module.named_modules():
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
if hasattr(m, "weight_prefetch"):
|
||||
delattr(m, "weight_prefetch")
|
||||
if hasattr(m, "bias_prefetch"):
|
||||
delattr(m, "bias_prefetch")
|
||||
|
||||
|
||||
def prefetch_queue_pop(queue, device, module):
|
||||
consumed = queue.pop(0)
|
||||
if consumed is not None:
|
||||
offload_stream, m = consumed
|
||||
#Sync the offload stream with compute so when it starts
|
||||
#freeing the prefetches the compute stream has finished
|
||||
if offload_stream is not None:
|
||||
offload_stream.wait_stream(comfy.model_management.current_stream(device))
|
||||
uncast_prefetch_all(m)
|
||||
|
||||
active = queue[0]
|
||||
if active is not None:
|
||||
offload_stream, m = active
|
||||
assert m == module
|
||||
#wait for the prefetch to complete before using the data
|
||||
if offload_stream is not None:
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
|
||||
prefetch = queue[1]
|
||||
if prefetch is not None:
|
||||
offload_stream = comfy.ops.cast_prefetch_all(prefetch, device)
|
||||
queue[1] = (offload_stream, prefetch)
|
||||
|
||||
|
||||
def make_prefetch_queue(queue):
|
||||
return [None, None] + queue + [None, None]
|
||||
|
||||
|
||||
def move_bias_weight(s, device, offloadable=False):
|
||||
|
||||
bias_has_function = len(s.bias_function) > 0
|
||||
weight_has_function = len(s.weight_function) > 0
|
||||
|
||||
if offloadable and (
|
||||
s.weight.device != device or (s.bias is not None and s.bias.device != device) or
|
||||
bias_has_function or weight_has_function):
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
else:
|
||||
offload_stream = None
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
|
||||
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
|
||||
|
||||
if s.bias is not None:
|
||||
bias = comfy.model_management.cast_to(s.bias, None, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
|
||||
return weight, bias, offload_stream
|
||||
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
|
||||
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
|
||||
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
|
||||
@ -87,40 +173,30 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
if offloadable and (device != s.weight.device or
|
||||
(s.bias is not None and device != s.bias.device)):
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
else:
|
||||
offload_stream = None
|
||||
|
||||
if offload_stream is not None:
|
||||
wf_context = offload_stream
|
||||
else:
|
||||
wf_context = contextlib.nullcontext()
|
||||
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
|
||||
weight_has_function = len(s.weight_function) > 0
|
||||
bias_has_function = len(s.bias_function) > 0
|
||||
weight_has_function = len(s.weight_function) > 0
|
||||
|
||||
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
|
||||
if hasattr(s, "weight_prefetch") or hasattr(s, "bias_prefetch"):
|
||||
weight = getattr(s, "weight_prefetch", None)
|
||||
bias = getattr(s, "bias_prefetch", None)
|
||||
offload_stream = None
|
||||
else:
|
||||
weight, bias, offload_stream = move_bias_weight(s, device, offloadable=offloadable)
|
||||
|
||||
bias = None
|
||||
if s.bias is not None:
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
if weight_has_function:
|
||||
weight=weight.to(dtype=dtype)
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
if bias_has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
if s.bias is not None and bias_has_function:
|
||||
bias=bias.to(dtype=bias_dtype)
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
if weight_has_function or weight.dtype != dtype:
|
||||
with wf_context:
|
||||
weight = weight.to(dtype=dtype)
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
weight=weight.to(dtype=dtype)
|
||||
if bias is not None:
|
||||
bias=bias.to(dtype=bias_dtype)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
if offloadable:
|
||||
return weight, bias, offload_stream
|
||||
else:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user