mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-15 16:50:57 +08:00
models: Use CoreModelPatcher
Use CoreModelPatcher for all internal ModelPatcher implementations. This drives conditional use of the aimdo feature, while making sure custom node packs get to keep ModelPatcher unchanged for the moment.
This commit is contained in:
parent
f75765721d
commit
3597b27515
@ -25,11 +25,11 @@ class AudioEncoderModel():
|
||||
elif model_type == "whisper3":
|
||||
self.model = WhisperLargeV3(**model_config)
|
||||
self.model.eval()
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.model_sample_rate = 16000
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
@ -47,10 +47,10 @@ class ClipVisionModel():
|
||||
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model.eval()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
@ -203,7 +203,7 @@ class ControlNet(ControlBase):
|
||||
self.control_model = control_model
|
||||
self.load_device = load_device
|
||||
if control_model is not None:
|
||||
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
||||
self.control_model_wrapped = comfy.model_patcher.CoreModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
||||
|
||||
self.compression_ratio = compression_ratio
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
@ -109,10 +109,10 @@ class HunyuanVideo15SRModel():
|
||||
self.model_class = UPSAMPLERS.get(model_type)
|
||||
self.model = self.model_class(**config).eval()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=True)
|
||||
return self.model.load_state_dict(sd, strict=True, assign=self.patcher.is_dynamic())
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
@ -298,7 +298,7 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
return out
|
||||
|
||||
def load_model_weights(self, sd, unet_prefix=""):
|
||||
def load_model_weights(self, sd, unet_prefix="", assign=False):
|
||||
to_load = {}
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
@ -306,7 +306,7 @@ class BaseModel(torch.nn.Module):
|
||||
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
||||
|
||||
to_load = self.model_config.process_unet_state_dict(to_load)
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False, assign=assign)
|
||||
if len(m) > 0:
|
||||
logging.warning("unet missing: {}".format(m))
|
||||
|
||||
|
||||
39
comfy/sd.py
39
comfy/sd.py
@ -128,7 +128,7 @@ class CLIP:
|
||||
logging.warning("Had to shift TE back.")
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.patcher = comfy.model_patcher.CoreModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
#Match torch.float32 hardcode upcast in TE implemention
|
||||
self.patcher.set_model_compute_dtype(torch.float32)
|
||||
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
|
||||
@ -288,7 +288,7 @@ class CLIP:
|
||||
|
||||
def load_sd(self, sd, full_model=False):
|
||||
if full_model:
|
||||
return self.cond_stage_model.load_state_dict(sd, strict=False)
|
||||
return self.cond_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
|
||||
else:
|
||||
return self.cond_stage_model.load_sd(sd)
|
||||
|
||||
@ -665,13 +665,6 @@ class VAE:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
|
||||
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0:
|
||||
logging.warning("Missing VAE keys {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("Leftover VAE keys {}".format(u))
|
||||
|
||||
if device is None:
|
||||
device = model_management.vae_device()
|
||||
self.device = device
|
||||
@ -682,7 +675,18 @@ class VAE:
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
self.output_device = model_management.intermediate_device()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
mp = comfy.model_patcher.CoreModelPatcher
|
||||
if self.disable_offload:
|
||||
mp = comfy.model_patcher.ModelPatcher
|
||||
self.patcher = mp(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
|
||||
m, u = self.first_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
|
||||
if len(m) > 0:
|
||||
logging.warning("Missing VAE keys {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("Leftover VAE keys {}".format(u))
|
||||
|
||||
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
self.model_size()
|
||||
|
||||
@ -1315,7 +1319,7 @@ def load_gligen(ckpt_path):
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
return comfy.model_patcher.CoreModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def model_detection_error_hint(path, state_dict):
|
||||
filename = os.path.basename(path)
|
||||
@ -1403,7 +1407,8 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
if output_model:
|
||||
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
||||
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
||||
model.load_model_weights(sd, diffusion_model_prefix)
|
||||
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
||||
model.load_model_weights(sd, diffusion_model_prefix, assign=model_patcher.is_dynamic())
|
||||
|
||||
if output_vae:
|
||||
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
|
||||
@ -1446,7 +1451,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
logging.debug("left over keys: {}".format(left_over))
|
||||
|
||||
if output_model:
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
logging.info("loaded diffusion model directly to GPU")
|
||||
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
||||
@ -1538,13 +1542,14 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
if not model_management.is_device_cpu(offload_device):
|
||||
model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "", assign=model_patcher.is_dynamic())
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
logging.info("left over keys in diffusion model: {}".format(left_over))
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
return model_patcher
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
|
||||
|
||||
@ -254,9 +254,9 @@ class ModelPatchLoader:
|
||||
config['broken'] = True
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config)
|
||||
|
||||
model.load_state_dict(sd)
|
||||
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
return (model,)
|
||||
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
model.load_state_dict(sd, assign=self.model_patcher.is_dynamic())
|
||||
return (model_patcher,)
|
||||
|
||||
|
||||
class DiffSynthCnetPatch:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user