Merge branch 'master' into dr-support-pip-cm

This commit is contained in:
Dr.Lt.Data 2025-06-09 12:34:23 +09:00
commit 35a294431f
21 changed files with 769 additions and 25 deletions

View File

@ -15,6 +15,14 @@ body:
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen. steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first. If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea - type: textarea
attributes: attributes:
label: Expected Behavior label: Expected Behavior

View File

@ -11,6 +11,14 @@ body:
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics. **2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first. If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea - type: textarea
attributes: attributes:
label: Your question label: Your question

View File

@ -6,6 +6,7 @@
[![Website][website-shield]][website-url] [![Website][website-shield]][website-url]
[![Dynamic JSON Badge][discord-shield]][discord-url] [![Dynamic JSON Badge][discord-shield]][discord-url]
[![Twitter][twitter-shield]][twitter-url]
[![Matrix][matrix-shield]][matrix-url] [![Matrix][matrix-shield]][matrix-url]
<br> <br>
[![][github-release-shield]][github-release-link] [![][github-release-shield]][github-release-link]
@ -20,6 +21,8 @@
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 --> <!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total [discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
[discord-url]: https://www.comfy.org/discord [discord-url]: https://www.comfy.org/discord
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
[twitter-url]: https://x.com/ComfyUI
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver [github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases [github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
@ -95,7 +98,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/) - [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews) - Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast. - Starts up very fast.
- Works fully offline: will never download anything. - Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- [Config file](extra_model_paths.yaml.example) to set the search paths for models. - [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/) Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)

View File

@ -205,6 +205,19 @@ comfyui-workflow-templates is not installed.
""".strip() """.strip()
) )
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod @classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]: def parse_version_string(cls, value: str) -> tuple[str, str, str]:
""" """

View File

@ -86,3 +86,45 @@ class CONDConstant(CONDRegular):
def size(self): def size(self):
return [1] return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

View File

@ -390,7 +390,8 @@ class ControlLora(ControlNet):
pass pass
for k in self.control_weights: for k in self.control_weights:
if k not in {"lora_controlnet"}: if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device())) comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self): def copy(self):

View File

@ -121,6 +121,9 @@ class ControlNetFlux(Flux):
if img.ndim != 3 or txt.ndim != 3: if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.") raise ValueError("Input img and txt tensors must have 3 dimensions.")
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
# running on sequences img # running on sequences img
img = self.img_in(img) img = self.img_in(img)
@ -174,7 +177,7 @@ class ControlNetFlux(Flux):
out["output"] = out_output[:self.main_model_single] out["output"] = out_output[:self.main_model_single]
return out return out
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs): def forward(self, x, timesteps, context, y=None, guidance=None, hint=None, **kwargs):
patch_size = 2 patch_size = 2
if self.latent_input: if self.latent_input:
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size)) hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))

View File

@ -101,6 +101,10 @@ class Flux(nn.Module):
transformer_options={}, transformer_options={},
attn_mask: Tensor = None, attn_mask: Tensor = None,
) -> Tensor: ) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches_replace = transformer_options.get("patches_replace", {}) patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3: if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.") raise ValueError("Input img and txt tensors must have 3 dimensions.")
@ -188,7 +192,7 @@ class Flux(nn.Module):
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img return img
def forward(self, x, timestep, context, y, guidance=None, control=None, transformer_options={}, **kwargs): def forward(self, x, timestep, context, y=None, guidance=None, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape bs, c, h, w = x.shape
patch_size = self.patch_size patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))

View File

@ -102,6 +102,13 @@ def model_sampling(model_config, model_type):
return ModelSampling(model_config) return ModelSampling(model_config)
def convert_tensor(extra, dtype):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
return extra
class BaseModel(torch.nn.Module): class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
super().__init__() super().__init__()
@ -165,9 +172,14 @@ class BaseModel(torch.nn.Module):
extra_conds = {} extra_conds = {}
for o in kwargs: for o in kwargs:
extra = kwargs[o] extra = kwargs[o]
if hasattr(extra, "dtype"): if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long: extra = convert_tensor(extra, dtype)
extra = extra.to(dtype) elif isinstance(extra, list):
ex = []
for ext in extra:
ex.append(convert_tensor(ext, dtype))
extra = ex
extra_conds[o] = extra extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds) t = self.process_timestep(t, x=x, **extra_conds)

View File

@ -295,6 +295,7 @@ except:
pass pass
SUPPORT_FP8_OPS = args.supports_fp8_compute
try: try:
if is_amd(): if is_amd():
try: try:
@ -305,9 +306,13 @@ try:
logging.info("AMD arch: {}".format(arch)) logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version)) logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches if any((a in arch) for a in ["gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201"]): # TODO: more arches
SUPPORT_FP8_OPS = True
except: except:
pass pass
@ -328,7 +333,7 @@ except:
pass pass
try: try:
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5: if torch_version_numeric >= (2, 5):
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except: except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp") logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
@ -1262,7 +1267,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False return False
def supports_fp8_compute(device=None): def supports_fp8_compute(device=None):
if args.supports_fp8_compute: if SUPPORT_FP8_OPS:
return True return True
if not is_nvidia(): if not is_nvidia():
@ -1276,11 +1281,11 @@ def supports_fp8_compute(device=None):
if props.minor < 9: if props.minor < 9:
return False return False
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3): if torch_version_numeric < (2, 3):
return False return False
if WINDOWS: if WINDOWS:
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4): if torch_version_numeric < (2, 4):
return False return False
return True return True

View File

@ -324,7 +324,7 @@ class IdeogramV1(ComfyNodeABC):
RETURN_TYPES = (IO.IMAGE,) RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call" FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v1" CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "") DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True API_NODE = True
@ -483,7 +483,7 @@ class IdeogramV2(ComfyNodeABC):
RETURN_TYPES = (IO.IMAGE,) RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call" FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v2" CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "") DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True API_NODE = True
@ -649,7 +649,7 @@ class IdeogramV3(ComfyNodeABC):
RETURN_TYPES = (IO.IMAGE,) RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call" FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram/v3" CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "") DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True API_NODE = True

View File

@ -0,0 +1,97 @@
import os
from pathlib import Path
from typing import Optional
from pydantic_settings import PydanticBaseSettingsSource, TomlConfigSettingsSource
from comfy_config.types import (
ComfyConfig,
ProjectConfig,
PyProjectConfig,
PyProjectSettings
)
"""
Extract configuration from a custom node directory's pyproject.toml file or a Python file.
This function reads and parses the pyproject.toml file in the specified directory
to extract project and ComfyUI-specific configuration information. If no
pyproject.toml file is found, it creates a minimal configuration using the
folder name as the project name. If a Python file is provided, it uses the
file name (without extension) as the project name.
Args:
path (str): Path to the directory containing the pyproject.toml file, or
path to a .py file. If pyproject.toml doesn't exist in a directory,
the folder name will be used as the default project name. If a .py
file is provided, the filename (without .py extension) will be used
as the project name.
Returns:
Optional[PyProjectConfig]: A PyProjectConfig object containing:
- project: Basic project information (name, version, dependencies, etc.)
- tool_comfy: ComfyUI-specific configuration (publisher_id, models, etc.)
Returns None if configuration extraction fails or if the provided file
is not a Python file.
Notes:
- If pyproject.toml is missing in a directory, creates a default config with folder name
- If a .py file is provided, creates a default config with filename (without extension)
- Returns None for non-Python files
Example:
>>> from comfy_config import config_parser
>>> # For directory
>>> custom_node_dir = os.path.dirname(os.path.realpath(__file__))
>>> project_config = config_parser.extract_node_configuration(custom_node_dir)
>>> print(project_config.project.name) # "my_custom_node" or name from pyproject.toml
>>>
>>> # For single-file Python node file
>>> py_file_path = os.path.realpath(__file__) # "/path/to/my_node.py"
>>> project_config = config_parser.extract_node_configuration(py_file_path)
>>> print(project_config.project.name) # "my_node"
"""
def extract_node_configuration(path) -> Optional[PyProjectConfig]:
if os.path.isfile(path):
file_path = Path(path)
if file_path.suffix.lower() != '.py':
return None
project_name = file_path.stem
project = ProjectConfig(name=project_name)
comfy = ComfyConfig()
return PyProjectConfig(project=project, tool_comfy=comfy)
folder_name = os.path.basename(path)
toml_path = Path(path) / "pyproject.toml"
if not toml_path.exists():
project = ProjectConfig(name=folder_name)
comfy = ComfyConfig()
return PyProjectConfig(project=project, tool_comfy=comfy)
raw_settings = load_pyproject_settings(toml_path)
project_data = raw_settings.project
tool_data = raw_settings.tool
comfy_data = tool_data.get("comfy", {}) if tool_data else {}
return PyProjectConfig(project=project_data, tool_comfy=comfy_data)
def load_pyproject_settings(toml_path: Path) -> PyProjectSettings:
class PyProjectLoader(PyProjectSettings):
@classmethod
def settings_customise_sources(
cls,
settings_cls,
init_settings: PydanticBaseSettingsSource,
env_settings: PydanticBaseSettingsSource,
dotenv_settings: PydanticBaseSettingsSource,
file_secret_settings: PydanticBaseSettingsSource,
):
return (TomlConfigSettingsSource(settings_cls, toml_path),)
return PyProjectLoader()

80
comfy_config/types.py Normal file
View File

@ -0,0 +1,80 @@
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings, SettingsConfigDict
from typing import List, Optional
# IMPORTANT: The type definitions specified in pyproject.toml for custom nodes
# must remain synchronized with the corresponding files in the https://github.com/Comfy-Org/comfy-cli/blob/main/comfy_cli/registry/types.py.
# Any changes to one must be reflected in the other to maintain consistency.
class NodeVersion(BaseModel):
changelog: str
dependencies: List[str]
deprecated: bool
id: str
version: str
download_url: str
class Node(BaseModel):
id: str
name: str
description: str
author: Optional[str] = None
license: Optional[str] = None
icon: Optional[str] = None
repository: Optional[str] = None
tags: List[str] = Field(default_factory=list)
latest_version: Optional[NodeVersion] = None
class PublishNodeVersionResponse(BaseModel):
node_version: NodeVersion
signedUrl: str
class URLs(BaseModel):
homepage: str = Field(default="", alias="Homepage")
documentation: str = Field(default="", alias="Documentation")
repository: str = Field(default="", alias="Repository")
issues: str = Field(default="", alias="Issues")
class Model(BaseModel):
location: str
model_url: str
class ComfyConfig(BaseModel):
publisher_id: str = Field(default="", alias="PublisherId")
display_name: str = Field(default="", alias="DisplayName")
icon: str = Field(default="", alias="Icon")
models: List[Model] = Field(default_factory=list, alias="Models")
includes: List[str] = Field(default_factory=list)
class License(BaseModel):
file: str = ""
text: str = ""
class ProjectConfig(BaseModel):
name: str = ""
description: str = ""
version: str = "1.0.0"
requires_python: str = Field(default=">= 3.9", alias="requires-python")
dependencies: List[str] = Field(default_factory=list)
license: License = Field(default_factory=License)
urls: URLs = Field(default_factory=URLs)
class PyProjectConfig(BaseModel):
project: ProjectConfig = Field(default_factory=ProjectConfig)
tool_comfy: ComfyConfig = Field(default_factory=ComfyConfig)
class PyProjectSettings(BaseSettings):
project: dict = Field(default_factory=dict)
tool: dict = Field(default_factory=dict)
model_config = SettingsConfigDict()

View File

@ -14,8 +14,10 @@ import re
from io import BytesIO from io import BytesIO
from inspect import cleandoc from inspect import cleandoc
import torch import torch
import comfy.utils
from comfy.comfy_types import FileLocator from comfy.comfy_types import FileLocator, IO
from server import PromptServer
MAX_RESOLUTION = nodes.MAX_RESOLUTION MAX_RESOLUTION = nodes.MAX_RESOLUTION
@ -229,6 +231,186 @@ class SVG:
all_svgs_list.extend(svg_item.data) all_svgs_list.extend(svg_item.data)
return SVG(all_svgs_list) return SVG(all_svgs_list)
class ImageStitch:
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"direction": (["right", "down", "left", "up"], {"default": "right"}),
"match_image_size": ("BOOLEAN", {"default": True}),
"spacing_width": (
"INT",
{"default": 0, "min": 0, "max": 1024, "step": 2},
),
"spacing_color": (
["white", "black", "red", "green", "blue"],
{"default": "white"},
),
},
"optional": {
"image2": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stitch"
CATEGORY = "image/transform"
DESCRIPTION = """
Stitches image2 to image1 in the specified direction.
If image2 is not provided, returns image1 unchanged.
Optional spacing can be added between images.
"""
def stitch(
self,
image1,
direction,
match_image_size,
spacing_width,
spacing_color,
image2=None,
):
if image2 is None:
return (image1,)
# Handle batch size differences
if image1.shape[0] != image2.shape[0]:
max_batch = max(image1.shape[0], image2.shape[0])
if image1.shape[0] < max_batch:
image1 = torch.cat(
[image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)]
)
if image2.shape[0] < max_batch:
image2 = torch.cat(
[image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)]
)
# Match image sizes if requested
if match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
aspect_ratio = w2 / h2
if direction in ["left", "right"]:
target_h, target_w = h1, int(h1 * aspect_ratio)
else: # up, down
target_w, target_h = w1, int(w1 / aspect_ratio)
image2 = comfy.utils.common_upscale(
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled"
).movedim(1, -1)
# When not matching sizes, pad to align non-concat dimensions
if not match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
if direction in ["left", "right"]:
# For horizontal concat, pad heights to match
if h1 != h2:
target_h = max(h1, h2)
if h1 < target_h:
pad_h = target_h - h1
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
if h2 < target_h:
pad_h = target_h - h2
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
else: # up, down
# For vertical concat, pad widths to match
if w1 != w2:
target_w = max(w1, w2)
if w1 < target_w:
pad_w = target_w - w1
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
if w2 < target_w:
pad_w = target_w - w2
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
# Ensure same number of channels
if image1.shape[-1] != image2.shape[-1]:
max_channels = max(image1.shape[-1], image2.shape[-1])
if image1.shape[-1] < max_channels:
image1 = torch.cat(
[
image1,
torch.ones(
*image1.shape[:-1],
max_channels - image1.shape[-1],
device=image1.device,
),
],
dim=-1,
)
if image2.shape[-1] < max_channels:
image2 = torch.cat(
[
image2,
torch.ones(
*image2.shape[:-1],
max_channels - image2.shape[-1],
device=image2.device,
),
],
dim=-1,
)
# Add spacing if specified
if spacing_width > 0:
spacing_width = spacing_width + (spacing_width % 2) # Ensure even
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
if direction in ["left", "right"]:
spacing_shape = (
image1.shape[0],
max(image1.shape[1], image2.shape[1]),
spacing_width,
image1.shape[-1],
)
else:
spacing_shape = (
image1.shape[0],
spacing_width,
max(image1.shape[2], image2.shape[2]),
image1.shape[-1],
)
spacing = torch.full(spacing_shape, 0.0, device=image1.device)
if isinstance(color_val, tuple):
for i, c in enumerate(color_val):
if i < spacing.shape[-1]:
spacing[..., i] = c
if spacing.shape[-1] == 4: # Add alpha
spacing[..., 3] = 1.0
else:
spacing[..., : min(3, spacing.shape[-1])] = color_val
if spacing.shape[-1] == 4:
spacing[..., 3] = 1.0
# Concatenate images
images = [image2, image1] if direction in ["left", "up"] else [image1, image2]
if spacing_width > 0:
images.insert(1, spacing)
concat_dim = 2 if direction in ["left", "right"] else 1
return (torch.cat(images, dim=concat_dim),)
class SaveSVGNode: class SaveSVGNode:
""" """
Save SVG files on disk. Save SVG files on disk.
@ -310,6 +492,37 @@ class SaveSVGNode:
counter += 1 counter += 1
return { "ui": { "images": results } } return { "ui": { "images": results } }
class GetImageSize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"hidden": {
"unique_id": "UNIQUE_ID",
}
}
RETURN_TYPES = (IO.INT, IO.INT, IO.INT)
RETURN_NAMES = ("width", "height", "batch_size")
FUNCTION = "get_size"
CATEGORY = "image"
DESCRIPTION = """Returns width and height of the image, and passes it through unchanged."""
def get_size(self, image, unique_id=None) -> tuple[int, int]:
height = image.shape[1]
width = image.shape[2]
batch_size = image.shape[0]
# Send progress text to display size on the node
if unique_id:
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id)
return width, height, batch_size
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop, "ImageCrop": ImageCrop,
"RepeatImageBatch": RepeatImageBatch, "RepeatImageBatch": RepeatImageBatch,
@ -318,4 +531,6 @@ NODE_CLASS_MAPPINGS = {
"SaveAnimatedWEBP": SaveAnimatedWEBP, "SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG, "SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode, "SaveSVGNode": SaveSVGNode,
"ImageStitch": ImageStitch,
"GetImageSize": GetImageSize,
} }

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is # This file is automatically generated by the build process when version is
# updated in pyproject.toml. # updated in pyproject.toml.
__version__ = "0.3.39" __version__ = "0.3.40"

View File

@ -2064,11 +2064,13 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"ImagePadForOutpaint": "Pad Image for Outpainting", "ImagePadForOutpaint": "Pad Image for Outpainting",
"ImageBatch": "Batch Images", "ImageBatch": "Batch Images",
"ImageCrop": "Image Crop", "ImageCrop": "Image Crop",
"ImageStitch": "Image Stitch",
"ImageBlend": "Image Blend", "ImageBlend": "Image Blend",
"ImageBlur": "Image Blur", "ImageBlur": "Image Blur",
"ImageQuantize": "Image Quantize", "ImageQuantize": "Image Quantize",
"ImageSharpen": "Image Sharpen", "ImageSharpen": "Image Sharpen",
"ImageScaleToTotalPixels": "Scale Image to Total Pixels", "ImageScaleToTotalPixels": "Scale Image to Total Pixels",
"GetImageSize": "Get Image Size",
# _for_testing # _for_testing
"VAEDecodeTiled": "VAE Decode (Tiled)", "VAEDecodeTiled": "VAE Decode (Tiled)",
"VAEEncodeTiled": "VAE Encode (Tiled)", "VAEEncodeTiled": "VAE Encode (Tiled)",

View File

@ -1,6 +1,6 @@
[project] [project]
name = "ComfyUI" name = "ComfyUI"
version = "0.3.39" version = "0.3.40"
readme = "README.md" readme = "README.md"
license = { file = "LICENSE" } license = { file = "LICENSE" }
requires-python = ">=3.9" requires-python = ">=3.9"

View File

@ -1,5 +1,6 @@
comfyui-frontend-package==1.20.7 comfyui-frontend-package==1.21.7
comfyui-workflow-templates==0.1.23 comfyui-workflow-templates==0.1.25
comfyui-embedded-docs==0.2.0
comfyui_manager comfyui_manager
torch torch
torchsde torchsde

View File

@ -390,7 +390,7 @@ class PromptServer():
async def view_image(request): async def view_image(request):
if "filename" in request.rel_url.query: if "filename" in request.rel_url.query:
filename = request.rel_url.query["filename"] filename = request.rel_url.query["filename"]
filename,output_dir = folder_paths.annotated_filepath(filename) filename, output_dir = folder_paths.annotated_filepath(filename)
if not filename: if not filename:
return web.Response(status=400) return web.Response(status=400)
@ -476,9 +476,8 @@ class PromptServer():
# Get content type from mimetype, defaulting to 'application/octet-stream' # Get content type from mimetype, defaulting to 'application/octet-stream'
content_type = mimetypes.guess_type(filename)[0] or 'application/octet-stream' content_type = mimetypes.guess_type(filename)[0] or 'application/octet-stream'
# For security, force certain extensions to download instead of display # For security, force certain mimetypes to download instead of display
file_extension = os.path.splitext(filename)[1].lower() if content_type in {'text/html', 'text/html-sandboxed', 'application/xhtml+xml', 'text/javascript', 'text/css'}:
if file_extension in {'.html', '.htm', '.js', '.css'}:
content_type = 'application/octet-stream' # Forces download content_type = 'application/octet-stream' # Forces download
return web.FileResponse( return web.FileResponse(
@ -746,6 +745,13 @@ class PromptServer():
web.static('/templates', workflow_templates_path) web.static('/templates', workflow_templates_path)
]) ])
# Serve embedded documentation from the package
embedded_docs_path = FrontendManager.embedded_docs_path()
if embedded_docs_path:
self.app.add_routes([
web.static('/docs', embedded_docs_path)
])
self.app.add_routes([ self.app.add_routes([
web.static('/', self.web_root), web.static('/', self.web_root),
]) ])
@ -782,7 +788,7 @@ class PromptServer():
if hasattr(Image, 'Resampling'): if hasattr(Image, 'Resampling'):
resampling = Image.Resampling.BILINEAR resampling = Image.Resampling.BILINEAR
else: else:
resampling = Image.ANTIALIAS resampling = Image.Resampling.LANCZOS
image = ImageOps.contain(image, (max_size, max_size), resampling) image = ImageOps.contain(image, (max_size, max_size), resampling)
type_num = 1 type_num = 1

View File

View File

@ -0,0 +1,243 @@
import torch
from unittest.mock import patch, MagicMock
# Mock nodes module to prevent CUDA initialization during import
mock_nodes = MagicMock()
mock_nodes.MAX_RESOLUTION = 16384
# Mock server module for PromptServer
mock_server = MagicMock()
with patch.dict('sys.modules', {'nodes': mock_nodes, 'server': mock_server}):
from comfy_extras.nodes_images import ImageStitch
class TestImageStitch:
def create_test_image(self, batch_size=1, height=64, width=64, channels=3):
"""Helper to create test images with specific dimensions"""
return torch.rand(batch_size, height, width, channels)
def test_no_image2_passthrough(self):
"""Test that when image2 is None, image1 is returned unchanged"""
node = ImageStitch()
image1 = self.create_test_image()
result = node.stitch(image1, "right", True, 0, "white", image2=None)
assert len(result) == 1
assert torch.equal(result[0], image1)
def test_basic_horizontal_stitch_right(self):
"""Test basic horizontal stitching to the right"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
result = node.stitch(image1, "right", False, 0, "white", image2)
assert result[0].shape == (1, 32, 56, 3) # 32 + 24 width
def test_basic_horizontal_stitch_left(self):
"""Test basic horizontal stitching to the left"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
result = node.stitch(image1, "left", False, 0, "white", image2)
assert result[0].shape == (1, 32, 56, 3) # 24 + 32 width
def test_basic_vertical_stitch_down(self):
"""Test basic vertical stitching downward"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
result = node.stitch(image1, "down", False, 0, "white", image2)
assert result[0].shape == (1, 56, 32, 3) # 32 + 24 height
def test_basic_vertical_stitch_up(self):
"""Test basic vertical stitching upward"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
result = node.stitch(image1, "up", False, 0, "white", image2)
assert result[0].shape == (1, 56, 32, 3) # 24 + 32 height
def test_size_matching_horizontal(self):
"""Test size matching for horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=64)
image2 = self.create_test_image(height=32, width=32) # Different aspect ratio
result = node.stitch(image1, "right", True, 0, "white", image2)
# image2 should be resized to match image1's height (64) with preserved aspect ratio
expected_width = 64 + 64 # original + resized (32*64/32 = 64)
assert result[0].shape == (1, 64, expected_width, 3)
def test_size_matching_vertical(self):
"""Test size matching for vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=64)
image2 = self.create_test_image(height=32, width=32)
result = node.stitch(image1, "down", True, 0, "white", image2)
# image2 should be resized to match image1's width (64) with preserved aspect ratio
expected_height = 64 + 64 # original + resized (32*64/32 = 64)
assert result[0].shape == (1, expected_height, 64, 3)
def test_padding_for_mismatched_heights_horizontal(self):
"""Test padding when heights don't match in horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=32)
image2 = self.create_test_image(height=48, width=24) # Shorter height
result = node.stitch(image1, "right", False, 0, "white", image2)
# Both images should be padded to height 64
assert result[0].shape == (1, 64, 56, 3) # 32 + 24 width, max(64,48) height
def test_padding_for_mismatched_widths_vertical(self):
"""Test padding when widths don't match in vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=64)
image2 = self.create_test_image(height=24, width=48) # Narrower width
result = node.stitch(image1, "down", False, 0, "white", image2)
# Both images should be padded to width 64
assert result[0].shape == (1, 56, 64, 3) # 32 + 24 height, max(64,48) width
def test_spacing_horizontal(self):
"""Test spacing addition in horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
spacing_width = 16
result = node.stitch(image1, "right", False, spacing_width, "white", image2)
# Expected width: 32 + 16 (spacing) + 24 = 72
assert result[0].shape == (1, 32, 72, 3)
def test_spacing_vertical(self):
"""Test spacing addition in vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
spacing_width = 16
result = node.stitch(image1, "down", False, spacing_width, "white", image2)
# Expected height: 32 + 16 (spacing) + 24 = 72
assert result[0].shape == (1, 72, 32, 3)
def test_spacing_color_values(self):
"""Test that spacing colors are applied correctly"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
# Test white spacing
result_white = node.stitch(image1, "right", False, 16, "white", image2)
# Check that spacing region contains white values (close to 1.0)
spacing_region = result_white[0][:, :, 32:48, :] # Middle 16 pixels
assert torch.all(spacing_region >= 0.9) # Should be close to white
# Test black spacing
result_black = node.stitch(image1, "right", False, 16, "black", image2)
spacing_region = result_black[0][:, :, 32:48, :]
assert torch.all(spacing_region <= 0.1) # Should be close to black
def test_odd_spacing_width_made_even(self):
"""Test that odd spacing widths are made even"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
# Use odd spacing width
result = node.stitch(image1, "right", False, 15, "white", image2)
# Should be made even (16), so total width = 32 + 16 + 32 = 80
assert result[0].shape == (1, 32, 80, 3)
def test_batch_size_matching(self):
"""Test that different batch sizes are handled correctly"""
node = ImageStitch()
image1 = self.create_test_image(batch_size=2, height=32, width=32)
image2 = self.create_test_image(batch_size=1, height=32, width=32)
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should match larger batch size
assert result[0].shape == (2, 32, 64, 3)
def test_channel_matching_rgb_to_rgba(self):
"""Test that channel differences are handled (RGB + alpha)"""
node = ImageStitch()
image1 = self.create_test_image(channels=3) # RGB
image2 = self.create_test_image(channels=4) # RGBA
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should have 4 channels (RGBA)
assert result[0].shape[-1] == 4
def test_channel_matching_rgba_to_rgb(self):
"""Test that channel differences are handled (RGBA + RGB)"""
node = ImageStitch()
image1 = self.create_test_image(channels=4) # RGBA
image2 = self.create_test_image(channels=3) # RGB
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should have 4 channels (RGBA)
assert result[0].shape[-1] == 4
def test_all_color_options(self):
"""Test all available color options"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
colors = ["white", "black", "red", "green", "blue"]
for color in colors:
result = node.stitch(image1, "right", False, 16, color, image2)
assert result[0].shape == (1, 32, 80, 3) # Basic shape check
def test_all_directions(self):
"""Test all direction options"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
directions = ["right", "left", "up", "down"]
for direction in directions:
result = node.stitch(image1, direction, False, 0, "white", image2)
assert result[0].shape == (1, 32, 64, 3) if direction in ["right", "left"] else (1, 64, 32, 3)
def test_batch_size_channel_spacing_integration(self):
"""Test integration of batch matching, channel matching, size matching, and spacings"""
node = ImageStitch()
image1 = self.create_test_image(batch_size=2, height=64, width=48, channels=3)
image2 = self.create_test_image(batch_size=1, height=32, width=32, channels=4)
result = node.stitch(image1, "right", True, 8, "red", image2)
# Should handle: batch matching, size matching, channel matching, spacing
assert result[0].shape[0] == 2 # Batch size matched
assert result[0].shape[-1] == 4 # Channels matched to max
assert result[0].shape[1] == 64 # Height from image1 (size matching)
# Width should be: 48 + 8 (spacing) + resized_image2_width
expected_image2_width = int(64 * (32/32)) # Resized to height 64
expected_total_width = 48 + 8 + expected_image2_width
assert result[0].shape[2] == expected_total_width