Update for torch compile comfy kitchen.

This commit is contained in:
comfyanonymous 2026-01-05 19:08:53 -05:00
parent b9c3ad1c93
commit 3c7b599222
2 changed files with 37 additions and 68 deletions

View File

@ -79,7 +79,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
if input is not None:
if dtype is None:
if isinstance(input, QuantizedTensor):
dtype = input._layout_params["orig_dtype"]
dtype = input.params.orig_dtype
else:
dtype = input.dtype
if bias_dtype is None:
@ -488,11 +488,8 @@ if CUBLAS_IS_AVAILABLE:
from .quant_ops import (
QuantizedTensor,
QUANT_ALGOS,
LAYOUTS,
TensorCoreFP8Layout,
TensorCoreFP8E4M3Layout,
TensorCoreFP8E5M2Layout,
TensorCoreNVFP4Layout
get_layout_class,
)
@ -567,7 +564,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
qconfig = QUANT_ALGOS[self.quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
layout_cls = LAYOUTS[self.layout_type]
layout_cls = get_layout_class(self.layout_type)
# Load format-specific parameters
if self.quant_format in ["float8_e4m3fn", "float8_e5m2"]:
@ -599,7 +596,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
raise ValueError(f"Unsupported quantization format: {self.quant_format}")
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=qconfig["storage_t"]), layout_cls, params),
QuantizedTensor(weight.to(device=device, dtype=qconfig["storage_t"]), self.layout_type, params),
requires_grad=False
)
@ -626,10 +623,9 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
layout_cls = self.weight._layout_cls
# Check if it's any FP8 variant (E4M3 or E5M2)
if layout_cls in (TensorCoreFP8E4M3Layout, TensorCoreFP8E5M2Layout) or \
layout_cls.__name__ in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"):
if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"):
sd["{}weight_scale".format(prefix)] = self.weight._params.scale
elif layout_cls == TensorCoreNVFP4Layout or layout_cls.__name__ == "TensorCoreNVFP4Layout":
elif layout_cls == "TensorCoreNVFP4Layout":
sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale
sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale
@ -659,7 +655,6 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor)):
layout_cls = LAYOUTS[self.layout_type]
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
if tensor_3d:
@ -670,7 +665,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
# dtype is now implicit in the layout class
input = QuantizedTensor.from_float(input, layout_cls, scale=getattr(self, 'input_scale', None))
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
output = self._forward(input, self.weight, self.bias)
@ -688,9 +683,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
if getattr(self, 'layout_type', None) is not None:
layout_cls = LAYOUTS[self.layout_type]
# dtype is now implicit in the layout class
weight = QuantizedTensor.from_float(weight, layout_cls, scale="recalculate", stochastic_rounding=seed, inplace_ops=True)
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True)
else:
weight = weight.to(self.weight.dtype)
if return_weight:

View File

@ -6,65 +6,39 @@ from typing import Dict
try:
import comfy_kitchen as ck
from comfy_kitchen.tensor import (
QuantizedTensor as _CKQuantizedTensor,
QuantizedTensor,
QuantizedLayout,
TensorCoreFP8Layout as _CKFp8Layout,
TensorCoreNVFP4Layout, # Direct import, no wrapper needed
register_layout_op,
register_layout_class,
get_layout_class,
)
_CK_AVAILABLE = True
ck.registry.disable("triton")
for k, v in ck.list_backends().items():
logging.info(f"Found comfy_kitchen backend {k}: {v}")
except ImportError as e:
logging.info(f"Failed to import comfy_kitchen, falling back to torch ops. Error: {e}")
logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.")
_CK_AVAILABLE = False
raise ImportError(f"comfy_kitchen is required but not available: {e}")
class QuantizedTensor:
pass
class _CKFp8Layout:
pass
class TensorCoreNVFP4Layout:
pass
def register_layout_class(name, cls):
pass
def get_layout_class(name):
return None
import comfy.float
# ==============================================================================
# Backward Compatibility Layer
# ==============================================================================
class QuantizedTensor(_CKQuantizedTensor):
@staticmethod
def __new__(cls, qdata, layout_cls, params):
# Backward compat: Convert string layout names and dict params before __new__
if isinstance(layout_cls, str):
layout_cls = LAYOUTS[layout_cls]
if isinstance(params, dict):
params = layout_cls.Params(**params)
return _CKQuantizedTensor.__new__(cls, qdata, layout_cls, params)
def __init__(self, qdata, layout_cls, params):
super().__init__(qdata, layout_cls, params)
@property
def _layout_params(self) -> Dict:
return dataclasses.asdict(self._params)
@property
def _layout_type(self) -> str:
return self._layout_cls.__name__
@property
def layout_type(self) -> str:
"""Backward compatibility alias for _layout_type."""
return self._layout_type
def _copy_with(self, qdata=None, params=None, clone_params=True):
if params is None:
params = self._params.clone() if clone_params else self._params
return type(self)(
qdata if qdata is not None else self._qdata,
self._layout_cls,
params,
)
# ==============================================================================
# FP8 Layouts with Comfy-Specific Extensions
# ==============================================================================
@ -81,7 +55,10 @@ class _TensorCoreFP8LayoutBase(_CKFp8Layout):
orig_shape = tuple(tensor.shape)
if isinstance(scale, str) and scale == "recalculate":
scale = torch.amax(tensor.abs()) / torch.finfo(cls.FP8_DTYPE).max
scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(cls.FP8_DTYPE).max
if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small
tensor_info = torch.finfo(tensor.dtype)
scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max))
if scale is None:
scale = torch.ones((), device=tensor.device, dtype=torch.float32)
@ -97,7 +74,7 @@ class _TensorCoreFP8LayoutBase(_CKFp8Layout):
else:
qdata = ck.quantize_per_tensor_fp8(tensor, scale, cls.FP8_DTYPE)
params = cls.Params(scale=scale, orig_dtype=orig_dtype, orig_shape=orig_shape)
params = cls.Params(scale=scale.float(), orig_dtype=orig_dtype, orig_shape=orig_shape)
return qdata, params
@ -117,12 +94,10 @@ TensorCoreFP8Layout = TensorCoreFP8E4M3Layout
# Registry
# ==============================================================================
LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout, # Backward compat alias (E4M3)
"TensorCoreFP8E4M3Layout": TensorCoreFP8E4M3Layout,
"TensorCoreFP8E5M2Layout": TensorCoreFP8E5M2Layout,
"TensorCoreNVFP4Layout": TensorCoreNVFP4Layout, # Direct from comfy_kitchen
}
register_layout_class("TensorCoreFP8Layout", TensorCoreFP8Layout)
register_layout_class("TensorCoreFP8E4M3Layout", TensorCoreFP8E4M3Layout)
register_layout_class("TensorCoreFP8E5M2Layout", TensorCoreFP8E5M2Layout)
register_layout_class("TensorCoreNVFP4Layout", TensorCoreNVFP4Layout)
QUANT_ALGOS = {
"float8_e4m3fn": {