Merge branch 'comfyanonymous:master' into feat/is_change_object_storage

This commit is contained in:
Dr.Lt.Data 2023-07-14 13:30:58 +09:00 committed by GitHub
commit 40564eaafb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 386 additions and 24 deletions

299
comfy_extras/nodes_canny.py Normal file
View File

@ -0,0 +1,299 @@
#From https://github.com/kornia/kornia
import math
import torch
import torch.nn.functional as F
def get_canny_nms_kernel(device=None, dtype=None):
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
return torch.tensor(
[
[[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
],
device=device,
dtype=dtype,
)
def get_hysteresis_kernel(device=None, dtype=None):
"""Utility function that returns the 3x3 kernels for the Canny hysteresis."""
return torch.tensor(
[
[[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
],
device=device,
dtype=dtype,
)
def gaussian_blur_2d(img, kernel_size, sigma):
ksize_half = (kernel_size - 1) * 0.5
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
x_kernel = pdf / pdf.sum()
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
img = torch.nn.functional.pad(img, padding, mode="reflect")
img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3])
return img
def get_sobel_kernel2d(device=None, dtype=None):
kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype)
kernel_y = kernel_x.transpose(0, 1)
return torch.stack([kernel_x, kernel_y])
def spatial_gradient(input, normalized: bool = True):
r"""Compute the first order image derivative in both x and y using a Sobel operator.
.. image:: _static/img/spatial_gradient.png
Args:
input: input image tensor with shape :math:`(B, C, H, W)`.
mode: derivatives modality, can be: `sobel` or `diff`.
order: the order of the derivatives.
normalized: whether the output is normalized.
Return:
the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
filtering_edges.html>`__.
Examples:
>>> input = torch.rand(1, 3, 4, 4)
>>> output = spatial_gradient(input) # 1x3x2x4x4
>>> output.shape
torch.Size([1, 3, 2, 4, 4])
"""
# KORNIA_CHECK_IS_TENSOR(input)
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
# allocate kernel
kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype)
if normalized:
kernel = normalize_kernel2d(kernel)
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...]
# Pad with "replicate for spatial dims, but with zeros for channel
spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
out_channels: int = 2
padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')
out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1)
return out.reshape(b, c, out_channels, h, w)
def rgb_to_grayscale(image, rgb_weights = None):
r"""Convert a RGB image to grayscale version of image.
.. image:: _static/img/rgb_to_grayscale.png
The image data is assumed to be in the range of (0, 1).
Args:
image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`.
rgb_weights: Weights that will be applied on each channel (RGB).
The sum of the weights should add up to one.
Returns:
grayscale version of the image with shape :math:`(*,1,H,W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
color_conversions.html>`__.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> gray = rgb_to_grayscale(input) # 2x1x4x5
"""
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
if rgb_weights is None:
# 8 bit images
if image.dtype == torch.uint8:
rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8)
# floating point images
elif image.dtype in (torch.float16, torch.float32, torch.float64):
rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype)
else:
raise TypeError(f"Unknown data type: {image.dtype}")
else:
# is tensor that we make sure is in the same device/dtype
rgb_weights = rgb_weights.to(image)
# unpack the color image channels with RGB order
r: Tensor = image[..., 0:1, :, :]
g: Tensor = image[..., 1:2, :, :]
b: Tensor = image[..., 2:3, :, :]
w_r, w_g, w_b = rgb_weights.unbind()
return w_r * r + w_g * g + w_b * b
def canny(
input,
low_threshold = 0.1,
high_threshold = 0.2,
kernel_size = 5,
sigma = 1,
hysteresis = True,
eps = 1e-6,
):
r"""Find edges of the input image and filters them using the Canny algorithm.
.. image:: _static/img/canny.png
Args:
input: input image tensor with shape :math:`(B,C,H,W)`.
low_threshold: lower threshold for the hysteresis procedure.
high_threshold: upper threshold for the hysteresis procedure.
kernel_size: the size of the kernel for the gaussian blur.
sigma: the standard deviation of the kernel for the gaussian blur.
hysteresis: if True, applies the hysteresis edge tracking.
Otherwise, the edges are divided between weak (0.5) and strong (1) edges.
eps: regularization number to avoid NaN during backprop.
Returns:
- the canny edge magnitudes map, shape of :math:`(B,1,H,W)`.
- the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
canny.html>`__.
Example:
>>> input = torch.rand(5, 3, 4, 4)
>>> magnitude, edges = canny(input) # 5x3x4x4
>>> magnitude.shape
torch.Size([5, 1, 4, 4])
>>> edges.shape
torch.Size([5, 1, 4, 4])
"""
# KORNIA_CHECK_IS_TENSOR(input)
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
# KORNIA_CHECK(
# low_threshold <= high_threshold,
# "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: "
# f"{low_threshold}>{high_threshold}",
# )
# KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}')
# KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}')
device = input.device
dtype = input.dtype
# To Grayscale
if input.shape[1] == 3:
input = rgb_to_grayscale(input)
# Gaussian filter
blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma)
# Compute the gradients
gradients: Tensor = spatial_gradient(blurred, normalized=False)
# Unpack the edges
gx: Tensor = gradients[:, :, 0]
gy: Tensor = gradients[:, :, 1]
# Compute gradient magnitude and angle
magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps)
angle: Tensor = torch.atan2(gy, gx)
# Radians to Degrees
angle = 180.0 * angle / math.pi
# Round angle to the nearest 45 degree
angle = torch.round(angle / 45) * 45
# Non-maximal suppression
nms_kernels: Tensor = get_canny_nms_kernel(device, dtype)
nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2)
# Get the indices for both directions
positive_idx: Tensor = (angle / 45) % 8
positive_idx = positive_idx.long()
negative_idx: Tensor = ((angle / 45) + 4) % 8
negative_idx = negative_idx.long()
# Apply the non-maximum suppression to the different directions
channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx)
channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx)
channel_select_filtered: Tensor = torch.stack(
[channel_select_filtered_positive, channel_select_filtered_negative], 1
)
is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0
magnitude = magnitude * is_max
# Threshold
edges: Tensor = F.threshold(magnitude, low_threshold, 0.0)
low: Tensor = magnitude > low_threshold
high: Tensor = magnitude > high_threshold
edges = low * 0.5 + high * 0.5
edges = edges.to(dtype)
# Hysteresis
if hysteresis:
edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype)
hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype)
while ((edges_old - edges).abs() != 0).any():
weak: Tensor = (edges == 0.5).float()
strong: Tensor = (edges == 1).float()
hysteresis_magnitude: Tensor = F.conv2d(
edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2
)
hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype)
hysteresis_magnitude = hysteresis_magnitude * weak + strong
edges_old = edges.clone()
edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5
edges = hysteresis_magnitude
return magnitude, edges
class Canny:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "image/preprocessors"
def detect_edge(self, image, low_threshold, high_threshold):
output = canny(image.movedim(-1, 1), low_threshold, high_threshold)
img_out = output[1].repeat(1, 3, 1, 1).movedim(1, -1)
return (img_out,)
NODE_CLASS_MAPPINGS = {
"Canny": Canny,
}

36
main.py
View File

@ -1,22 +1,24 @@
import os import os
import importlib.util import importlib.util
import folder_paths import folder_paths
import time
def execute_prestartup_script(): def execute_prestartup_script():
def execute_script(script_path): def execute_script(script_path):
if os.path.exists(script_path): module_name = os.path.splitext(script_path)[0]
module_name = os.path.splitext(script_path)[0] try:
try: spec = importlib.util.spec_from_file_location(module_name, script_path)
spec = importlib.util.spec_from_file_location(module_name, script_path) module = importlib.util.module_from_spec(spec)
module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module)
spec.loader.exec_module(module) return True
except Exception as e: except Exception as e:
print(f"Failed to execute startup-script: {script_path} / {e}") print(f"Failed to execute startup-script: {script_path} / {e}")
return False
node_paths = folder_paths.get_folder_paths("custom_nodes") node_paths = folder_paths.get_folder_paths("custom_nodes")
for custom_node_path in node_paths: for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path) possible_modules = os.listdir(custom_node_path)
node_prestartup_times = []
for possible_module in possible_modules: for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module) module_path = os.path.join(custom_node_path, possible_module)
@ -24,8 +26,19 @@ def execute_prestartup_script():
continue continue
script_path = os.path.join(module_path, "prestartup_script.py") script_path = os.path.join(module_path, "prestartup_script.py")
execute_script(script_path) if os.path.exists(script_path):
time_before = time.perf_counter()
success = execute_script(script_path)
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_prestartup_times) > 0:
print("\nPrestartup times for custom nodes:")
for n in sorted(node_prestartup_times):
if n[2]:
import_message = ""
else:
import_message = " (PRESTARTUP FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
execute_prestartup_script() execute_prestartup_script()
@ -36,7 +49,6 @@ import itertools
import shutil import shutil
import threading import threading
import gc import gc
import time
from comfy.cli_args import args from comfy.cli_args import args
import comfy.utils import comfy.utils

View File

@ -113,7 +113,7 @@ class ConditioningConcat:
RETURN_TYPES = ("CONDITIONING",) RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "concat" FUNCTION = "concat"
CATEGORY = "advanced/conditioning" CATEGORY = "conditioning"
def concat(self, conditioning_to, conditioning_from): def concat(self, conditioning_to, conditioning_from):
out = [] out = []
@ -1408,6 +1408,7 @@ NODE_CLASS_MAPPINGS = {
"ImagePadForOutpaint": ImagePadForOutpaint, "ImagePadForOutpaint": ImagePadForOutpaint,
"ConditioningAverage ": ConditioningAverage , "ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine, "ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat,
"ConditioningSetArea": ConditioningSetArea, "ConditioningSetArea": ConditioningSetArea,
"ConditioningSetMask": ConditioningSetMask, "ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced, "KSamplerAdvanced": KSamplerAdvanced,
@ -1441,7 +1442,6 @@ NODE_CLASS_MAPPINGS = {
"SaveLatent": SaveLatent, "SaveLatent": SaveLatent,
"ConditioningZeroOut": ConditioningZeroOut, "ConditioningZeroOut": ConditioningZeroOut,
"ConditioningConcat": ConditioningConcat,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
@ -1466,6 +1466,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPSetLastLayer": "CLIP Set Last Layer", "CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)", "ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)", "ConditioningAverage ": "Conditioning (Average)",
"ConditioningConcat": "Conditioning (Concat)",
"ConditioningSetArea": "Conditioning (Set Area)", "ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetMask": "Conditioning (Set Mask)", "ConditioningSetMask": "Conditioning (Set Mask)",
"ControlNetApply": "Apply ControlNet", "ControlNetApply": "Apply ControlNet",
@ -1498,7 +1499,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"VAEEncodeTiled": "VAE Encode (Tiled)", "VAEEncodeTiled": "VAE Encode (Tiled)",
} }
def load_custom_node(module_path): def load_custom_node(module_path, ignore=set()):
module_name = os.path.basename(module_path) module_name = os.path.basename(module_path)
if os.path.isfile(module_path): if os.path.isfile(module_path):
sp = os.path.splitext(module_path) sp = os.path.splitext(module_path)
@ -1512,7 +1513,9 @@ def load_custom_node(module_path):
sys.modules[module_name] = module sys.modules[module_name] = module
module_spec.loader.exec_module(module) module_spec.loader.exec_module(module)
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None: if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS) for name in module.NODE_CLASS_MAPPINGS:
if name not in ignore:
NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None: if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS) NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
return True return True
@ -1525,6 +1528,7 @@ def load_custom_node(module_path):
return False return False
def load_custom_nodes(): def load_custom_nodes():
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
node_paths = folder_paths.get_folder_paths("custom_nodes") node_paths = folder_paths.get_folder_paths("custom_nodes")
node_import_times = [] node_import_times = []
for custom_node_path in node_paths: for custom_node_path in node_paths:
@ -1537,7 +1541,7 @@ def load_custom_nodes():
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
if module_path.endswith(".disabled"): continue if module_path.endswith(".disabled"): continue
time_before = time.perf_counter() time_before = time.perf_counter()
success = load_custom_node(module_path) success = load_custom_node(module_path, base_node_names)
node_import_times.append((time.perf_counter() - time_before, module_path, success)) node_import_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_import_times) > 0: if len(node_import_times) > 0:
@ -1559,4 +1563,5 @@ def init_custom_nodes():
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
load_custom_nodes() load_custom_nodes()

View File

@ -444,7 +444,8 @@ class PromptServer():
prompt_id = str(uuid.uuid4()) prompt_id = str(uuid.uuid4())
outputs_to_execute = valid[2] outputs_to_execute = valid[2]
self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute)) self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute))
return web.json_response({"prompt_id": prompt_id, "number": number}) response = {"prompt_id": prompt_id, "number": number, "node_errors": valid[3]}
return web.json_response(response)
else: else:
print("invalid prompt:", valid[1]) print("invalid prompt:", valid[1])
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400) return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)

View File

@ -202,6 +202,8 @@ class ComfyApi extends EventTarget {
response: await res.json(), response: await res.json(),
}; };
} }
return await res.json();
} }
/** /**

View File

@ -836,7 +836,7 @@ export class ComfyApp {
LGraphCanvas.prototype.drawNodeShape = function (node, ctx, size, fgcolor, bgcolor, selected, mouse_over) { LGraphCanvas.prototype.drawNodeShape = function (node, ctx, size, fgcolor, bgcolor, selected, mouse_over) {
const res = origDrawNodeShape.apply(this, arguments); const res = origDrawNodeShape.apply(this, arguments);
const nodeErrors = self.lastPromptError?.node_errors[node.id]; const nodeErrors = self.lastNodeErrors?.[node.id];
let color = null; let color = null;
let lineWidth = 1; let lineWidth = 1;
@ -845,7 +845,7 @@ export class ComfyApp {
} else if (self.dragOverNode && node.id === self.dragOverNode.id) { } else if (self.dragOverNode && node.id === self.dragOverNode.id) {
color = "dodgerblue"; color = "dodgerblue";
} }
else if (self.lastPromptError != null && nodeErrors?.errors) { else if (nodeErrors?.errors) {
color = "red"; color = "red";
lineWidth = 2; lineWidth = 2;
} }
@ -1413,7 +1413,7 @@ export class ComfyApp {
} }
this.#processingQueue = true; this.#processingQueue = true;
this.lastPromptError = null; this.lastNodeErrors = null;
try { try {
while (this.#queueItems.length) { while (this.#queueItems.length) {
@ -1423,12 +1423,16 @@ export class ComfyApp {
const p = await this.graphToPrompt(); const p = await this.graphToPrompt();
try { try {
await api.queuePrompt(number, p); const res = await api.queuePrompt(number, p);
this.lastNodeErrors = res.node_errors;
if (this.lastNodeErrors.length > 0) {
this.canvas.draw(true, true);
}
} catch (error) { } catch (error) {
const formattedError = this.#formatPromptError(error) const formattedError = this.#formatPromptError(error)
this.ui.dialog.show(formattedError); this.ui.dialog.show(formattedError);
if (error.response) { if (error.response) {
this.lastPromptError = error.response; this.lastNodeErrors = error.response.node_errors;
this.canvas.draw(true, true); this.canvas.draw(true, true);
} }
break; break;
@ -1534,7 +1538,7 @@ export class ComfyApp {
clean() { clean() {
this.nodeOutputs = {}; this.nodeOutputs = {};
this.nodePreviewImages = {} this.nodePreviewImages = {}
this.lastPromptError = null; this.lastNodeErrors = null;
this.lastExecutionError = null; this.lastExecutionError = null;
this.runningNodeId = null; this.runningNodeId = null;
} }

View File

@ -670,6 +670,37 @@ export class ComfyUI {
}, 0); }, 0);
}, },
}), }),
$el("button", {
id: "comfy-dev-save-api-button",
textContent: "Save (API Format)",
style: {width: "100%", display: "none"},
onclick: () => {
let filename = "workflow_api.json";
if (promptFilename.value) {
filename = prompt("Save workflow (API) as:", filename);
if (!filename) return;
if (!filename.toLowerCase().endsWith(".json")) {
filename += ".json";
}
}
app.graphToPrompt().then(p=>{
const json = JSON.stringify(p.output, null, 2); // convert the data to a JSON string
const blob = new Blob([json], {type: "application/json"});
const url = URL.createObjectURL(blob);
const a = $el("a", {
href: url,
download: filename,
style: {display: "none"},
parent: document.body,
});
a.click();
setTimeout(function () {
a.remove();
window.URL.revokeObjectURL(url);
}, 0);
});
},
}),
$el("button", {id: "comfy-load-button", textContent: "Load", onclick: () => fileInput.click()}), $el("button", {id: "comfy-load-button", textContent: "Load", onclick: () => fileInput.click()}),
$el("button", { $el("button", {
id: "comfy-refresh-button", id: "comfy-refresh-button",
@ -694,6 +725,14 @@ export class ComfyUI {
}), }),
]); ]);
const devMode = this.settings.addSetting({
id: "Comfy.DevMode",
name: "Enable Dev mode Options",
type: "boolean",
defaultValue: false,
onChange: function(value) { document.getElementById("comfy-dev-save-api-button").style.display = value ? "block" : "none"},
});
dragElement(this.menuContainer, this.settings); dragElement(this.menuContainer, this.settings);
this.setStatus({exec_info: {queue_remaining: "X"}}); this.setStatus({exec_info: {queue_remaining: "X"}});