Create quant_per_block.py

This commit is contained in:
patientx 2025-05-15 13:54:47 +03:00 committed by GitHub
parent 01aae8eddc
commit 44cac886c4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,82 @@
import torch
import triton
import triton.language as tl
@triton.jit
def quant_per_block_int8_kernel(Input, Output, Scale, L,
stride_iz, stride_ih, stride_in,
stride_oz, stride_oh, stride_on,
stride_sz, stride_sh,
sm_scale,
C: tl.constexpr, BLK: tl.constexpr):
off_blk = tl.program_id(0)
off_h = tl.program_id(1)
off_b = tl.program_id(2)
offs_n = off_blk * BLK + tl.arange(0, BLK)
offs_k = tl.arange(0, C)
input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :]
output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :]
scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk
x = tl.load(input_ptrs, mask=offs_n[:, None] < L)
x = x.to(tl.float32)
x *= sm_scale
scale = tl.max(tl.abs(x)) / 127.
x_int8 = x / scale
x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
x_int8 = x_int8.to(tl.int8)
tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L)
tl.store(scale_ptrs, scale)
def per_block_int8(q, k, BLKQ=32, BLKK=16, sm_scale=None, tensor_layout="HND"):
q_int8 = torch.empty(q.shape, dtype=torch.int8, device=q.device)
k_int8 = torch.empty(k.shape, dtype=torch.int8, device=k.device)
if tensor_layout == "HND":
b, h_qo, qo_len, head_dim = q.shape
_, h_kv, kv_len, _ = k.shape
stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(1), q.stride(2)
stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(1), q_int8.stride(2)
stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(1), k.stride(2)
stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(1), k_int8.stride(2)
elif tensor_layout == "NHD":
b, qo_len, h_qo, head_dim = q.shape
_, kv_len, h_kv, _ = k.shape
stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(2), q.stride(1)
stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(2), q_int8.stride(1)
stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(2), k.stride(1)
stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(2), k_int8.stride(1)
else:
raise ValueError(f"Unknown tensor layout: {tensor_layout}")
q_scale = torch.empty((b, h_qo, (qo_len + BLKQ - 1) // BLKQ, 1), device=q.device, dtype=torch.float32)
k_scale = torch.empty((b, h_kv, (kv_len + BLKK - 1) // BLKK, 1), device=q.device, dtype=torch.float32)
if sm_scale is None:
sm_scale = head_dim**-0.5
grid = ((qo_len + BLKQ - 1) // BLKQ, h_qo, b)
quant_per_block_int8_kernel[grid](
q, q_int8, q_scale, qo_len,
stride_bz_q, stride_h_q, stride_seq_q,
stride_bz_qo, stride_h_qo, stride_seq_qo,
q_scale.stride(0), q_scale.stride(1),
sm_scale=(sm_scale * 1.44269504),
C=head_dim, BLK=BLKQ
)
grid = ((kv_len + BLKK - 1) // BLKK, h_kv, b)
quant_per_block_int8_kernel[grid](
k, k_int8, k_scale, kv_len,
stride_bz_k, stride_h_k, stride_seq_k,
stride_bz_ko, stride_h_ko, stride_seq_ko,
k_scale.stride(0), k_scale.stride(1),
sm_scale=1.0,
C=head_dim, BLK=BLKK
)
return q_int8, q_scale, k_int8, k_scale