mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-04 10:40:30 +08:00
Merge branch 'master' into to-sora-patch-1
This commit is contained in:
commit
4692d9dbe9
6
.github/workflows/release-stable-all.yml
vendored
6
.github/workflows/release-stable-all.yml
vendored
@ -20,7 +20,7 @@ jobs:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu130"
|
||||
python_minor: "13"
|
||||
python_patch: "9"
|
||||
python_patch: "11"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: ""
|
||||
test_release: true
|
||||
@ -65,11 +65,11 @@ jobs:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release AMD ROCm 7.1.1"
|
||||
name: "Release AMD ROCm 7.2"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "rocm711"
|
||||
cache_tag: "rocm72"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "amd"
|
||||
|
||||
@ -208,7 +208,7 @@ comfy install
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
|
||||
Python 3.14 works but some custom nodes may have issues. The free threaded variant works but some dependencies will enable the GIL so it's not fully supported.
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
|
||||
@ -236,6 +236,8 @@ class ComfyNodeABC(ABC):
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
DEV_ONLY: bool
|
||||
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
|
||||
API_NODE: Optional[bool]
|
||||
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
|
||||
|
||||
|
||||
@ -479,10 +479,12 @@ class WanVAE(nn.Module):
|
||||
|
||||
def encode(self, x):
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
## cache
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
feat_map = None
|
||||
if iter_ > 1:
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
## 对encode输入的x,按时间拆分为1、4、4、4....
|
||||
for i in range(iter_):
|
||||
conv_idx = [0]
|
||||
@ -502,10 +504,11 @@ class WanVAE(nn.Module):
|
||||
|
||||
def decode(self, z):
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
# z: [b,c,t,h,w]
|
||||
|
||||
iter_ = z.shape[2]
|
||||
feat_map = None
|
||||
if iter_ > 1:
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
conv_idx = [0]
|
||||
|
||||
@ -466,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, start_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
@ -479,8 +479,15 @@ class SDTokenizer:
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
if has_start_token:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
if len(empty) > 0:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
self.start_token = start_token
|
||||
if start_token is None:
|
||||
logging.warning("WARNING: There's something wrong with your tokenizers.'")
|
||||
|
||||
if end_token is not None:
|
||||
self.end_token = end_token
|
||||
else:
|
||||
@ -488,7 +495,7 @@ class SDTokenizer:
|
||||
self.end_token = empty[1]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
self.start_token = None
|
||||
self.start_token = start_token
|
||||
if end_token is not None:
|
||||
self.end_token = end_token
|
||||
else:
|
||||
|
||||
@ -118,7 +118,7 @@ class MistralTokenizerClass:
|
||||
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.tekken_data = tokenizer_data.get("tekken_model", None)
|
||||
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
|
||||
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"tekken_model": self.tekken_data}
|
||||
|
||||
@ -1247,6 +1247,7 @@ class NodeInfoV1:
|
||||
output_node: bool=None
|
||||
deprecated: bool=None
|
||||
experimental: bool=None
|
||||
dev_only: bool=None
|
||||
api_node: bool=None
|
||||
price_badge: dict | None = None
|
||||
search_aliases: list[str]=None
|
||||
@ -1264,6 +1265,7 @@ class NodeInfoV3:
|
||||
output_node: bool=None
|
||||
deprecated: bool=None
|
||||
experimental: bool=None
|
||||
dev_only: bool=None
|
||||
api_node: bool=None
|
||||
price_badge: dict | None = None
|
||||
|
||||
@ -1375,6 +1377,8 @@ class Schema:
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
is_experimental: bool=False
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
is_dev_only: bool=False
|
||||
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
|
||||
is_api_node: bool=False
|
||||
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
|
||||
price_badge: PriceBadge | None = None
|
||||
@ -1485,6 +1489,7 @@ class Schema:
|
||||
output_node=self.is_output_node,
|
||||
deprecated=self.is_deprecated,
|
||||
experimental=self.is_experimental,
|
||||
dev_only=self.is_dev_only,
|
||||
api_node=self.is_api_node,
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
|
||||
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
|
||||
@ -1519,6 +1524,7 @@ class Schema:
|
||||
output_node=self.is_output_node,
|
||||
deprecated=self.is_deprecated,
|
||||
experimental=self.is_experimental,
|
||||
dev_only=self.is_dev_only,
|
||||
api_node=self.is_api_node,
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
|
||||
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
|
||||
@ -1791,6 +1797,14 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
|
||||
cls.GET_SCHEMA()
|
||||
return cls._DEPRECATED
|
||||
|
||||
_DEV_ONLY = None
|
||||
@final
|
||||
@classproperty
|
||||
def DEV_ONLY(cls): # noqa
|
||||
if cls._DEV_ONLY is None:
|
||||
cls.GET_SCHEMA()
|
||||
return cls._DEV_ONLY
|
||||
|
||||
_API_NODE = None
|
||||
@final
|
||||
@classproperty
|
||||
@ -1893,6 +1907,8 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
|
||||
cls._EXPERIMENTAL = schema.is_experimental
|
||||
if cls._DEPRECATED is None:
|
||||
cls._DEPRECATED = schema.is_deprecated
|
||||
if cls._DEV_ONLY is None:
|
||||
cls._DEV_ONLY = schema.is_dev_only
|
||||
if cls._API_NODE is None:
|
||||
cls._API_NODE = schema.is_api_node
|
||||
if cls._OUTPUT_NODE is None:
|
||||
|
||||
@ -13,17 +13,6 @@ class Text2ImageTaskCreationRequest(BaseModel):
|
||||
watermark: bool | None = Field(False)
|
||||
|
||||
|
||||
class Image2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
prompt: str = Field(...)
|
||||
response_format: str | None = Field("url")
|
||||
image: str = Field(..., description="Base64 encoded string or image URL")
|
||||
size: str | None = Field("adaptive")
|
||||
seed: int | None = Field(..., ge=0, le=2147483647)
|
||||
guidance_scale: float | None = Field(..., ge=1.0, le=10.0)
|
||||
watermark: bool | None = Field(False)
|
||||
|
||||
|
||||
class Seedream4Options(BaseModel):
|
||||
max_images: int = Field(15)
|
||||
|
||||
|
||||
122
comfy_api_nodes/apis/magnific.py
Normal file
122
comfy_api_nodes/apis/magnific.py
Normal file
@ -0,0 +1,122 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import AliasChoices, BaseModel, Field, model_validator
|
||||
|
||||
|
||||
class InputPortraitMode(TypedDict):
|
||||
portrait_mode: str
|
||||
portrait_style: str
|
||||
portrait_beautifier: str
|
||||
|
||||
|
||||
class InputAdvancedSettings(TypedDict):
|
||||
advanced_settings: str
|
||||
whites: int
|
||||
blacks: int
|
||||
brightness: int
|
||||
contrast: int
|
||||
saturation: int
|
||||
engine: str
|
||||
transfer_light_a: str
|
||||
transfer_light_b: str
|
||||
fixed_generation: bool
|
||||
|
||||
|
||||
class InputSkinEnhancerMode(TypedDict):
|
||||
mode: str
|
||||
skin_detail: int
|
||||
optimized_for: str
|
||||
|
||||
|
||||
class ImageUpscalerCreativeRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
scale_factor: str = Field(...)
|
||||
optimized_for: str = Field(...)
|
||||
prompt: str | None = Field(None)
|
||||
creativity: int = Field(...)
|
||||
hdr: int = Field(...)
|
||||
resemblance: int = Field(...)
|
||||
fractality: int = Field(...)
|
||||
engine: str = Field(...)
|
||||
|
||||
|
||||
class ImageUpscalerPrecisionV2Request(BaseModel):
|
||||
image: str = Field(...)
|
||||
sharpen: int = Field(...)
|
||||
smart_grain: int = Field(...)
|
||||
ultra_detail: int = Field(...)
|
||||
flavor: str = Field(...)
|
||||
scale_factor: int = Field(...)
|
||||
|
||||
|
||||
class ImageRelightAdvancedSettingsRequest(BaseModel):
|
||||
whites: int = Field(...)
|
||||
blacks: int = Field(...)
|
||||
brightness: int = Field(...)
|
||||
contrast: int = Field(...)
|
||||
saturation: int = Field(...)
|
||||
engine: str = Field(...)
|
||||
transfer_light_a: str = Field(...)
|
||||
transfer_light_b: str = Field(...)
|
||||
fixed_generation: bool = Field(...)
|
||||
|
||||
|
||||
class ImageRelightRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
prompt: str | None = Field(None)
|
||||
transfer_light_from_reference_image: str | None = Field(None)
|
||||
light_transfer_strength: int = Field(...)
|
||||
interpolate_from_original: bool = Field(...)
|
||||
change_background: bool = Field(...)
|
||||
style: str = Field(...)
|
||||
preserve_details: bool = Field(...)
|
||||
advanced_settings: ImageRelightAdvancedSettingsRequest | None = Field(...)
|
||||
|
||||
|
||||
class ImageStyleTransferRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
reference_image: str = Field(...)
|
||||
prompt: str | None = Field(None)
|
||||
style_strength: int = Field(...)
|
||||
structure_strength: int = Field(...)
|
||||
is_portrait: bool = Field(...)
|
||||
portrait_style: str | None = Field(...)
|
||||
portrait_beautifier: str | None = Field(...)
|
||||
flavor: str = Field(...)
|
||||
engine: str = Field(...)
|
||||
fixed_generation: bool = Field(...)
|
||||
|
||||
|
||||
class ImageSkinEnhancerCreativeRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sharpen: int = Field(...)
|
||||
smart_grain: int = Field(...)
|
||||
|
||||
|
||||
class ImageSkinEnhancerFaithfulRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sharpen: int = Field(...)
|
||||
smart_grain: int = Field(...)
|
||||
skin_detail: int = Field(...)
|
||||
|
||||
|
||||
class ImageSkinEnhancerFlexibleRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sharpen: int = Field(...)
|
||||
smart_grain: int = Field(...)
|
||||
optimized_for: str = Field(...)
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
"""Unified response model that handles both wrapped and unwrapped API responses."""
|
||||
|
||||
task_id: str = Field(...)
|
||||
status: str = Field(validation_alias=AliasChoices("status", "task_status"))
|
||||
generated: list[str] | None = Field(None)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def unwrap_data(cls, values: dict) -> dict:
|
||||
if "data" in values and isinstance(values["data"], dict):
|
||||
return values["data"]
|
||||
return values
|
||||
@ -9,7 +9,6 @@ from comfy_api_nodes.apis.bytedance import (
|
||||
RECOMMENDED_PRESETS,
|
||||
RECOMMENDED_PRESETS_SEEDREAM_4,
|
||||
VIDEO_TASKS_EXECUTION_TIME,
|
||||
Image2ImageTaskCreationRequest,
|
||||
Image2VideoTaskCreationRequest,
|
||||
ImageTaskCreationResponse,
|
||||
Seedream4Options,
|
||||
@ -174,99 +173,6 @@ class ByteDanceImageNode(IO.ComfyNode):
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
|
||||
|
||||
|
||||
class ByteDanceImageEditNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ByteDanceImageEditNode",
|
||||
display_name="ByteDance Image Edit",
|
||||
category="api node/image/ByteDance",
|
||||
description="Edit images using ByteDance models via api based on prompt",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]),
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="The base image to edit",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Instruction to edit image",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed to use for generation",
|
||||
optional=True,
|
||||
),
|
||||
IO.Float.Input(
|
||||
"guidance_scale",
|
||||
default=5.5,
|
||||
min=1.0,
|
||||
max=10.0,
|
||||
step=0.01,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Higher value makes the image follow the prompt more closely",
|
||||
optional=True,
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"watermark",
|
||||
default=False,
|
||||
tooltip='Whether to add an "AI generated" watermark to the image',
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
image: Input.Image,
|
||||
prompt: str,
|
||||
seed: int,
|
||||
guidance_scale: float,
|
||||
watermark: bool,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1))
|
||||
source_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0]
|
||||
payload = Image2ImageTaskCreationRequest(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
image=source_url,
|
||||
seed=seed,
|
||||
guidance_scale=guidance_scale,
|
||||
watermark=watermark,
|
||||
)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
|
||||
data=payload,
|
||||
response_model=ImageTaskCreationResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
|
||||
|
||||
|
||||
class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
@ -1101,7 +1007,6 @@ class ByteDanceExtension(ComfyExtension):
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
ByteDanceImageNode,
|
||||
ByteDanceImageEditNode,
|
||||
ByteDanceSeedreamNode,
|
||||
ByteDanceTextToVideoNode,
|
||||
ByteDanceImageToVideoNode,
|
||||
|
||||
889
comfy_api_nodes/nodes_magnific.py
Normal file
889
comfy_api_nodes/nodes_magnific.py
Normal file
@ -0,0 +1,889 @@
|
||||
import math
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.magnific import (
|
||||
ImageRelightAdvancedSettingsRequest,
|
||||
ImageRelightRequest,
|
||||
ImageSkinEnhancerCreativeRequest,
|
||||
ImageSkinEnhancerFaithfulRequest,
|
||||
ImageSkinEnhancerFlexibleRequest,
|
||||
ImageStyleTransferRequest,
|
||||
ImageUpscalerCreativeRequest,
|
||||
ImageUpscalerPrecisionV2Request,
|
||||
InputAdvancedSettings,
|
||||
InputPortraitMode,
|
||||
InputSkinEnhancerMode,
|
||||
TaskResponse,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_image_tensor,
|
||||
downscale_image_tensor,
|
||||
get_image_dimensions,
|
||||
get_number_of_images,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_image_aspect_ratio,
|
||||
validate_image_dimensions,
|
||||
)
|
||||
|
||||
|
||||
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MagnificImageUpscalerCreativeNode",
|
||||
display_name="Magnific Image Upscale (Creative)",
|
||||
category="api node/image/Magnific",
|
||||
description="Prompt‑guided enhancement, stylization, and 2x/4x/8x/16x upscaling. "
|
||||
"Maximum output: 25.3 megapixels.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Combo.Input("scale_factor", options=["2x", "4x", "8x", "16x"]),
|
||||
IO.Combo.Input(
|
||||
"optimized_for",
|
||||
options=[
|
||||
"standard",
|
||||
"soft_portraits",
|
||||
"hard_portraits",
|
||||
"art_n_illustration",
|
||||
"videogame_assets",
|
||||
"nature_n_landscapes",
|
||||
"films_n_photography",
|
||||
"3d_renders",
|
||||
"science_fiction_n_horror",
|
||||
],
|
||||
),
|
||||
IO.Int.Input("creativity", min=-10, max=10, default=0, display_mode=IO.NumberDisplay.slider),
|
||||
IO.Int.Input(
|
||||
"hdr",
|
||||
min=-10,
|
||||
max=10,
|
||||
default=0,
|
||||
tooltip="The level of definition and detail.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"resemblance",
|
||||
min=-10,
|
||||
max=10,
|
||||
default=0,
|
||||
tooltip="The level of resemblance to the original image.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"fractality",
|
||||
min=-10,
|
||||
max=10,
|
||||
default=0,
|
||||
tooltip="The strength of the prompt and intricacy per square pixel.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"engine",
|
||||
options=["automatic", "magnific_illusio", "magnific_sharpy", "magnific_sparkle"],
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"auto_downscale",
|
||||
default=False,
|
||||
tooltip="Automatically downscale input image if output would exceed maximum pixel limit.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
prompt: str,
|
||||
scale_factor: str,
|
||||
optimized_for: str,
|
||||
creativity: int,
|
||||
hdr: int,
|
||||
resemblance: int,
|
||||
fractality: int,
|
||||
engine: str,
|
||||
auto_downscale: bool,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(image, min_height=160, min_width=160)
|
||||
|
||||
max_output_pixels = 25_300_000
|
||||
height, width = get_image_dimensions(image)
|
||||
requested_scale = int(scale_factor.rstrip("x"))
|
||||
output_pixels = height * width * requested_scale * requested_scale
|
||||
|
||||
if output_pixels > max_output_pixels:
|
||||
if auto_downscale:
|
||||
# Find optimal scale factor that doesn't require >2x downscale.
|
||||
# Server upscales in 2x steps, so aggressive downscaling degrades quality.
|
||||
input_pixels = width * height
|
||||
scale = 2
|
||||
max_input_pixels = max_output_pixels // 4
|
||||
for candidate in [16, 8, 4, 2]:
|
||||
if candidate > requested_scale:
|
||||
continue
|
||||
scale_output_pixels = input_pixels * candidate * candidate
|
||||
if scale_output_pixels <= max_output_pixels:
|
||||
scale = candidate
|
||||
max_input_pixels = None
|
||||
break
|
||||
downscale_ratio = math.sqrt(scale_output_pixels / max_output_pixels)
|
||||
if downscale_ratio <= 2.0:
|
||||
scale = candidate
|
||||
max_input_pixels = max_output_pixels // (candidate * candidate)
|
||||
break
|
||||
|
||||
if max_input_pixels is not None:
|
||||
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
|
||||
scale_factor = f"{scale}x"
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Output size ({width * requested_scale}x{height * requested_scale} = {output_pixels:,} pixels) "
|
||||
f"exceeds maximum allowed size of {max_output_pixels:,} pixels. "
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
|
||||
response_model=TaskResponse,
|
||||
data=ImageUpscalerCreativeRequest(
|
||||
image=(await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=None))[0],
|
||||
scale_factor=scale_factor,
|
||||
optimized_for=optimized_for,
|
||||
creativity=creativity,
|
||||
hdr=hdr,
|
||||
resemblance=resemblance,
|
||||
fractality=fractality,
|
||||
engine=engine,
|
||||
prompt=prompt if prompt else None,
|
||||
),
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
|
||||
|
||||
|
||||
class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MagnificImageUpscalerPreciseV2Node",
|
||||
display_name="Magnific Image Upscale (Precise V2)",
|
||||
category="api node/image/Magnific",
|
||||
description="High-fidelity upscaling with fine control over sharpness, grain, and detail. "
|
||||
"Maximum output: 10060×10060 pixels.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Combo.Input("scale_factor", options=["2x", "4x", "8x", "16x"]),
|
||||
IO.Combo.Input(
|
||||
"flavor",
|
||||
options=["sublime", "photo", "photo_denoiser"],
|
||||
tooltip="Processing style: "
|
||||
"sublime for general use, photo for photographs, photo_denoiser for noisy photos.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"sharpen",
|
||||
min=0,
|
||||
max=100,
|
||||
default=7,
|
||||
tooltip="Image sharpness intensity. Higher values increase edge definition and clarity.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"smart_grain",
|
||||
min=0,
|
||||
max=100,
|
||||
default=7,
|
||||
tooltip="Intelligent grain/texture enhancement to prevent the image from "
|
||||
"looking too smooth or artificial.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"ultra_detail",
|
||||
min=0,
|
||||
max=100,
|
||||
default=30,
|
||||
tooltip="Controls fine detail, textures, and micro-details added during upscaling.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"auto_downscale",
|
||||
default=False,
|
||||
tooltip="Automatically downscale input image if output would exceed maximum resolution.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
scale_factor: str,
|
||||
flavor: str,
|
||||
sharpen: int,
|
||||
smart_grain: int,
|
||||
ultra_detail: int,
|
||||
auto_downscale: bool,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(image, min_height=160, min_width=160)
|
||||
|
||||
max_output_dimension = 10060
|
||||
height, width = get_image_dimensions(image)
|
||||
requested_scale = int(scale_factor.strip("x"))
|
||||
output_width = width * requested_scale
|
||||
output_height = height * requested_scale
|
||||
|
||||
if output_width > max_output_dimension or output_height > max_output_dimension:
|
||||
if auto_downscale:
|
||||
# Find optimal scale factor that doesn't require >2x downscale.
|
||||
# Server upscales in 2x steps, so aggressive downscaling degrades quality.
|
||||
max_dim = max(width, height)
|
||||
scale = 2
|
||||
max_input_dim = max_output_dimension // 2
|
||||
scale_ratio = max_input_dim / max_dim
|
||||
max_input_pixels = int(width * height * scale_ratio * scale_ratio)
|
||||
for candidate in [16, 8, 4, 2]:
|
||||
if candidate > requested_scale:
|
||||
continue
|
||||
output_dim = max_dim * candidate
|
||||
if output_dim <= max_output_dimension:
|
||||
scale = candidate
|
||||
max_input_pixels = None
|
||||
break
|
||||
downscale_ratio = output_dim / max_output_dimension
|
||||
if downscale_ratio <= 2.0:
|
||||
scale = candidate
|
||||
max_input_dim = max_output_dimension // candidate
|
||||
scale_ratio = max_input_dim / max_dim
|
||||
max_input_pixels = int(width * height * scale_ratio * scale_ratio)
|
||||
break
|
||||
|
||||
if max_input_pixels is not None:
|
||||
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
|
||||
requested_scale = scale
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Output dimensions ({output_width}x{output_height}) exceed maximum allowed "
|
||||
f"resolution of {max_output_dimension}x{max_output_dimension} pixels. "
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
|
||||
response_model=TaskResponse,
|
||||
data=ImageUpscalerPrecisionV2Request(
|
||||
image=(await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=None))[0],
|
||||
scale_factor=requested_scale,
|
||||
flavor=flavor,
|
||||
sharpen=sharpen,
|
||||
smart_grain=smart_grain,
|
||||
ultra_detail=ultra_detail,
|
||||
),
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
|
||||
|
||||
|
||||
class MagnificImageStyleTransferNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MagnificImageStyleTransferNode",
|
||||
display_name="Magnific Image Style Transfer",
|
||||
category="api node/image/Magnific",
|
||||
description="Transfer the style from a reference image to your input image.",
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The image to apply style transfer to."),
|
||||
IO.Image.Input("reference_image", tooltip="The reference image to extract style from."),
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Int.Input(
|
||||
"style_strength",
|
||||
min=0,
|
||||
max=100,
|
||||
default=100,
|
||||
tooltip="Percentage of style strength.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"structure_strength",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Maintains the structure of the original image.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"flavor",
|
||||
options=["faithful", "gen_z", "psychedelia", "detaily", "clear", "donotstyle", "donotstyle_sharp"],
|
||||
tooltip="Style transfer flavor.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"engine",
|
||||
options=[
|
||||
"balanced",
|
||||
"definio",
|
||||
"illusio",
|
||||
"3d_cartoon",
|
||||
"colorful_anime",
|
||||
"caricature",
|
||||
"real",
|
||||
"super_real",
|
||||
"softy",
|
||||
],
|
||||
tooltip="Processing engine selection.",
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"portrait_mode",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("disabled", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"enabled",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"portrait_style",
|
||||
options=["standard", "pop", "super_pop"],
|
||||
tooltip="Visual style applied to portrait images.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"portrait_beautifier",
|
||||
options=["none", "beautify_face", "beautify_face_max"],
|
||||
tooltip="Facial beautification intensity on portraits.",
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Enable portrait mode for facial enhancements.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"fixed_generation",
|
||||
default=True,
|
||||
tooltip="When disabled, expect each generation to introduce a degree of randomness, "
|
||||
"leading to more diverse outcomes.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.11}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
reference_image: Input.Image,
|
||||
prompt: str,
|
||||
style_strength: int,
|
||||
structure_strength: int,
|
||||
flavor: str,
|
||||
engine: str,
|
||||
portrait_mode: InputPortraitMode,
|
||||
fixed_generation: bool,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
if get_number_of_images(reference_image) != 1:
|
||||
raise ValueError("Exactly one reference image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_aspect_ratio(reference_image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(image, min_height=160, min_width=160)
|
||||
validate_image_dimensions(reference_image, min_height=160, min_width=160)
|
||||
|
||||
is_portrait = portrait_mode["portrait_mode"] == "enabled"
|
||||
portrait_style = portrait_mode.get("portrait_style", "standard")
|
||||
portrait_beautifier = portrait_mode.get("portrait_beautifier", "none")
|
||||
|
||||
uploaded_urls = await upload_images_to_comfyapi(cls, [image, reference_image], max_images=2)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-style-transfer", method="POST"),
|
||||
response_model=TaskResponse,
|
||||
data=ImageStyleTransferRequest(
|
||||
image=uploaded_urls[0],
|
||||
reference_image=uploaded_urls[1],
|
||||
prompt=prompt if prompt else None,
|
||||
style_strength=style_strength,
|
||||
structure_strength=structure_strength,
|
||||
is_portrait=is_portrait,
|
||||
portrait_style=portrait_style if is_portrait else None,
|
||||
portrait_beautifier=portrait_beautifier if is_portrait and portrait_beautifier != "none" else None,
|
||||
flavor=flavor,
|
||||
engine=engine,
|
||||
fixed_generation=fixed_generation,
|
||||
),
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-style-transfer/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
|
||||
|
||||
|
||||
class MagnificImageRelightNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MagnificImageRelightNode",
|
||||
display_name="Magnific Image Relight",
|
||||
category="api node/image/Magnific",
|
||||
description="Relight an image with lighting adjustments and optional reference-based light transfer.",
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The image to relight."),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Descriptive guidance for lighting. Supports emphasis notation (1-1.4).",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"light_transfer_strength",
|
||||
min=0,
|
||||
max=100,
|
||||
default=100,
|
||||
tooltip="Intensity of light transfer application.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"style",
|
||||
options=[
|
||||
"standard",
|
||||
"darker_but_realistic",
|
||||
"clean",
|
||||
"smooth",
|
||||
"brighter",
|
||||
"contrasted_n_hdr",
|
||||
"just_composition",
|
||||
],
|
||||
tooltip="Stylistic output preference.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"interpolate_from_original",
|
||||
default=False,
|
||||
tooltip="Restricts generation freedom to match original more closely.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"change_background",
|
||||
default=True,
|
||||
tooltip="Modifies background based on prompt/reference.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"preserve_details",
|
||||
default=True,
|
||||
tooltip="Maintains texture and fine details from original.",
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"advanced_settings",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("disabled", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"enabled",
|
||||
[
|
||||
IO.Int.Input(
|
||||
"whites",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Adjusts the brightest tones in the image.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"blacks",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Adjusts the darkest tones in the image.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"brightness",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Overall brightness adjustment.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"contrast",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Contrast adjustment.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"saturation",
|
||||
min=0,
|
||||
max=100,
|
||||
default=50,
|
||||
tooltip="Color saturation adjustment.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"engine",
|
||||
options=[
|
||||
"automatic",
|
||||
"balanced",
|
||||
"cool",
|
||||
"real",
|
||||
"illusio",
|
||||
"fairy",
|
||||
"colorful_anime",
|
||||
"hard_transform",
|
||||
"softy",
|
||||
],
|
||||
tooltip="Processing engine selection.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"transfer_light_a",
|
||||
options=["automatic", "low", "medium", "normal", "high", "high_on_faces"],
|
||||
tooltip="The intensity of light transfer.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"transfer_light_b",
|
||||
options=[
|
||||
"automatic",
|
||||
"composition",
|
||||
"straight",
|
||||
"smooth_in",
|
||||
"smooth_out",
|
||||
"smooth_both",
|
||||
"reverse_both",
|
||||
"soft_in",
|
||||
"soft_out",
|
||||
"soft_mid",
|
||||
# "strong_mid", # Commented out because requests fail when this is set.
|
||||
"style_shift",
|
||||
"strong_shift",
|
||||
],
|
||||
tooltip="Also modifies light transfer intensity. "
|
||||
"Can be combined with the previous control for varied effects.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"fixed_generation",
|
||||
default=True,
|
||||
tooltip="Ensures consistent output with the same settings.",
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Fine-tuning options for advanced lighting control.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"reference_image",
|
||||
optional=True,
|
||||
tooltip="Optional reference image to transfer lighting from.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.11}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
prompt: str,
|
||||
light_transfer_strength: int,
|
||||
style: str,
|
||||
interpolate_from_original: bool,
|
||||
change_background: bool,
|
||||
preserve_details: bool,
|
||||
advanced_settings: InputAdvancedSettings,
|
||||
reference_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
if reference_image is not None and get_number_of_images(reference_image) != 1:
|
||||
raise ValueError("Exactly one reference image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(image, min_height=160, min_width=160)
|
||||
if reference_image is not None:
|
||||
validate_image_aspect_ratio(reference_image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(reference_image, min_height=160, min_width=160)
|
||||
|
||||
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
|
||||
reference_url = None
|
||||
if reference_image is not None:
|
||||
reference_url = (await upload_images_to_comfyapi(cls, reference_image, max_images=1))[0]
|
||||
|
||||
adv_settings = None
|
||||
if advanced_settings["advanced_settings"] == "enabled":
|
||||
adv_settings = ImageRelightAdvancedSettingsRequest(
|
||||
whites=advanced_settings["whites"],
|
||||
blacks=advanced_settings["blacks"],
|
||||
brightness=advanced_settings["brightness"],
|
||||
contrast=advanced_settings["contrast"],
|
||||
saturation=advanced_settings["saturation"],
|
||||
engine=advanced_settings["engine"],
|
||||
transfer_light_a=advanced_settings["transfer_light_a"],
|
||||
transfer_light_b=advanced_settings["transfer_light_b"],
|
||||
fixed_generation=advanced_settings["fixed_generation"],
|
||||
)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-relight", method="POST"),
|
||||
response_model=TaskResponse,
|
||||
data=ImageRelightRequest(
|
||||
image=image_url,
|
||||
prompt=prompt if prompt else None,
|
||||
transfer_light_from_reference_image=reference_url,
|
||||
light_transfer_strength=light_transfer_strength,
|
||||
interpolate_from_original=interpolate_from_original,
|
||||
change_background=change_background,
|
||||
style=style,
|
||||
preserve_details=preserve_details,
|
||||
advanced_settings=adv_settings,
|
||||
),
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-relight/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
|
||||
|
||||
|
||||
class MagnificImageSkinEnhancerNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MagnificImageSkinEnhancerNode",
|
||||
display_name="Magnific Image Skin Enhancer",
|
||||
category="api node/image/Magnific",
|
||||
description="Skin enhancement for portraits with multiple processing modes.",
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The portrait image to enhance."),
|
||||
IO.Int.Input(
|
||||
"sharpen",
|
||||
min=0,
|
||||
max=100,
|
||||
default=0,
|
||||
tooltip="Sharpening intensity level.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"smart_grain",
|
||||
min=0,
|
||||
max=100,
|
||||
default=2,
|
||||
tooltip="Smart grain intensity level.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"mode",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("creative", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"faithful",
|
||||
[
|
||||
IO.Int.Input(
|
||||
"skin_detail",
|
||||
min=0,
|
||||
max=100,
|
||||
default=80,
|
||||
tooltip="Skin detail enhancement level.",
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option(
|
||||
"flexible",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"optimized_for",
|
||||
options=[
|
||||
"enhance_skin",
|
||||
"improve_lighting",
|
||||
"enhance_everything",
|
||||
"transform_to_real",
|
||||
"no_make_up",
|
||||
],
|
||||
tooltip="Enhancement optimization target.",
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Processing mode: creative for artistic enhancement, "
|
||||
"faithful for preserving original appearance, "
|
||||
"flexible for targeted optimization.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode"]),
|
||||
expr="""
|
||||
(
|
||||
$rates := {"creative": 0.29, "faithful": 0.37, "flexible": 0.45};
|
||||
{"type":"usd","usd": $lookup($rates, widgets.mode)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
sharpen: int,
|
||||
smart_grain: int,
|
||||
mode: InputSkinEnhancerMode,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
|
||||
validate_image_dimensions(image, min_height=160, min_width=160)
|
||||
|
||||
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=4096 * 4096))[0]
|
||||
selected_mode = mode["mode"]
|
||||
|
||||
if selected_mode == "creative":
|
||||
endpoint = "creative"
|
||||
data = ImageSkinEnhancerCreativeRequest(
|
||||
image=image_url,
|
||||
sharpen=sharpen,
|
||||
smart_grain=smart_grain,
|
||||
)
|
||||
elif selected_mode == "faithful":
|
||||
endpoint = "faithful"
|
||||
data = ImageSkinEnhancerFaithfulRequest(
|
||||
image=image_url,
|
||||
sharpen=sharpen,
|
||||
smart_grain=smart_grain,
|
||||
skin_detail=mode["skin_detail"],
|
||||
)
|
||||
else: # flexible
|
||||
endpoint = "flexible"
|
||||
data = ImageSkinEnhancerFlexibleRequest(
|
||||
image=image_url,
|
||||
sharpen=sharpen,
|
||||
smart_grain=smart_grain,
|
||||
optimized_for=mode["optimized_for"],
|
||||
)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/skin-enhancer/{endpoint}", method="POST"),
|
||||
response_model=TaskResponse,
|
||||
data=data,
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/skin-enhancer/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
|
||||
|
||||
|
||||
class MagnificExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
# MagnificImageUpscalerCreativeNode,
|
||||
# MagnificImageUpscalerPreciseV2Node,
|
||||
MagnificImageStyleTransferNode,
|
||||
MagnificImageRelightNode,
|
||||
MagnificImageSkinEnhancerNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> MagnificExtension:
|
||||
return MagnificExtension()
|
||||
@ -56,15 +56,14 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to
|
||||
def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
*,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> BytesIO:
|
||||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||||
|
||||
Args:
|
||||
image: Input torch.Tensor image.
|
||||
name: Optional filename for the BytesIO object.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
total_pixels: Maximum total pixels for downscaling. If None, no downscaling is performed.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||||
|
||||
Returns:
|
||||
@ -79,13 +78,14 @@ def tensor_to_bytesio(
|
||||
return img_binary
|
||||
|
||||
|
||||
def tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
|
||||
def tensor_to_pil(image: torch.Tensor, total_pixels: int | None = 2048 * 2048) -> Image.Image:
|
||||
"""Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling."""
|
||||
if len(image.shape) > 3:
|
||||
image = image[0]
|
||||
# TODO: remove alpha if not allowed and present
|
||||
input_tensor = image.cpu()
|
||||
input_tensor = downscale_image_tensor(input_tensor.unsqueeze(0), total_pixels=total_pixels).squeeze()
|
||||
if total_pixels is not None:
|
||||
input_tensor = downscale_image_tensor(input_tensor.unsqueeze(0), total_pixels=total_pixels).squeeze()
|
||||
image_np = (input_tensor.numpy() * 255).astype(np.uint8)
|
||||
img = Image.fromarray(image_np)
|
||||
return img
|
||||
@ -93,14 +93,14 @@ def tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image
|
||||
|
||||
def tensor_to_base64_string(
|
||||
image_tensor: torch.Tensor,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> str:
|
||||
"""Convert [B, H, W, C] or [H, W, C] tensor to a base64 string.
|
||||
|
||||
Args:
|
||||
image_tensor: Input torch.Tensor image.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
total_pixels: Maximum total pixels for downscaling. If None, no downscaling is performed.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||||
|
||||
Returns:
|
||||
@ -161,14 +161,14 @@ def downscale_image_tensor_by_max_side(image: torch.Tensor, *, max_side: int) -
|
||||
|
||||
def tensor_to_data_uri(
|
||||
image_tensor: torch.Tensor,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> str:
|
||||
"""Converts a tensor image to a Data URI string.
|
||||
|
||||
Args:
|
||||
image_tensor: Input torch.Tensor image.
|
||||
total_pixels: Maximum total pixels for potential downscaling.
|
||||
total_pixels: Maximum total pixels for downscaling. If None, no downscaling is performed.
|
||||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp').
|
||||
|
||||
Returns:
|
||||
|
||||
@ -49,7 +49,7 @@ async def upload_images_to_comfyapi(
|
||||
mime_type: str | None = None,
|
||||
wait_label: str | None = "Uploading",
|
||||
show_batch_index: bool = True,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Uploads images to ComfyUI API and returns download URLs.
|
||||
|
||||
@ -701,7 +701,14 @@ class Noise_EmptyNoise:
|
||||
|
||||
def generate_noise(self, input_latent):
|
||||
latent_image = input_latent["samples"]
|
||||
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
if latent_image.is_nested:
|
||||
tensors = latent_image.unbind()
|
||||
zeros = []
|
||||
for t in tensors:
|
||||
zeros.append(torch.zeros(t.shape, dtype=t.dtype, layout=t.layout, device="cpu"))
|
||||
return comfy.nested_tensor.NestedTensor(zeros)
|
||||
else:
|
||||
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
|
||||
|
||||
class Noise_RandomNoise:
|
||||
|
||||
@ -223,11 +223,24 @@ class LTXVAddGuide(io.ComfyNode):
|
||||
return frame_idx, latent_idx
|
||||
|
||||
@classmethod
|
||||
def add_keyframe_index(cls, cond, frame_idx, guiding_latent, scale_factors):
|
||||
def add_keyframe_index(cls, cond, frame_idx, guiding_latent, scale_factors, latent_downscale_factor=1):
|
||||
keyframe_idxs, _ = get_keyframe_idxs(cond)
|
||||
_, latent_coords = cls.PATCHIFIER.patchify(guiding_latent)
|
||||
pixel_coords = latent_to_pixel_coords(latent_coords, scale_factors, causal_fix=frame_idx == 0) # we need the causal fix only if we're placing the new latents at index 0
|
||||
pixel_coords[:, 0] += frame_idx
|
||||
|
||||
# The following adjusts keyframe end positions for small grid IC-LoRA.
|
||||
# After dilation, the small grid has the same size and position as the large grid,
|
||||
# but each token encodes a larger image patch. We adjust the end position (not start)
|
||||
# so that RoPE represents the correct middle point of each token.
|
||||
# keyframe_idxs dims: (batch, spatial_dim [t,h,w], token_id, [start, end])
|
||||
# We only adjust h,w (not t) in dim 1, and only end (not start) in dim 3.
|
||||
spatial_end_offset = (latent_downscale_factor - 1) * torch.tensor(
|
||||
scale_factors[1:],
|
||||
device=pixel_coords.device,
|
||||
).view(1, -1, 1, 1)
|
||||
pixel_coords[:, 1:, :, 1:] += spatial_end_offset.to(pixel_coords.dtype)
|
||||
|
||||
if keyframe_idxs is None:
|
||||
keyframe_idxs = pixel_coords
|
||||
else:
|
||||
@ -235,12 +248,12 @@ class LTXVAddGuide(io.ComfyNode):
|
||||
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
|
||||
|
||||
@classmethod
|
||||
def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors, guide_mask=None, in_channels=128):
|
||||
def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors, guide_mask=None, in_channels=128, latent_downscale_factor=1):
|
||||
if latent_image.shape[1] != in_channels or guiding_latent.shape[1] != in_channels:
|
||||
raise ValueError("Adding guide to a combined AV latent is not supported.")
|
||||
|
||||
positive = cls.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
|
||||
negative = cls.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
|
||||
positive = cls.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors, latent_downscale_factor)
|
||||
negative = cls.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors, latent_downscale_factor)
|
||||
|
||||
if guide_mask is not None:
|
||||
target_h = max(noise_mask.shape[3], guide_mask.shape[3])
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.10.0"
|
||||
__version__ = "0.11.0"
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.10.0"
|
||||
version = "0.11.0"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
comfyui-frontend-package==1.37.11
|
||||
comfyui-workflow-templates==0.8.15
|
||||
comfyui-workflow-templates==0.8.24
|
||||
comfyui-embedded-docs==0.4.0
|
||||
torch
|
||||
torchsde
|
||||
@ -22,6 +22,7 @@ alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.7
|
||||
requests
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
@ -679,6 +679,8 @@ class PromptServer():
|
||||
info['deprecated'] = True
|
||||
if getattr(obj_class, "EXPERIMENTAL", False):
|
||||
info['experimental'] = True
|
||||
if getattr(obj_class, "DEV_ONLY", False):
|
||||
info['dev_only'] = True
|
||||
|
||||
if hasattr(obj_class, 'API_NODE'):
|
||||
info['api_node'] = obj_class.API_NODE
|
||||
|
||||
Loading…
Reference in New Issue
Block a user