Merge branch 'master' into dr-support-pip-cm

This commit is contained in:
Dr.Lt.Data 2025-10-03 10:23:40 +09:00
commit 47436c59d7
11 changed files with 285 additions and 163 deletions

View File

@ -3,10 +3,13 @@ https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOW
HOW TO RUN: HOW TO RUN:
if you have a AMD gpu: If you have a AMD gpu:
run_amd_gpu.bat run_amd_gpu.bat
If you have memory issues you can try disabling the smart memory management by running comfyui with:
run_amd_gpu_disable_smart_memory.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints

View File

@ -0,0 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --disable-smart-memory
pause

View File

@ -21,3 +21,28 @@ jobs:
- name: Run Ruff - name: Run Ruff
run: ruff check . run: ruff check .
pylint:
name: Run Pylint
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
- name: Install Pylint
run: pip install pylint
- name: Run Pylint
run: pylint comfy_api_nodes

View File

@ -2,6 +2,7 @@
# filename: filtered-openapi.yaml # filename: filtered-openapi.yaml
# timestamp: 2025-07-30T08:54:00+00:00 # timestamp: 2025-07-30T08:54:00+00:00
# pylint: disable
from __future__ import annotations from __future__ import annotations
from datetime import date, datetime from datetime import date, datetime

View File

@ -95,6 +95,7 @@ import aiohttp
import asyncio import asyncio
import logging import logging
import io import io
import os
import socket import socket
from aiohttp.client_exceptions import ClientError, ClientResponseError from aiohttp.client_exceptions import ClientError, ClientResponseError
from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable, Tuple from typing import Dict, Type, Optional, Any, TypeVar, Generic, Callable, Tuple
@ -499,7 +500,9 @@ class ApiClient:
else: else:
raise ValueError("File must be BytesIO or str path") raise ValueError("File must be BytesIO or str path")
operation_id = f"upload_{upload_url.split('/')[-1]}_{uuid.uuid4().hex[:8]}" parsed = urlparse(upload_url)
basename = os.path.basename(parsed.path) or parsed.netloc or "upload"
operation_id = f"upload_{basename}_{uuid.uuid4().hex[:8]}"
request_logger.log_request_response( request_logger.log_request_response(
operation_id=operation_id, operation_id=operation_id,
request_method="PUT", request_method="PUT",
@ -532,7 +535,7 @@ class ApiClient:
request_method="PUT", request_method="PUT",
request_url=upload_url, request_url=upload_url,
response_status_code=e.status if hasattr(e, "status") else None, response_status_code=e.status if hasattr(e, "status") else None,
response_headers=dict(e.headers) if getattr(e, "headers") else None, response_headers=dict(e.headers) if hasattr(e, "headers") else None,
response_content=None, response_content=None,
error_message=f"{type(e).__name__}: {str(e)}", error_message=f"{type(e).__name__}: {str(e)}",
) )

View File

@ -4,16 +4,18 @@ import os
import datetime import datetime
import json import json
import logging import logging
import re
import hashlib
from typing import Any
import folder_paths import folder_paths
# Get the logger instance # Get the logger instance
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def get_log_directory(): def get_log_directory():
""" """Ensures the API log directory exists within ComfyUI's temp directory and returns its path."""
Ensures the API log directory exists within ComfyUI's temp directory
and returns its path.
"""
base_temp_dir = folder_paths.get_temp_directory() base_temp_dir = folder_paths.get_temp_directory()
log_dir = os.path.join(base_temp_dir, "api_logs") log_dir = os.path.join(base_temp_dir, "api_logs")
try: try:
@ -24,42 +26,77 @@ def get_log_directory():
return base_temp_dir return base_temp_dir
return log_dir return log_dir
def _format_data_for_logging(data):
def _sanitize_filename_component(name: str) -> str:
if not name:
return "log"
sanitized = re.sub(r"[^A-Za-z0-9._-]+", "_", name) # Replace disallowed characters with underscore
sanitized = sanitized.strip(" ._") # Windows: trailing dots or spaces are not allowed
if not sanitized:
sanitized = "log"
return sanitized
def _short_hash(*parts: str, length: int = 10) -> str:
return hashlib.sha1(("|".join(parts)).encode("utf-8")).hexdigest()[:length]
def _build_log_filepath(log_dir: str, operation_id: str, request_url: str) -> str:
"""Build log filepath. We keep it well under common path length limits aiming for <= 240 characters total."""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
slug = _sanitize_filename_component(operation_id) # Best-effort human-readable slug from operation_id
h = _short_hash(operation_id or "", request_url or "") # Short hash ties log to the full operation and URL
# Compute how much room we have for the slug given the directory length
# Keep total path length reasonably below ~260 on Windows.
max_total_path = 240
prefix = f"{timestamp}_"
suffix = f"_{h}.log"
if not slug:
slug = "op"
max_filename_len = max(60, max_total_path - len(log_dir) - 1)
max_slug_len = max(8, max_filename_len - len(prefix) - len(suffix))
if len(slug) > max_slug_len:
slug = slug[:max_slug_len].rstrip(" ._-")
return os.path.join(log_dir, f"{prefix}{slug}{suffix}")
def _format_data_for_logging(data: Any) -> str:
"""Helper to format data (dict, str, bytes) for logging.""" """Helper to format data (dict, str, bytes) for logging."""
if isinstance(data, bytes): if isinstance(data, bytes):
try: try:
return data.decode('utf-8') # Try to decode as text return data.decode("utf-8") # Try to decode as text
except UnicodeDecodeError: except UnicodeDecodeError:
return f"[Binary data of length {len(data)} bytes]" return f"[Binary data of length {len(data)} bytes]"
elif isinstance(data, (dict, list)): elif isinstance(data, (dict, list)):
try: try:
return json.dumps(data, indent=2, ensure_ascii=False) return json.dumps(data, indent=2, ensure_ascii=False)
except TypeError: except TypeError:
return str(data) # Fallback for non-serializable objects return str(data) # Fallback for non-serializable objects
return str(data) return str(data)
def log_request_response( def log_request_response(
operation_id: str, operation_id: str,
request_method: str, request_method: str,
request_url: str, request_url: str,
request_headers: dict | None = None, request_headers: dict | None = None,
request_params: dict | None = None, request_params: dict | None = None,
request_data: any = None, request_data: Any = None,
response_status_code: int | None = None, response_status_code: int | None = None,
response_headers: dict | None = None, response_headers: dict | None = None,
response_content: any = None, response_content: Any = None,
error_message: str | None = None error_message: str | None = None,
): ):
""" """
Logs API request and response details to a file in the temp/api_logs directory. Logs API request and response details to a file in the temp/api_logs directory.
Filenames are sanitized and length-limited for cross-platform safety.
If we still fail to write, we fall back to appending into api.log.
""" """
log_dir = get_log_directory() log_dir = get_log_directory()
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") filepath = _build_log_filepath(log_dir, operation_id, request_url)
filename = f"{timestamp}_{operation_id.replace('/', '_').replace(':', '_')}.log"
filepath = os.path.join(log_dir, filename)
log_content = []
log_content: list[str] = []
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}") log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
log_content.append(f"Operation ID: {operation_id}") log_content.append(f"Operation ID: {operation_id}")
log_content.append("-" * 30 + " REQUEST " + "-" * 30) log_content.append("-" * 30 + " REQUEST " + "-" * 30)
@ -69,7 +106,7 @@ def log_request_response(
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}") log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
if request_params: if request_params:
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}") log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
if request_data: if request_data is not None:
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}") log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30) log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
@ -77,7 +114,7 @@ def log_request_response(
log_content.append(f"Status Code: {response_status_code}") log_content.append(f"Status Code: {response_status_code}")
if response_headers: if response_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}") log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
if response_content: if response_content is not None:
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}") log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
if error_message: if error_message:
log_content.append(f"Error:\n{error_message}") log_content.append(f"Error:\n{error_message}")
@ -89,6 +126,7 @@ def log_request_response(
except Exception as e: except Exception as e:
logger.error(f"Error writing API log to {filepath}: {e}") logger.error(f"Error writing API log to {filepath}: {e}")
if __name__ == '__main__': if __name__ == '__main__':
# Example usage (for testing the logger directly) # Example usage (for testing the logger directly)
logger.setLevel(logging.DEBUG) logger.setLevel(logging.DEBUG)

View File

@ -52,7 +52,3 @@ class RodinResourceItem(BaseModel):
class Rodin3DDownloadResponse(BaseModel): class Rodin3DDownloadResponse(BaseModel):
list: List[RodinResourceItem] = Field(..., description="Source List") list: List[RodinResourceItem] = Field(..., description="Source List")

View File

@ -1,24 +1,34 @@
import torch import torch
import comfy.model_management import comfy.model_management
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat
import kornia.color import kornia.color
class Morphology: class Morphology(io.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": {"image": ("IMAGE",), return io.Schema(
"operation": (["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"],), node_id="Morphology",
"kernel_size": ("INT", {"default": 3, "min": 3, "max": 999, "step": 1}), display_name="ImageMorphology",
}} category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Combo.Input(
"operation",
options=["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"],
),
io.Int.Input("kernel_size", default=3, min=3, max=999, step=1),
],
outputs=[
io.Image.Output(),
],
)
RETURN_TYPES = ("IMAGE",) @classmethod
FUNCTION = "process" def execute(cls, image, operation, kernel_size) -> io.NodeOutput:
CATEGORY = "image/postprocessing"
def process(self, image, operation, kernel_size):
device = comfy.model_management.get_torch_device() device = comfy.model_management.get_torch_device()
kernel = torch.ones(kernel_size, kernel_size, device=device) kernel = torch.ones(kernel_size, kernel_size, device=device)
image_k = image.to(device).movedim(-1, 1) image_k = image.to(device).movedim(-1, 1)
@ -39,49 +49,63 @@ class Morphology:
else: else:
raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'") raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'")
img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1) img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1)
return (img_out,) return io.NodeOutput(img_out)
class ImageRGBToYUV: class ImageRGBToYUV(io.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { "image": ("IMAGE",), return io.Schema(
}} node_id="ImageRGBToYUV",
category="image/batch",
inputs=[
io.Image.Input("image"),
],
outputs=[
io.Image.Output(display_name="Y"),
io.Image.Output(display_name="U"),
io.Image.Output(display_name="V"),
],
)
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE") @classmethod
RETURN_NAMES = ("Y", "U", "V") def execute(cls, image) -> io.NodeOutput:
FUNCTION = "execute"
CATEGORY = "image/batch"
def execute(self, image):
out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1) out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1)
return (out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image)) return io.NodeOutput(out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image))
class ImageYUVToRGB: class ImageYUVToRGB(io.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": {"Y": ("IMAGE",), return io.Schema(
"U": ("IMAGE",), node_id="ImageYUVToRGB",
"V": ("IMAGE",), category="image/batch",
}} inputs=[
io.Image.Input("Y"),
io.Image.Input("U"),
io.Image.Input("V"),
],
outputs=[
io.Image.Output(),
],
)
RETURN_TYPES = ("IMAGE",) @classmethod
FUNCTION = "execute" def execute(cls, Y, U, V) -> io.NodeOutput:
CATEGORY = "image/batch"
def execute(self, Y, U, V):
image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1) image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1)
out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1) out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1)
return (out,) return io.NodeOutput(out)
NODE_CLASS_MAPPINGS = {
"Morphology": Morphology,
"ImageRGBToYUV": ImageRGBToYUV,
"ImageYUVToRGB": ImageYUVToRGB,
}
NODE_DISPLAY_NAME_MAPPINGS = { class MorphologyExtension(ComfyExtension):
"Morphology": "ImageMorphology", @override
} async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
Morphology,
ImageRGBToYUV,
ImageYUVToRGB,
]
async def comfy_entrypoint() -> MorphologyExtension:
return MorphologyExtension()

View File

@ -1,96 +1,70 @@
class Example: from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class Example(io.ComfyNode):
""" """
A example node An example node
Class methods Class methods
------------- -------------
INPUT_TYPES (dict): define_schema (io.Schema):
Tell the main program input parameters of nodes. Tell the main program the metadata, input, output parameters of nodes.
IS_CHANGED: fingerprint_inputs:
optional method to control when the node is re executed. optional method to control when the node is re executed.
check_lazy_status:
optional method to control list of input names that need to be evaluated.
Attributes
----------
RETURN_TYPES (`tuple`):
The type of each element in the output tuple.
RETURN_NAMES (`tuple`):
Optional: The name of each output in the output tuple.
FUNCTION (`str`):
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
OUTPUT_NODE ([`bool`]):
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example.
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected.
Assumed to be False if not present.
CATEGORY (`str`):
The category the node should appear in the UI.
DEPRECATED (`bool`):
Indicates whether the node is deprecated. Deprecated nodes are hidden by default in the UI, but remain
functional in existing workflows that use them.
EXPERIMENTAL (`bool`):
Indicates whether the node is experimental. Experimental nodes are marked as such in the UI and may be subject to
significant changes or removal in future versions. Use with caution in production workflows.
execute(s) -> tuple || None:
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
""" """
def __init__(self):
pass
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls) -> io.Schema:
""" """
Return a dictionary which contains config for all input fields. Return a schema which contains all information about the node.
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". Some types: "Model", "Vae", "Clip", "Conditioning", "Latent", "Image", "Int", "String", "Float", "Combo".
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node. For outputs the "io.Model.Output" should be used, for inputs the "io.Model.Input" can be used.
The type can be a list for selection. The type can be a "Combo" - this will be a list for selection.
Returns: `dict`:
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
- Value input_fields (`dict`): Contains input fields config:
* Key field_name (`string`): Name of a entry-point method's argument
* Value field_config (`tuple`):
+ First value is a string indicate the type of field or a list for selection.
+ Second value is a config for type "INT", "STRING" or "FLOAT".
""" """
return { return io.Schema(
"required": { node_id="Example",
"image": ("IMAGE",), display_name="Example Node",
"int_field": ("INT", { category="Example",
"default": 0, inputs=[
"min": 0, #Minimum value io.Image.Input("image"),
"max": 4096, #Maximum value io.Int.Input(
"step": 64, #Slider's step "int_field",
"display": "number", # Cosmetic only: display as "number" or "slider" min=0,
"lazy": True # Will only be evaluated if check_lazy_status requires it max=4096,
}), step=64, # Slider's step
"float_field": ("FLOAT", { display_mode=io.NumberDisplay.number, # Cosmetic only: display as "number" or "slider"
"default": 1.0, lazy=True, # Will only be evaluated if check_lazy_status requires it
"min": 0.0, ),
"max": 10.0, io.Float.Input(
"step": 0.01, "float_field",
"round": 0.001, #The value representing the precision to round to, will be set to the step value by default. Can be set to False to disable rounding. default=1.0,
"display": "number", min=0.0,
"lazy": True max=10.0,
}), step=0.01,
"print_to_screen": (["enable", "disable"],), round=0.001, #The value representing the precision to round to, will be set to the step value by default. Can be set to False to disable rounding.
"string_field": ("STRING", { display_mode=io.NumberDisplay.number,
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node lazy=True,
"default": "Hello World!", ),
"lazy": True io.Combo.Input("print_to_screen", options=["enable", "disable"]),
}), io.String.Input(
}, "string_field",
} multiline=False, # True if you want the field to look like the one on the ClipTextEncode node
default="Hello world!",
lazy=True,
)
],
outputs=[
io.Image.Output(),
],
)
RETURN_TYPES = ("IMAGE",) @classmethod
#RETURN_NAMES = ("image_output_name",) def check_lazy_status(cls, image, string_field, int_field, float_field, print_to_screen):
FUNCTION = "test"
#OUTPUT_NODE = False
CATEGORY = "Example"
def check_lazy_status(self, image, string_field, int_field, float_field, print_to_screen):
""" """
Return a list of input names that need to be evaluated. Return a list of input names that need to be evaluated.
@ -107,7 +81,8 @@ class Example:
else: else:
return [] return []
def test(self, image, string_field, int_field, float_field, print_to_screen): @classmethod
def execute(cls, image, string_field, int_field, float_field, print_to_screen) -> io.NodeOutput:
if print_to_screen == "enable": if print_to_screen == "enable":
print(f"""Your input contains: print(f"""Your input contains:
string_field aka input text: {string_field} string_field aka input text: {string_field}
@ -116,7 +91,7 @@ class Example:
""") """)
#do some processing on the image, in this example I just invert it #do some processing on the image, in this example I just invert it
image = 1.0 - image image = 1.0 - image
return (image,) return io.NodeOutput(image)
""" """
The node will always be re executed if any of the inputs change but The node will always be re executed if any of the inputs change but
@ -127,7 +102,7 @@ class Example:
changes between executions the LoadImage node is executed again. changes between executions the LoadImage node is executed again.
""" """
#@classmethod #@classmethod
#def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen): #def fingerprint_inputs(s, image, string_field, int_field, float_field, print_to_screen):
# return "" # return ""
# Set the web directory, any .js file in that directory will be loaded by the frontend as a frontend extension # Set the web directory, any .js file in that directory will be loaded by the frontend as a frontend extension
@ -143,13 +118,13 @@ async def get_hello(request):
return web.json_response("hello") return web.json_response("hello")
# A dictionary that contains all nodes you want to export with their names class ExampleExtension(ComfyExtension):
# NOTE: names should be globally unique @override
NODE_CLASS_MAPPINGS = { async def get_node_list(self) -> list[type[io.ComfyNode]]:
"Example": Example return [
} Example,
]
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = { async def comfy_entrypoint() -> ExampleExtension: # ComfyUI calls this to load your extension and its nodes.
"Example": "Example Node" return ExampleExtension()
}

View File

@ -141,6 +141,7 @@ if os.name == "nt":
os.environ['MIMALLOC_PURGE_DELAY'] = '0' os.environ['MIMALLOC_PURGE_DELAY'] = '0'
if __name__ == "__main__": if __name__ == "__main__":
os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1'
if args.default_device is not None: if args.default_device is not None:
default_dev = args.default_device default_dev = args.default_device
devices = list(range(32)) devices = list(range(32))

View File

@ -22,3 +22,57 @@ lint.select = [
"F", "F",
] ]
exclude = ["*.ipynb", "**/generated/*.pyi"] exclude = ["*.ipynb", "**/generated/*.pyi"]
[tool.pylint]
master.py-version = "3.9"
master.extension-pkg-allow-list = [
"pydantic",
]
reports.output-format = "colorized"
similarities.ignore-imports = "yes"
messages_control.disable = [
"missing-module-docstring",
"missing-class-docstring",
"missing-function-docstring",
"line-too-long",
"too-few-public-methods",
"too-many-public-methods",
"too-many-instance-attributes",
"too-many-positional-arguments",
"broad-exception-raised",
"too-many-lines",
"invalid-name",
"unused-argument",
"broad-exception-caught",
"consider-using-with",
"fixme",
"too-many-statements",
"too-many-branches",
"too-many-locals",
"too-many-arguments",
"duplicate-code",
"abstract-method",
"superfluous-parens",
"arguments-differ",
"redefined-builtin",
"unnecessary-lambda",
"dangerous-default-value",
# next warnings should be fixed in future
"bad-classmethod-argument", # Class method should have 'cls' as first argument
"wrong-import-order", # Standard imports should be placed before third party imports
"logging-fstring-interpolation", # Use lazy % formatting in logging functions
"ungrouped-imports",
"unnecessary-pass",
"unidiomatic-typecheck",
"unnecessary-lambda-assignment",
"bad-indentation",
"no-else-return",
"no-else-raise",
"invalid-overridden-method",
"unused-variable",
"pointless-string-statement",
"inconsistent-return-statements",
"import-outside-toplevel",
"reimported",
"redefined-outer-name",
]