mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-16 01:00:49 +08:00
Rename NormalizeVideoLatentFrames -node
For bit better clarity what it does
This commit is contained in:
parent
ce079b0cf5
commit
4848793aac
@ -66,17 +66,17 @@ def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump
|
||||
return normalized
|
||||
|
||||
|
||||
class NormalizeVideoLatentFrames(io.ComfyNode):
|
||||
class NormalizeVideoLatentStart(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="NormalizeVideoLatentFrames",
|
||||
node_id="NormalizeVideoLatentStart",
|
||||
category="conditioning/video_models",
|
||||
description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames.",
|
||||
description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.",
|
||||
inputs=[
|
||||
io.Latent.Input("latent"),
|
||||
io.Int.Input("frames_to_normalize", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of initial frames to normalize, counted from the start"),
|
||||
io.Int.Input("reference_frames", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of frames after the normalized frames to use as reference"),
|
||||
io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"),
|
||||
io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(display_name="latent"),
|
||||
@ -84,17 +84,17 @@ class NormalizeVideoLatentFrames(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, latent, frames_to_normalize, reference_frames) -> io.NodeOutput:
|
||||
def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput:
|
||||
if latent["samples"].shape[2] <= 1:
|
||||
return latent
|
||||
s = latent.copy()
|
||||
samples = latent["samples"].clone()
|
||||
|
||||
first_frames = samples[:, :, :frames_to_normalize]
|
||||
reference_frames_data = samples[:, :, frames_to_normalize:frames_to_normalize+min(reference_frames, samples.shape[2]-1)]
|
||||
first_frames = samples[:, :, :start_frame_count]
|
||||
reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)]
|
||||
normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data)
|
||||
|
||||
samples[:, :, :frames_to_normalize] = normalized_first_frames
|
||||
samples[:, :, :start_frame_count] = normalized_first_frames
|
||||
s["samples"] = samples
|
||||
return io.NodeOutput(s)
|
||||
|
||||
@ -128,7 +128,7 @@ class Kandinsky5Extension(ComfyExtension):
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
Kandinsky5ImageToVideo,
|
||||
NormalizeVideoLatentFrames,
|
||||
NormalizeVideoLatentStart,
|
||||
CLIPTextEncodeKandinsky5,
|
||||
]
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user